dash/src/wallet/crypter.cpp

505 lines
16 KiB
C++
Raw Normal View History

// Copyright (c) 2009-2015 The Bitcoin Core developers
2014-12-13 05:09:33 +01:00
// Distributed under the MIT software license, see the accompanying
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "crypter.h"
#include "crypto/aes.h"
#include "crypto/sha512.h"
#include "script/script.h"
#include "script/standard.h"
#include "util.h"
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
#include <string>
#include <vector>
#include <boost/foreach.hpp>
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
int CCrypter::BytesToKeySHA512AES(const std::vector<unsigned char>& chSalt, const SecureString& strKeyData, int count, unsigned char *key,unsigned char *iv) const
{
// This mimics the behavior of openssl's EVP_BytesToKey with an aes256cbc
// cipher and sha512 message digest. Because sha512's output size (64b) is
// greater than the aes256 block size (16b) + aes256 key size (32b),
// there's no need to process more than once (D_0).
if(!count || !key || !iv)
return 0;
unsigned char buf[CSHA512::OUTPUT_SIZE];
CSHA512 di;
di.Write((const unsigned char*)strKeyData.c_str(), strKeyData.size());
if(chSalt.size())
di.Write(&chSalt[0], chSalt.size());
di.Finalize(buf);
for(int i = 0; i != count - 1; i++)
di.Reset().Write(buf, sizeof(buf)).Finalize(buf);
memcpy(key, buf, WALLET_CRYPTO_KEY_SIZE);
memcpy(iv, buf + WALLET_CRYPTO_KEY_SIZE, WALLET_CRYPTO_IV_SIZE);
memory_cleanse(buf, sizeof(buf));
return WALLET_CRYPTO_KEY_SIZE;
}
bool CCrypter::SetKeyFromPassphrase(const SecureString& strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod)
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
{
if (nRounds < 1 || chSalt.size() != WALLET_CRYPTO_SALT_SIZE)
return false;
int i = 0;
if (nDerivationMethod == 0)
i = BytesToKeySHA512AES(chSalt, strKeyData, nRounds, chKey, chIV);
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
if (i != (int)WALLET_CRYPTO_KEY_SIZE)
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
{
memory_cleanse(chKey, sizeof(chKey));
memory_cleanse(chIV, sizeof(chIV));
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
return false;
}
fKeySet = true;
return true;
}
bool CCrypter::SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigned char>& chNewIV)
{
if (chNewKey.size() != WALLET_CRYPTO_KEY_SIZE || chNewIV.size() != WALLET_CRYPTO_IV_SIZE)
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
return false;
memcpy(&chKey[0], &chNewKey[0], sizeof chKey);
memcpy(&chIV[0], &chNewIV[0], sizeof chIV);
fKeySet = true;
return true;
}
bool CCrypter::Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext) const
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
{
if (!fKeySet)
return false;
// max ciphertext len for a n bytes of plaintext is
// n + AES_BLOCKSIZE bytes
vchCiphertext.resize(vchPlaintext.size() + AES_BLOCKSIZE);
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
AES256CBCEncrypt enc(chKey, chIV, true);
size_t nLen = enc.Encrypt(&vchPlaintext[0], vchPlaintext.size(), &vchCiphertext[0]);
if(nLen < vchPlaintext.size())
return false;
vchCiphertext.resize(nLen);
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
return true;
}
bool CCrypter::Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext) const
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
{
if (!fKeySet)
return false;
// plaintext will always be equal to or lesser than length of ciphertext
int nLen = vchCiphertext.size();
vchPlaintext.resize(nLen);
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
AES256CBCDecrypt dec(chKey, chIV, true);
nLen = dec.Decrypt(&vchCiphertext[0], vchCiphertext.size(), &vchPlaintext[0]);
if(nLen == 0)
return false;
vchPlaintext.resize(nLen);
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
return true;
}
static bool EncryptSecret(const CKeyingMaterial& vMasterKey, const CKeyingMaterial &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext)
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
{
CCrypter cKeyCrypter;
std::vector<unsigned char> chIV(WALLET_CRYPTO_IV_SIZE);
memcpy(&chIV[0], &nIV, WALLET_CRYPTO_IV_SIZE);
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
if(!cKeyCrypter.SetKey(vMasterKey, chIV))
return false;
return cKeyCrypter.Encrypt(*((const CKeyingMaterial*)&vchPlaintext), vchCiphertext);
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
}
Implemented KeePass Integration More info regarding KeePass: http://keepass.info/ KeePass integration will use KeePassHttp (https://github.com/pfn/keepasshttp/) to facilitate communications between the client and KeePass. KeePassHttp is a plugin for KeePass 2.x and provides a secure means of exposing KeePass entries via HTTP for clients to consume. The implementation is dependent on the following: - crypter.h for AES encryption helper functions. - rpcprotocol.h for handling RPC communications. Could only be used partially however due some static values in the code. - OpenSSL for base64 encoding. regular util.h libraries were not used for base64 encoding/decoding since they do not use secure allocation. - JSON Spirit for reading / writing RPC communications The following changes were made: - Added CLI options in help - Added RPC commands: keepass <genkey|init|setpassphrase> - Added keepass.h and keepass.cpp which hold the integration routines - Modified rpcwallet.cpp to support RPC commands The following new options are available for darkcoind and darkcoin-qt: -keepass Use KeePass 2 integration using KeePassHttp plugin (default: 0) -keepassport=<port> Connect to KeePassHttp on port <port> (default: 19455) -keepasskey=<key> KeePassHttp key for AES encrypted communication with KeePass -keepassid=<name> KeePassHttp id for the established association -keepassname=<name> Name to construct url for KeePass entry that stores the wallet passphrase The following rpc commands are available: - keepass genkey: generates a base64 encoded 256 bit AES key that can be used for the communication with KeePassHttp. Only necessary for manual configuration. Use init for automatic configuration. - keepass init: sets up the association between darkcoind and keepass by generating an AES key and sending an association message to KeePassHttp. This will trigger KeePass to ask for an Id for the association. Returns the association and the base64 encoded string for the AES key. - keepass setpassphrase <passphrase>: updates the passphrase in KeePassHttp to a new value. This should match the passphrase you intend to use for the wallet. Please note that the standard RPC commands walletpassphrasechange and the wallet encrption from the QT GUI already send the updates to KeePassHttp, so this is only necessary for manual manipulation of the password. Sample initialization flow from darkcoin-qt console (this needs to be done only once to set up the association): - Have KeePass running with an open database - Start darkcoin-qt - Open console - type: "keepass init" in darkcoin-qt console - (keepass pops up and asks for an association id, fill that in). Example: mydrkwallet - response: Association successful. Id: mydrkwalletdarkcoin - Key: AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= - Edit darkcoin.conf and fill in these values keepass=1 keepasskey=AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= keepassid=mydrkwallet keepassname=testwallet - Restart darkcoin-qt At this point, the association is made. The next action depends on your particular situation: - current wallet is not yet encrypted. Encrypting the wallet will trigger the integration and stores the password in KeePass (Under the 'KeePassHttp Passwords' group, named after keepassname. - current wallet is already encrypted: use "keepass setpassphrase <passphrase>" to store the passphrase in KeePass. At this point, the passphrase is stored in KeePassHttp. When Unlocking the wallet, one can use keepass as the passphrase to trigger retrieval of the password. This works from the RPC commands as well as the GUI.
2014-12-26 12:53:29 +01:00
// General secure AES 256 CBC encryption routine
bool EncryptAES256(const SecureString& sKey, const SecureString& sPlaintext, const std::string& sIV, std::string& sCiphertext)
{
// Verify key sizes
if(sKey.size() != 32 || sIV.size() != AES_BLOCKSIZE) {
Implemented KeePass Integration More info regarding KeePass: http://keepass.info/ KeePass integration will use KeePassHttp (https://github.com/pfn/keepasshttp/) to facilitate communications between the client and KeePass. KeePassHttp is a plugin for KeePass 2.x and provides a secure means of exposing KeePass entries via HTTP for clients to consume. The implementation is dependent on the following: - crypter.h for AES encryption helper functions. - rpcprotocol.h for handling RPC communications. Could only be used partially however due some static values in the code. - OpenSSL for base64 encoding. regular util.h libraries were not used for base64 encoding/decoding since they do not use secure allocation. - JSON Spirit for reading / writing RPC communications The following changes were made: - Added CLI options in help - Added RPC commands: keepass <genkey|init|setpassphrase> - Added keepass.h and keepass.cpp which hold the integration routines - Modified rpcwallet.cpp to support RPC commands The following new options are available for darkcoind and darkcoin-qt: -keepass Use KeePass 2 integration using KeePassHttp plugin (default: 0) -keepassport=<port> Connect to KeePassHttp on port <port> (default: 19455) -keepasskey=<key> KeePassHttp key for AES encrypted communication with KeePass -keepassid=<name> KeePassHttp id for the established association -keepassname=<name> Name to construct url for KeePass entry that stores the wallet passphrase The following rpc commands are available: - keepass genkey: generates a base64 encoded 256 bit AES key that can be used for the communication with KeePassHttp. Only necessary for manual configuration. Use init for automatic configuration. - keepass init: sets up the association between darkcoind and keepass by generating an AES key and sending an association message to KeePassHttp. This will trigger KeePass to ask for an Id for the association. Returns the association and the base64 encoded string for the AES key. - keepass setpassphrase <passphrase>: updates the passphrase in KeePassHttp to a new value. This should match the passphrase you intend to use for the wallet. Please note that the standard RPC commands walletpassphrasechange and the wallet encrption from the QT GUI already send the updates to KeePassHttp, so this is only necessary for manual manipulation of the password. Sample initialization flow from darkcoin-qt console (this needs to be done only once to set up the association): - Have KeePass running with an open database - Start darkcoin-qt - Open console - type: "keepass init" in darkcoin-qt console - (keepass pops up and asks for an association id, fill that in). Example: mydrkwallet - response: Association successful. Id: mydrkwalletdarkcoin - Key: AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= - Edit darkcoin.conf and fill in these values keepass=1 keepasskey=AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= keepassid=mydrkwallet keepassname=testwallet - Restart darkcoin-qt At this point, the association is made. The next action depends on your particular situation: - current wallet is not yet encrypted. Encrypting the wallet will trigger the integration and stores the password in KeePass (Under the 'KeePassHttp Passwords' group, named after keepassname. - current wallet is already encrypted: use "keepass setpassphrase <passphrase>" to store the passphrase in KeePass. At this point, the passphrase is stored in KeePassHttp. When Unlocking the wallet, one can use keepass as the passphrase to trigger retrieval of the password. This works from the RPC commands as well as the GUI.
2014-12-26 12:53:29 +01:00
LogPrintf("crypter EncryptAES256 - Invalid key or block size: Key: %d sIV:%d\n", sKey.size(), sIV.size());
return false;
}
// max ciphertext len for a n bytes of plaintext is
// n + AES_BLOCKSIZE bytes
sCiphertext.resize(sPlaintext.size() + AES_BLOCKSIZE);
Implemented KeePass Integration More info regarding KeePass: http://keepass.info/ KeePass integration will use KeePassHttp (https://github.com/pfn/keepasshttp/) to facilitate communications between the client and KeePass. KeePassHttp is a plugin for KeePass 2.x and provides a secure means of exposing KeePass entries via HTTP for clients to consume. The implementation is dependent on the following: - crypter.h for AES encryption helper functions. - rpcprotocol.h for handling RPC communications. Could only be used partially however due some static values in the code. - OpenSSL for base64 encoding. regular util.h libraries were not used for base64 encoding/decoding since they do not use secure allocation. - JSON Spirit for reading / writing RPC communications The following changes were made: - Added CLI options in help - Added RPC commands: keepass <genkey|init|setpassphrase> - Added keepass.h and keepass.cpp which hold the integration routines - Modified rpcwallet.cpp to support RPC commands The following new options are available for darkcoind and darkcoin-qt: -keepass Use KeePass 2 integration using KeePassHttp plugin (default: 0) -keepassport=<port> Connect to KeePassHttp on port <port> (default: 19455) -keepasskey=<key> KeePassHttp key for AES encrypted communication with KeePass -keepassid=<name> KeePassHttp id for the established association -keepassname=<name> Name to construct url for KeePass entry that stores the wallet passphrase The following rpc commands are available: - keepass genkey: generates a base64 encoded 256 bit AES key that can be used for the communication with KeePassHttp. Only necessary for manual configuration. Use init for automatic configuration. - keepass init: sets up the association between darkcoind and keepass by generating an AES key and sending an association message to KeePassHttp. This will trigger KeePass to ask for an Id for the association. Returns the association and the base64 encoded string for the AES key. - keepass setpassphrase <passphrase>: updates the passphrase in KeePassHttp to a new value. This should match the passphrase you intend to use for the wallet. Please note that the standard RPC commands walletpassphrasechange and the wallet encrption from the QT GUI already send the updates to KeePassHttp, so this is only necessary for manual manipulation of the password. Sample initialization flow from darkcoin-qt console (this needs to be done only once to set up the association): - Have KeePass running with an open database - Start darkcoin-qt - Open console - type: "keepass init" in darkcoin-qt console - (keepass pops up and asks for an association id, fill that in). Example: mydrkwallet - response: Association successful. Id: mydrkwalletdarkcoin - Key: AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= - Edit darkcoin.conf and fill in these values keepass=1 keepasskey=AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= keepassid=mydrkwallet keepassname=testwallet - Restart darkcoin-qt At this point, the association is made. The next action depends on your particular situation: - current wallet is not yet encrypted. Encrypting the wallet will trigger the integration and stores the password in KeePass (Under the 'KeePassHttp Passwords' group, named after keepassname. - current wallet is already encrypted: use "keepass setpassphrase <passphrase>" to store the passphrase in KeePass. At this point, the passphrase is stored in KeePassHttp. When Unlocking the wallet, one can use keepass as the passphrase to trigger retrieval of the password. This works from the RPC commands as well as the GUI.
2014-12-26 12:53:29 +01:00
AES256CBCEncrypt enc((const unsigned char*) &sKey[0], (const unsigned char*) &sIV[0], true);
size_t nLen = enc.Encrypt((const unsigned char*) &sPlaintext[0], sPlaintext.size(), (unsigned char*) &sCiphertext[0]);
if(nLen < sPlaintext.size())
return false;
sCiphertext.resize(nLen);
Implemented KeePass Integration More info regarding KeePass: http://keepass.info/ KeePass integration will use KeePassHttp (https://github.com/pfn/keepasshttp/) to facilitate communications between the client and KeePass. KeePassHttp is a plugin for KeePass 2.x and provides a secure means of exposing KeePass entries via HTTP for clients to consume. The implementation is dependent on the following: - crypter.h for AES encryption helper functions. - rpcprotocol.h for handling RPC communications. Could only be used partially however due some static values in the code. - OpenSSL for base64 encoding. regular util.h libraries were not used for base64 encoding/decoding since they do not use secure allocation. - JSON Spirit for reading / writing RPC communications The following changes were made: - Added CLI options in help - Added RPC commands: keepass <genkey|init|setpassphrase> - Added keepass.h and keepass.cpp which hold the integration routines - Modified rpcwallet.cpp to support RPC commands The following new options are available for darkcoind and darkcoin-qt: -keepass Use KeePass 2 integration using KeePassHttp plugin (default: 0) -keepassport=<port> Connect to KeePassHttp on port <port> (default: 19455) -keepasskey=<key> KeePassHttp key for AES encrypted communication with KeePass -keepassid=<name> KeePassHttp id for the established association -keepassname=<name> Name to construct url for KeePass entry that stores the wallet passphrase The following rpc commands are available: - keepass genkey: generates a base64 encoded 256 bit AES key that can be used for the communication with KeePassHttp. Only necessary for manual configuration. Use init for automatic configuration. - keepass init: sets up the association between darkcoind and keepass by generating an AES key and sending an association message to KeePassHttp. This will trigger KeePass to ask for an Id for the association. Returns the association and the base64 encoded string for the AES key. - keepass setpassphrase <passphrase>: updates the passphrase in KeePassHttp to a new value. This should match the passphrase you intend to use for the wallet. Please note that the standard RPC commands walletpassphrasechange and the wallet encrption from the QT GUI already send the updates to KeePassHttp, so this is only necessary for manual manipulation of the password. Sample initialization flow from darkcoin-qt console (this needs to be done only once to set up the association): - Have KeePass running with an open database - Start darkcoin-qt - Open console - type: "keepass init" in darkcoin-qt console - (keepass pops up and asks for an association id, fill that in). Example: mydrkwallet - response: Association successful. Id: mydrkwalletdarkcoin - Key: AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= - Edit darkcoin.conf and fill in these values keepass=1 keepasskey=AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= keepassid=mydrkwallet keepassname=testwallet - Restart darkcoin-qt At this point, the association is made. The next action depends on your particular situation: - current wallet is not yet encrypted. Encrypting the wallet will trigger the integration and stores the password in KeePass (Under the 'KeePassHttp Passwords' group, named after keepassname. - current wallet is already encrypted: use "keepass setpassphrase <passphrase>" to store the passphrase in KeePass. At this point, the passphrase is stored in KeePassHttp. When Unlocking the wallet, one can use keepass as the passphrase to trigger retrieval of the password. This works from the RPC commands as well as the GUI.
2014-12-26 12:53:29 +01:00
return true;
}
static bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char>& vchCiphertext, const uint256& nIV, CKeyingMaterial& vchPlaintext)
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
{
CCrypter cKeyCrypter;
std::vector<unsigned char> chIV(WALLET_CRYPTO_IV_SIZE);
memcpy(&chIV[0], &nIV, WALLET_CRYPTO_IV_SIZE);
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
if(!cKeyCrypter.SetKey(vMasterKey, chIV))
return false;
return cKeyCrypter.Decrypt(vchCiphertext, *((CKeyingMaterial*)&vchPlaintext));
}
// General secure AES 256 CBC decryption routine
Implemented KeePass Integration More info regarding KeePass: http://keepass.info/ KeePass integration will use KeePassHttp (https://github.com/pfn/keepasshttp/) to facilitate communications between the client and KeePass. KeePassHttp is a plugin for KeePass 2.x and provides a secure means of exposing KeePass entries via HTTP for clients to consume. The implementation is dependent on the following: - crypter.h for AES encryption helper functions. - rpcprotocol.h for handling RPC communications. Could only be used partially however due some static values in the code. - OpenSSL for base64 encoding. regular util.h libraries were not used for base64 encoding/decoding since they do not use secure allocation. - JSON Spirit for reading / writing RPC communications The following changes were made: - Added CLI options in help - Added RPC commands: keepass <genkey|init|setpassphrase> - Added keepass.h and keepass.cpp which hold the integration routines - Modified rpcwallet.cpp to support RPC commands The following new options are available for darkcoind and darkcoin-qt: -keepass Use KeePass 2 integration using KeePassHttp plugin (default: 0) -keepassport=<port> Connect to KeePassHttp on port <port> (default: 19455) -keepasskey=<key> KeePassHttp key for AES encrypted communication with KeePass -keepassid=<name> KeePassHttp id for the established association -keepassname=<name> Name to construct url for KeePass entry that stores the wallet passphrase The following rpc commands are available: - keepass genkey: generates a base64 encoded 256 bit AES key that can be used for the communication with KeePassHttp. Only necessary for manual configuration. Use init for automatic configuration. - keepass init: sets up the association between darkcoind and keepass by generating an AES key and sending an association message to KeePassHttp. This will trigger KeePass to ask for an Id for the association. Returns the association and the base64 encoded string for the AES key. - keepass setpassphrase <passphrase>: updates the passphrase in KeePassHttp to a new value. This should match the passphrase you intend to use for the wallet. Please note that the standard RPC commands walletpassphrasechange and the wallet encrption from the QT GUI already send the updates to KeePassHttp, so this is only necessary for manual manipulation of the password. Sample initialization flow from darkcoin-qt console (this needs to be done only once to set up the association): - Have KeePass running with an open database - Start darkcoin-qt - Open console - type: "keepass init" in darkcoin-qt console - (keepass pops up and asks for an association id, fill that in). Example: mydrkwallet - response: Association successful. Id: mydrkwalletdarkcoin - Key: AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= - Edit darkcoin.conf and fill in these values keepass=1 keepasskey=AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= keepassid=mydrkwallet keepassname=testwallet - Restart darkcoin-qt At this point, the association is made. The next action depends on your particular situation: - current wallet is not yet encrypted. Encrypting the wallet will trigger the integration and stores the password in KeePass (Under the 'KeePassHttp Passwords' group, named after keepassname. - current wallet is already encrypted: use "keepass setpassphrase <passphrase>" to store the passphrase in KeePass. At this point, the passphrase is stored in KeePassHttp. When Unlocking the wallet, one can use keepass as the passphrase to trigger retrieval of the password. This works from the RPC commands as well as the GUI.
2014-12-26 12:53:29 +01:00
bool DecryptAES256(const SecureString& sKey, const std::string& sCiphertext, const std::string& sIV, SecureString& sPlaintext)
{
// Verify key sizes
if(sKey.size() != 32 || sIV.size() != AES_BLOCKSIZE) {
Implemented KeePass Integration More info regarding KeePass: http://keepass.info/ KeePass integration will use KeePassHttp (https://github.com/pfn/keepasshttp/) to facilitate communications between the client and KeePass. KeePassHttp is a plugin for KeePass 2.x and provides a secure means of exposing KeePass entries via HTTP for clients to consume. The implementation is dependent on the following: - crypter.h for AES encryption helper functions. - rpcprotocol.h for handling RPC communications. Could only be used partially however due some static values in the code. - OpenSSL for base64 encoding. regular util.h libraries were not used for base64 encoding/decoding since they do not use secure allocation. - JSON Spirit for reading / writing RPC communications The following changes were made: - Added CLI options in help - Added RPC commands: keepass <genkey|init|setpassphrase> - Added keepass.h and keepass.cpp which hold the integration routines - Modified rpcwallet.cpp to support RPC commands The following new options are available for darkcoind and darkcoin-qt: -keepass Use KeePass 2 integration using KeePassHttp plugin (default: 0) -keepassport=<port> Connect to KeePassHttp on port <port> (default: 19455) -keepasskey=<key> KeePassHttp key for AES encrypted communication with KeePass -keepassid=<name> KeePassHttp id for the established association -keepassname=<name> Name to construct url for KeePass entry that stores the wallet passphrase The following rpc commands are available: - keepass genkey: generates a base64 encoded 256 bit AES key that can be used for the communication with KeePassHttp. Only necessary for manual configuration. Use init for automatic configuration. - keepass init: sets up the association between darkcoind and keepass by generating an AES key and sending an association message to KeePassHttp. This will trigger KeePass to ask for an Id for the association. Returns the association and the base64 encoded string for the AES key. - keepass setpassphrase <passphrase>: updates the passphrase in KeePassHttp to a new value. This should match the passphrase you intend to use for the wallet. Please note that the standard RPC commands walletpassphrasechange and the wallet encrption from the QT GUI already send the updates to KeePassHttp, so this is only necessary for manual manipulation of the password. Sample initialization flow from darkcoin-qt console (this needs to be done only once to set up the association): - Have KeePass running with an open database - Start darkcoin-qt - Open console - type: "keepass init" in darkcoin-qt console - (keepass pops up and asks for an association id, fill that in). Example: mydrkwallet - response: Association successful. Id: mydrkwalletdarkcoin - Key: AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= - Edit darkcoin.conf and fill in these values keepass=1 keepasskey=AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= keepassid=mydrkwallet keepassname=testwallet - Restart darkcoin-qt At this point, the association is made. The next action depends on your particular situation: - current wallet is not yet encrypted. Encrypting the wallet will trigger the integration and stores the password in KeePass (Under the 'KeePassHttp Passwords' group, named after keepassname. - current wallet is already encrypted: use "keepass setpassphrase <passphrase>" to store the passphrase in KeePass. At this point, the passphrase is stored in KeePassHttp. When Unlocking the wallet, one can use keepass as the passphrase to trigger retrieval of the password. This works from the RPC commands as well as the GUI.
2014-12-26 12:53:29 +01:00
LogPrintf("crypter DecryptAES256 - Invalid key or block size\n");
return false;
}
// plaintext will always be equal to or lesser than length of ciphertext
int nLen = sCiphertext.size();
Implemented KeePass Integration More info regarding KeePass: http://keepass.info/ KeePass integration will use KeePassHttp (https://github.com/pfn/keepasshttp/) to facilitate communications between the client and KeePass. KeePassHttp is a plugin for KeePass 2.x and provides a secure means of exposing KeePass entries via HTTP for clients to consume. The implementation is dependent on the following: - crypter.h for AES encryption helper functions. - rpcprotocol.h for handling RPC communications. Could only be used partially however due some static values in the code. - OpenSSL for base64 encoding. regular util.h libraries were not used for base64 encoding/decoding since they do not use secure allocation. - JSON Spirit for reading / writing RPC communications The following changes were made: - Added CLI options in help - Added RPC commands: keepass <genkey|init|setpassphrase> - Added keepass.h and keepass.cpp which hold the integration routines - Modified rpcwallet.cpp to support RPC commands The following new options are available for darkcoind and darkcoin-qt: -keepass Use KeePass 2 integration using KeePassHttp plugin (default: 0) -keepassport=<port> Connect to KeePassHttp on port <port> (default: 19455) -keepasskey=<key> KeePassHttp key for AES encrypted communication with KeePass -keepassid=<name> KeePassHttp id for the established association -keepassname=<name> Name to construct url for KeePass entry that stores the wallet passphrase The following rpc commands are available: - keepass genkey: generates a base64 encoded 256 bit AES key that can be used for the communication with KeePassHttp. Only necessary for manual configuration. Use init for automatic configuration. - keepass init: sets up the association between darkcoind and keepass by generating an AES key and sending an association message to KeePassHttp. This will trigger KeePass to ask for an Id for the association. Returns the association and the base64 encoded string for the AES key. - keepass setpassphrase <passphrase>: updates the passphrase in KeePassHttp to a new value. This should match the passphrase you intend to use for the wallet. Please note that the standard RPC commands walletpassphrasechange and the wallet encrption from the QT GUI already send the updates to KeePassHttp, so this is only necessary for manual manipulation of the password. Sample initialization flow from darkcoin-qt console (this needs to be done only once to set up the association): - Have KeePass running with an open database - Start darkcoin-qt - Open console - type: "keepass init" in darkcoin-qt console - (keepass pops up and asks for an association id, fill that in). Example: mydrkwallet - response: Association successful. Id: mydrkwalletdarkcoin - Key: AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= - Edit darkcoin.conf and fill in these values keepass=1 keepasskey=AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= keepassid=mydrkwallet keepassname=testwallet - Restart darkcoin-qt At this point, the association is made. The next action depends on your particular situation: - current wallet is not yet encrypted. Encrypting the wallet will trigger the integration and stores the password in KeePass (Under the 'KeePassHttp Passwords' group, named after keepassname. - current wallet is already encrypted: use "keepass setpassphrase <passphrase>" to store the passphrase in KeePass. At this point, the passphrase is stored in KeePassHttp. When Unlocking the wallet, one can use keepass as the passphrase to trigger retrieval of the password. This works from the RPC commands as well as the GUI.
2014-12-26 12:53:29 +01:00
sPlaintext.resize(nLen);
Implemented KeePass Integration More info regarding KeePass: http://keepass.info/ KeePass integration will use KeePassHttp (https://github.com/pfn/keepasshttp/) to facilitate communications between the client and KeePass. KeePassHttp is a plugin for KeePass 2.x and provides a secure means of exposing KeePass entries via HTTP for clients to consume. The implementation is dependent on the following: - crypter.h for AES encryption helper functions. - rpcprotocol.h for handling RPC communications. Could only be used partially however due some static values in the code. - OpenSSL for base64 encoding. regular util.h libraries were not used for base64 encoding/decoding since they do not use secure allocation. - JSON Spirit for reading / writing RPC communications The following changes were made: - Added CLI options in help - Added RPC commands: keepass <genkey|init|setpassphrase> - Added keepass.h and keepass.cpp which hold the integration routines - Modified rpcwallet.cpp to support RPC commands The following new options are available for darkcoind and darkcoin-qt: -keepass Use KeePass 2 integration using KeePassHttp plugin (default: 0) -keepassport=<port> Connect to KeePassHttp on port <port> (default: 19455) -keepasskey=<key> KeePassHttp key for AES encrypted communication with KeePass -keepassid=<name> KeePassHttp id for the established association -keepassname=<name> Name to construct url for KeePass entry that stores the wallet passphrase The following rpc commands are available: - keepass genkey: generates a base64 encoded 256 bit AES key that can be used for the communication with KeePassHttp. Only necessary for manual configuration. Use init for automatic configuration. - keepass init: sets up the association between darkcoind and keepass by generating an AES key and sending an association message to KeePassHttp. This will trigger KeePass to ask for an Id for the association. Returns the association and the base64 encoded string for the AES key. - keepass setpassphrase <passphrase>: updates the passphrase in KeePassHttp to a new value. This should match the passphrase you intend to use for the wallet. Please note that the standard RPC commands walletpassphrasechange and the wallet encrption from the QT GUI already send the updates to KeePassHttp, so this is only necessary for manual manipulation of the password. Sample initialization flow from darkcoin-qt console (this needs to be done only once to set up the association): - Have KeePass running with an open database - Start darkcoin-qt - Open console - type: "keepass init" in darkcoin-qt console - (keepass pops up and asks for an association id, fill that in). Example: mydrkwallet - response: Association successful. Id: mydrkwalletdarkcoin - Key: AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= - Edit darkcoin.conf and fill in these values keepass=1 keepasskey=AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= keepassid=mydrkwallet keepassname=testwallet - Restart darkcoin-qt At this point, the association is made. The next action depends on your particular situation: - current wallet is not yet encrypted. Encrypting the wallet will trigger the integration and stores the password in KeePass (Under the 'KeePassHttp Passwords' group, named after keepassname. - current wallet is already encrypted: use "keepass setpassphrase <passphrase>" to store the passphrase in KeePass. At this point, the passphrase is stored in KeePassHttp. When Unlocking the wallet, one can use keepass as the passphrase to trigger retrieval of the password. This works from the RPC commands as well as the GUI.
2014-12-26 12:53:29 +01:00
AES256CBCDecrypt dec((const unsigned char*) &sKey[0], (const unsigned char*) &sIV[0], true);
nLen = dec.Decrypt((const unsigned char*) &sCiphertext[0], sCiphertext.size(), (unsigned char*) &sPlaintext[0]);
if(nLen == 0)
return false;
sPlaintext.resize(nLen);
Implemented KeePass Integration More info regarding KeePass: http://keepass.info/ KeePass integration will use KeePassHttp (https://github.com/pfn/keepasshttp/) to facilitate communications between the client and KeePass. KeePassHttp is a plugin for KeePass 2.x and provides a secure means of exposing KeePass entries via HTTP for clients to consume. The implementation is dependent on the following: - crypter.h for AES encryption helper functions. - rpcprotocol.h for handling RPC communications. Could only be used partially however due some static values in the code. - OpenSSL for base64 encoding. regular util.h libraries were not used for base64 encoding/decoding since they do not use secure allocation. - JSON Spirit for reading / writing RPC communications The following changes were made: - Added CLI options in help - Added RPC commands: keepass <genkey|init|setpassphrase> - Added keepass.h and keepass.cpp which hold the integration routines - Modified rpcwallet.cpp to support RPC commands The following new options are available for darkcoind and darkcoin-qt: -keepass Use KeePass 2 integration using KeePassHttp plugin (default: 0) -keepassport=<port> Connect to KeePassHttp on port <port> (default: 19455) -keepasskey=<key> KeePassHttp key for AES encrypted communication with KeePass -keepassid=<name> KeePassHttp id for the established association -keepassname=<name> Name to construct url for KeePass entry that stores the wallet passphrase The following rpc commands are available: - keepass genkey: generates a base64 encoded 256 bit AES key that can be used for the communication with KeePassHttp. Only necessary for manual configuration. Use init for automatic configuration. - keepass init: sets up the association between darkcoind and keepass by generating an AES key and sending an association message to KeePassHttp. This will trigger KeePass to ask for an Id for the association. Returns the association and the base64 encoded string for the AES key. - keepass setpassphrase <passphrase>: updates the passphrase in KeePassHttp to a new value. This should match the passphrase you intend to use for the wallet. Please note that the standard RPC commands walletpassphrasechange and the wallet encrption from the QT GUI already send the updates to KeePassHttp, so this is only necessary for manual manipulation of the password. Sample initialization flow from darkcoin-qt console (this needs to be done only once to set up the association): - Have KeePass running with an open database - Start darkcoin-qt - Open console - type: "keepass init" in darkcoin-qt console - (keepass pops up and asks for an association id, fill that in). Example: mydrkwallet - response: Association successful. Id: mydrkwalletdarkcoin - Key: AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= - Edit darkcoin.conf and fill in these values keepass=1 keepasskey=AgQkcs6cI7v9tlSYKjG/+s8wJrGALHl3jLosJpPLzUE= keepassid=mydrkwallet keepassname=testwallet - Restart darkcoin-qt At this point, the association is made. The next action depends on your particular situation: - current wallet is not yet encrypted. Encrypting the wallet will trigger the integration and stores the password in KeePass (Under the 'KeePassHttp Passwords' group, named after keepassname. - current wallet is already encrypted: use "keepass setpassphrase <passphrase>" to store the passphrase in KeePass. At this point, the passphrase is stored in KeePassHttp. When Unlocking the wallet, one can use keepass as the passphrase to trigger retrieval of the password. This works from the RPC commands as well as the GUI.
2014-12-26 12:53:29 +01:00
return true;
}
static bool DecryptKey(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char>& vchCryptedSecret, const CPubKey& vchPubKey, CKey& key)
{
CKeyingMaterial vchSecret;
if(!DecryptSecret(vMasterKey, vchCryptedSecret, vchPubKey.GetHash(), vchSecret))
return false;
if (vchSecret.size() != 32)
return false;
key.Set(vchSecret.begin(), vchSecret.end(), vchPubKey.IsCompressed());
return key.VerifyPubKey(vchPubKey);
}
bool CCryptoKeyStore::SetCrypted()
{
LOCK(cs_KeyStore);
if (fUseCrypto)
return true;
if (!mapKeys.empty())
return false;
fUseCrypto = true;
return true;
}
bool CCryptoKeyStore::Lock(bool fAllowMixing)
{
if (!SetCrypted())
return false;
if(!fAllowMixing) {
LOCK(cs_KeyStore);
vMasterKey.clear();
}
fOnlyMixingAllowed = fAllowMixing;
NotifyStatusChanged(this);
return true;
}
bool CCryptoKeyStore::Unlock(const CKeyingMaterial& vMasterKeyIn, bool fForMixingOnly)
{
{
LOCK(cs_KeyStore);
if (!SetCrypted())
return false;
bool keyPass = false;
bool keyFail = false;
CryptedKeyMap::const_iterator mi = mapCryptedKeys.begin();
for (; mi != mapCryptedKeys.end(); ++mi)
{
const CPubKey &vchPubKey = (*mi).second.first;
const std::vector<unsigned char> &vchCryptedSecret = (*mi).second.second;
CKey key;
if (!DecryptKey(vMasterKeyIn, vchCryptedSecret, vchPubKey, key))
{
keyFail = true;
break;
}
keyPass = true;
if (fDecryptionThoroughlyChecked)
break;
}
if (keyPass && keyFail)
{
LogPrintf("The wallet is probably corrupted: Some keys decrypt but not all.\n");
assert(false);
}
HD wallet (#1405) * HD wallet Minimal set of changes (no refactoring) backported from Bitcoin upstream to make HD wallets work in Dash 0.12.1.x+ * minimal bip44 (hardcoded account and change) * minimal bip39 Additional cmd-line options for new wallet: -mnemonic -mnemonicpassphrase * Do not recreate HD wallet on encryption Adjusted keypool.py test * Do not store any private keys for hd wallet besides the master one Derive all keys on the fly. Original idea/implementation - btc PR9298, backported and improved * actually use bip39 * pbkdf2 test * backport wallet-hd.py test * Allow specifying hd seed, add dumphdseed rpc, fix bugs - -hdseed cmd-line param to specify HD seed on wallet creation - dumphdseed rpc to dump HD seed - allow seed of any size - fix dumpwallet rpc bug (wasn't decrypting HD seed) - print HD seed and extended public masterkey on dumpwallet * top up keypool on HD wallet encryption * split HD chain: external/internal * add missing cs_wallet lock in init.cpp * fix `const char *` issues (use strings) * default mnemonic passphrase is an empty string in all cases * store mnemonic/mnemonicpassphrase replace dumphdseed with dumphdinfo * Add fCrypted flag to CHDChain * prepare internal structures for multiple HD accounts (plus some code cleanup) * use secure allocator for storing sensitive HD data * use secure strings for mnemonic(passphrase) * small fix in GenerateNewHDChain * use 24 words for mnemonic by default * make sure mnemonic passphrase provided by user does not exceed 256 symbols * more usage of secure allocators and memory_cleanse * code cleanup * rename: CSecureVector -> SecureVector * add missing include * fix warning in rpcdump.cpp * refactor mnemonic_check (also fix a bug) * move bip39 functions to CMnemonic * Few fixes for CMnemonic: - use `SecureVector` for data, bits, seed - `Check` should return bool * init vectors with desired size where possible
2017-05-29 13:51:40 +02:00
if (keyFail || (!keyPass && cryptedHDChain.IsNull()))
return false;
HD wallet (#1405) * HD wallet Minimal set of changes (no refactoring) backported from Bitcoin upstream to make HD wallets work in Dash 0.12.1.x+ * minimal bip44 (hardcoded account and change) * minimal bip39 Additional cmd-line options for new wallet: -mnemonic -mnemonicpassphrase * Do not recreate HD wallet on encryption Adjusted keypool.py test * Do not store any private keys for hd wallet besides the master one Derive all keys on the fly. Original idea/implementation - btc PR9298, backported and improved * actually use bip39 * pbkdf2 test * backport wallet-hd.py test * Allow specifying hd seed, add dumphdseed rpc, fix bugs - -hdseed cmd-line param to specify HD seed on wallet creation - dumphdseed rpc to dump HD seed - allow seed of any size - fix dumpwallet rpc bug (wasn't decrypting HD seed) - print HD seed and extended public masterkey on dumpwallet * top up keypool on HD wallet encryption * split HD chain: external/internal * add missing cs_wallet lock in init.cpp * fix `const char *` issues (use strings) * default mnemonic passphrase is an empty string in all cases * store mnemonic/mnemonicpassphrase replace dumphdseed with dumphdinfo * Add fCrypted flag to CHDChain * prepare internal structures for multiple HD accounts (plus some code cleanup) * use secure allocator for storing sensitive HD data * use secure strings for mnemonic(passphrase) * small fix in GenerateNewHDChain * use 24 words for mnemonic by default * make sure mnemonic passphrase provided by user does not exceed 256 symbols * more usage of secure allocators and memory_cleanse * code cleanup * rename: CSecureVector -> SecureVector * add missing include * fix warning in rpcdump.cpp * refactor mnemonic_check (also fix a bug) * move bip39 functions to CMnemonic * Few fixes for CMnemonic: - use `SecureVector` for data, bits, seed - `Check` should return bool * init vectors with desired size where possible
2017-05-29 13:51:40 +02:00
vMasterKey = vMasterKeyIn;
HD wallet (#1405) * HD wallet Minimal set of changes (no refactoring) backported from Bitcoin upstream to make HD wallets work in Dash 0.12.1.x+ * minimal bip44 (hardcoded account and change) * minimal bip39 Additional cmd-line options for new wallet: -mnemonic -mnemonicpassphrase * Do not recreate HD wallet on encryption Adjusted keypool.py test * Do not store any private keys for hd wallet besides the master one Derive all keys on the fly. Original idea/implementation - btc PR9298, backported and improved * actually use bip39 * pbkdf2 test * backport wallet-hd.py test * Allow specifying hd seed, add dumphdseed rpc, fix bugs - -hdseed cmd-line param to specify HD seed on wallet creation - dumphdseed rpc to dump HD seed - allow seed of any size - fix dumpwallet rpc bug (wasn't decrypting HD seed) - print HD seed and extended public masterkey on dumpwallet * top up keypool on HD wallet encryption * split HD chain: external/internal * add missing cs_wallet lock in init.cpp * fix `const char *` issues (use strings) * default mnemonic passphrase is an empty string in all cases * store mnemonic/mnemonicpassphrase replace dumphdseed with dumphdinfo * Add fCrypted flag to CHDChain * prepare internal structures for multiple HD accounts (plus some code cleanup) * use secure allocator for storing sensitive HD data * use secure strings for mnemonic(passphrase) * small fix in GenerateNewHDChain * use 24 words for mnemonic by default * make sure mnemonic passphrase provided by user does not exceed 256 symbols * more usage of secure allocators and memory_cleanse * code cleanup * rename: CSecureVector -> SecureVector * add missing include * fix warning in rpcdump.cpp * refactor mnemonic_check (also fix a bug) * move bip39 functions to CMnemonic * Few fixes for CMnemonic: - use `SecureVector` for data, bits, seed - `Check` should return bool * init vectors with desired size where possible
2017-05-29 13:51:40 +02:00
if(!cryptedHDChain.IsNull()) {
bool chainPass = false;
// try to decrypt seed and make sure it matches
CHDChain hdChainTmp;
if (DecryptHDChain(hdChainTmp)) {
// make sure seed matches this chain
chainPass = cryptedHDChain.GetID() == hdChainTmp.GetSeedHash();
}
if (!chainPass) {
vMasterKey.clear();
return false;
}
}
fDecryptionThoroughlyChecked = true;
}
fOnlyMixingAllowed = fForMixingOnly;
NotifyStatusChanged(this);
return true;
}
bool CCryptoKeyStore::AddKeyPubKey(const CKey& key, const CPubKey &pubkey)
{
{
LOCK(cs_KeyStore);
if (!IsCrypted())
return CBasicKeyStore::AddKeyPubKey(key, pubkey);
if (IsLocked(true))
return false;
std::vector<unsigned char> vchCryptedSecret;
CKeyingMaterial vchSecret(key.begin(), key.end());
if (!EncryptSecret(vMasterKey, vchSecret, pubkey.GetHash(), vchCryptedSecret))
return false;
if (!AddCryptedKey(pubkey, vchCryptedSecret))
return false;
}
return true;
}
bool CCryptoKeyStore::AddCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret)
{
{
LOCK(cs_KeyStore);
if (!SetCrypted())
return false;
mapCryptedKeys[vchPubKey.GetID()] = make_pair(vchPubKey, vchCryptedSecret);
}
return true;
}
bool CCryptoKeyStore::GetKey(const CKeyID &address, CKey& keyOut) const
{
{
LOCK(cs_KeyStore);
if (!IsCrypted())
return CBasicKeyStore::GetKey(address, keyOut);
CryptedKeyMap::const_iterator mi = mapCryptedKeys.find(address);
if (mi != mapCryptedKeys.end())
{
const CPubKey &vchPubKey = (*mi).second.first;
const std::vector<unsigned char> &vchCryptedSecret = (*mi).second.second;
return DecryptKey(vMasterKey, vchCryptedSecret, vchPubKey, keyOut);
}
}
return false;
}
bool CCryptoKeyStore::GetPubKey(const CKeyID &address, CPubKey& vchPubKeyOut) const
{
{
LOCK(cs_KeyStore);
if (!IsCrypted())
return CBasicKeyStore::GetPubKey(address, vchPubKeyOut);
CryptedKeyMap::const_iterator mi = mapCryptedKeys.find(address);
if (mi != mapCryptedKeys.end())
{
vchPubKeyOut = (*mi).second.first;
return true;
}
// Check for watch-only pubkeys
return CBasicKeyStore::GetPubKey(address, vchPubKeyOut);
}
return false;
}
bool CCryptoKeyStore::EncryptKeys(CKeyingMaterial& vMasterKeyIn)
{
{
LOCK(cs_KeyStore);
if (!mapCryptedKeys.empty() || IsCrypted())
return false;
fUseCrypto = true;
BOOST_FOREACH(KeyMap::value_type& mKey, mapKeys)
{
const CKey &key = mKey.second;
CPubKey vchPubKey = key.GetPubKey();
CKeyingMaterial vchSecret(key.begin(), key.end());
std::vector<unsigned char> vchCryptedSecret;
if (!EncryptSecret(vMasterKeyIn, vchSecret, vchPubKey.GetHash(), vchCryptedSecret))
return false;
if (!AddCryptedKey(vchPubKey, vchCryptedSecret))
return false;
}
mapKeys.clear();
}
return true;
}
HD wallet (#1405) * HD wallet Minimal set of changes (no refactoring) backported from Bitcoin upstream to make HD wallets work in Dash 0.12.1.x+ * minimal bip44 (hardcoded account and change) * minimal bip39 Additional cmd-line options for new wallet: -mnemonic -mnemonicpassphrase * Do not recreate HD wallet on encryption Adjusted keypool.py test * Do not store any private keys for hd wallet besides the master one Derive all keys on the fly. Original idea/implementation - btc PR9298, backported and improved * actually use bip39 * pbkdf2 test * backport wallet-hd.py test * Allow specifying hd seed, add dumphdseed rpc, fix bugs - -hdseed cmd-line param to specify HD seed on wallet creation - dumphdseed rpc to dump HD seed - allow seed of any size - fix dumpwallet rpc bug (wasn't decrypting HD seed) - print HD seed and extended public masterkey on dumpwallet * top up keypool on HD wallet encryption * split HD chain: external/internal * add missing cs_wallet lock in init.cpp * fix `const char *` issues (use strings) * default mnemonic passphrase is an empty string in all cases * store mnemonic/mnemonicpassphrase replace dumphdseed with dumphdinfo * Add fCrypted flag to CHDChain * prepare internal structures for multiple HD accounts (plus some code cleanup) * use secure allocator for storing sensitive HD data * use secure strings for mnemonic(passphrase) * small fix in GenerateNewHDChain * use 24 words for mnemonic by default * make sure mnemonic passphrase provided by user does not exceed 256 symbols * more usage of secure allocators and memory_cleanse * code cleanup * rename: CSecureVector -> SecureVector * add missing include * fix warning in rpcdump.cpp * refactor mnemonic_check (also fix a bug) * move bip39 functions to CMnemonic * Few fixes for CMnemonic: - use `SecureVector` for data, bits, seed - `Check` should return bool * init vectors with desired size where possible
2017-05-29 13:51:40 +02:00
bool CCryptoKeyStore::EncryptHDChain(const CKeyingMaterial& vMasterKeyIn)
{
// should call EncryptKeys first
if (!IsCrypted())
return false;
if (!cryptedHDChain.IsNull())
return true;
if (cryptedHDChain.IsCrypted())
return true;
// make sure seed matches this chain
if (hdChain.GetID() != hdChain.GetSeedHash())
return false;
std::vector<unsigned char> vchCryptedSeed;
if (!EncryptSecret(vMasterKeyIn, hdChain.GetSeed(), hdChain.GetID(), vchCryptedSeed))
return false;
hdChain.Debug(__func__);
cryptedHDChain = hdChain;
cryptedHDChain.SetCrypted(true);
SecureVector vchSecureCryptedSeed(vchCryptedSeed.begin(), vchCryptedSeed.end());
if (!cryptedHDChain.SetSeed(vchSecureCryptedSeed, false))
return false;
SecureVector vchMnemonic;
SecureVector vchMnemonicPassphrase;
// it's ok to have no mnemonic if wallet was initialized via hdseed
if (hdChain.GetMnemonic(vchMnemonic, vchMnemonicPassphrase)) {
std::vector<unsigned char> vchCryptedMnemonic;
std::vector<unsigned char> vchCryptedMnemonicPassphrase;
if (!vchMnemonic.empty() && !EncryptSecret(vMasterKeyIn, vchMnemonic, hdChain.GetID(), vchCryptedMnemonic))
return false;
if (!vchMnemonicPassphrase.empty() && !EncryptSecret(vMasterKeyIn, vchMnemonicPassphrase, hdChain.GetID(), vchCryptedMnemonicPassphrase))
return false;
SecureVector vchSecureCryptedMnemonic(vchCryptedMnemonic.begin(), vchCryptedMnemonic.end());
SecureVector vchSecureCryptedMnemonicPassphrase(vchCryptedMnemonicPassphrase.begin(), vchCryptedMnemonicPassphrase.end());
if (!cryptedHDChain.SetMnemonic(vchSecureCryptedMnemonic, vchSecureCryptedMnemonicPassphrase, false))
return false;
}
if (!hdChain.SetNull())
return false;
return true;
}
bool CCryptoKeyStore::DecryptHDChain(CHDChain& hdChainRet) const
{
if (!IsCrypted())
return true;
if (cryptedHDChain.IsNull())
return false;
if (!cryptedHDChain.IsCrypted())
return false;
SecureVector vchSecureSeed;
SecureVector vchSecureCryptedSeed = cryptedHDChain.GetSeed();
std::vector<unsigned char> vchCryptedSeed(vchSecureCryptedSeed.begin(), vchSecureCryptedSeed.end());
if (!DecryptSecret(vMasterKey, vchCryptedSeed, cryptedHDChain.GetID(), vchSecureSeed))
return false;
hdChainRet = cryptedHDChain;
if (!hdChainRet.SetSeed(vchSecureSeed, false))
return false;
// hash of decrypted seed must match chain id
if (hdChainRet.GetSeedHash() != cryptedHDChain.GetID())
return false;
SecureVector vchSecureCryptedMnemonic;
SecureVector vchSecureCryptedMnemonicPassphrase;
// it's ok to have no mnemonic if wallet was initialized via hdseed
if (cryptedHDChain.GetMnemonic(vchSecureCryptedMnemonic, vchSecureCryptedMnemonicPassphrase)) {
SecureVector vchSecureMnemonic;
SecureVector vchSecureMnemonicPassphrase;
std::vector<unsigned char> vchCryptedMnemonic(vchSecureCryptedMnemonic.begin(), vchSecureCryptedMnemonic.end());
std::vector<unsigned char> vchCryptedMnemonicPassphrase(vchSecureCryptedMnemonicPassphrase.begin(), vchSecureCryptedMnemonicPassphrase.end());
if (!vchCryptedMnemonic.empty() && !DecryptSecret(vMasterKey, vchCryptedMnemonic, cryptedHDChain.GetID(), vchSecureMnemonic))
return false;
if (!vchCryptedMnemonicPassphrase.empty() && !DecryptSecret(vMasterKey, vchCryptedMnemonicPassphrase, cryptedHDChain.GetID(), vchSecureMnemonicPassphrase))
return false;
if (!hdChainRet.SetMnemonic(vchSecureMnemonic, vchSecureMnemonicPassphrase, false))
return false;
}
hdChainRet.SetCrypted(false);
hdChainRet.Debug(__func__);
return true;
}
bool CCryptoKeyStore::SetHDChain(const CHDChain& chain)
{
if (IsCrypted())
return false;
if (chain.IsCrypted())
return false;
hdChain = chain;
return true;
}
bool CCryptoKeyStore::SetCryptedHDChain(const CHDChain& chain)
{
if (!SetCrypted())
return false;
if (!chain.IsCrypted())
return false;
cryptedHDChain = chain;
return true;
}
bool CCryptoKeyStore::GetHDChain(CHDChain& hdChainRet) const
{
if(IsCrypted()) {
hdChainRet = cryptedHDChain;
return !cryptedHDChain.IsNull();
}
hdChainRet = hdChain;
return !hdChain.IsNull();
}