dash/test/functional/feature_llmq_chainlocks.py

182 lines
8.1 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# Copyright (c) 2015-2021 The Dash Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
'''
Backport 11796 + 11774 (#3612) * Merge #11796: [tests] Functional test naming convention 5fecd84 [tests] Remove redundant import in blocktools.py test (Anthony Towns) 9b20bb4 [tests] Check tests conform to naming convention (Anthony Towns) 7250b4e [tests] README.md nit fixes (Anthony Towns) 82b2712 [tests] move witness util functions to blocktools.py (John Newbery) 1e10854 [tests] [docs] update README for new test naming scheme (John Newbery) Pull request description: Splitting #11774 into two parts -- this part updates the README with the proposed naming convention, and adds some checks to test_runner.py that the number of tests violating the naming convention doesn't increase too much. Idea is this part of the change should not introduce merge conflicts or require much rebasing, so reviews of the complicated bits won't become invalidated too often; while the second part will just be file renames, which will require regular rebasing and will introduce merge conflicts with pending PRs, but can be merged later, and should also be much easier to review, since it will only include relatively trivial changes. Tree-SHA512: b96557d41714addbbfe2aed62fb5a48639eaeb1eb3aba30ac1b3a86bb3cb8d796c6247f9c414c4695c4bf54c0ec9968ac88e2f88fb62483bc1a2f89368f7fc80 * update violation count Signed-off-by: pasta <pasta@dashboost.org> * Merge #11774: [tests] Rename functional tests 6f881cc880 [tests] Remove EXPECTED_VIOLATION_COUNT (Anthony Towns) 3150b3fea7 [tests] Rename misc functional tests. (Anthony Towns) 81b79f2c39 [tests] Rename rpc_* functional tests. (Anthony Towns) 61b8f7f273 [tests] Rename p2p_* functional tests. (Anthony Towns) 90600bc7db [tests] Rename wallet_* functional tests. (Anthony Towns) ca6523d0c8 [tests] Rename feature_* functional tests. (Anthony Towns) Pull request description: This PR changes the functional tests to have a consistent naming scheme: tests for individual RPC methods are named rpc_... tests for interfaces (REST, ZMQ, RPC features) are named interface_... tests that explicitly test the p2p interface are named p2p_... tests for wallet features are named wallet_... tests for mining features are named mining_... tests for mempool behaviour are named mempool_... tests for full features that aren't wallet/mining/mempool are named feature_... Rationale: it's sometimes difficult for new contributors to know what's already covered by existing tests and where new tests should be added. Naming in a consistent fashion makes it easier to see what's already covered at a glance. Tree-SHA512: 4246790552d42bbd95f6d5bdf67702b81b3b2c583ce7eaf1fe6d8e254721279b47315973c6e9ae82dad6e4c747f12188160764bf2624c0f8f3b4d39330ec8b16 * rename tests and edit associated strings to align test-suite with test name standards Signed-off-by: pasta <pasta@dashboost.org> * fix grammar in test/functional/test_runner.py Co-authored-by: dustinface <35775977+xdustinface@users.noreply.github.com> * ci: Fix excluded test names * rename feature_privatesend.py to rpc_privatesend.py Signed-off-by: pasta <pasta@dashboost.org> Co-authored-by: Wladimir J. van der Laan <laanwj@gmail.com> Co-authored-by: MarcoFalke <falke.marco@gmail.com> Co-authored-by: dustinface <35775977+xdustinface@users.noreply.github.com> Co-authored-by: xdustinface <xdustinfacex@gmail.com>
2020-07-17 01:44:20 +02:00
feature_llmq_chainlocks.py
Checks LLMQs based ChainLocks
'''
Merge #13054: tests: Enable automatic detection of undefined names in Python tests scripts. Remove wildcard imports. 68400d8b96 tests: Use explicit imports (practicalswift) Pull request description: Enable automatic detection of undefined names in Python tests scripts. Remove wildcard imports. Wildcard imports make it unclear which names are present in the namespace, confusing both readers and many automated tools. An additional benefit of not using wildcard imports in tests scripts is that readers of a test script then can infer the rough testing scope just by looking at the imports. Before this commit: ``` $ contrib/devtools/lint-python.sh | head -10 ./test/functional/feature_rbf.py:8:1: F403 'from test_framework.util import *' used; unable to detect undefined names ./test/functional/feature_rbf.py:9:1: F403 'from test_framework.script import *' used; unable to detect undefined names ./test/functional/feature_rbf.py:10:1: F403 'from test_framework.mininode import *' used; unable to detect undefined names ./test/functional/feature_rbf.py:15:12: F405 bytes_to_hex_str may be undefined, or defined from star imports: test_framework.mininode, test_framework.script, test_framework.util ./test/functional/feature_rbf.py:17:58: F405 CScript may be undefined, or defined from star imports: test_framework.mininode, test_framework.script, test_framework.util ./test/functional/feature_rbf.py:25:13: F405 COIN may be undefined, or defined from star imports: test_framework.mininode, test_framework.script, test_framework.util ./test/functional/feature_rbf.py:26:31: F405 satoshi_round may be undefined, or defined from star imports: test_framework.mininode, test_framework.script, test_framework.util ./test/functional/feature_rbf.py:26:60: F405 COIN may be undefined, or defined from star imports: test_framework.mininode, test_framework.script, test_framework.util ./test/functional/feature_rbf.py:30:41: F405 satoshi_round may be undefined, or defined from star imports: test_framework.mininode, test_framework.script, test_framework.util ./test/functional/feature_rbf.py:30:68: F405 COIN may be undefined, or defined from star imports: test_framework.mininode, test_framework.script, test_framework.util $ ``` After this commit: ``` $ contrib/devtools/lint-python.sh | head -10 $ ``` Tree-SHA512: 3f826d39cffb6438388e5efcb20a9622ff8238247e882d68f7b38609877421b2a8e10e9229575f8eb6a8fa42dec4256986692e92922c86171f750a0e887438d9
2018-08-13 14:24:43 +02:00
import time
from test_framework.test_framework import DashTestFramework
from test_framework.util import connect_nodes, force_finish_mnsync, isolate_node, reconnect_isolated_node
Merge #13054: tests: Enable automatic detection of undefined names in Python tests scripts. Remove wildcard imports. 68400d8b96 tests: Use explicit imports (practicalswift) Pull request description: Enable automatic detection of undefined names in Python tests scripts. Remove wildcard imports. Wildcard imports make it unclear which names are present in the namespace, confusing both readers and many automated tools. An additional benefit of not using wildcard imports in tests scripts is that readers of a test script then can infer the rough testing scope just by looking at the imports. Before this commit: ``` $ contrib/devtools/lint-python.sh | head -10 ./test/functional/feature_rbf.py:8:1: F403 'from test_framework.util import *' used; unable to detect undefined names ./test/functional/feature_rbf.py:9:1: F403 'from test_framework.script import *' used; unable to detect undefined names ./test/functional/feature_rbf.py:10:1: F403 'from test_framework.mininode import *' used; unable to detect undefined names ./test/functional/feature_rbf.py:15:12: F405 bytes_to_hex_str may be undefined, or defined from star imports: test_framework.mininode, test_framework.script, test_framework.util ./test/functional/feature_rbf.py:17:58: F405 CScript may be undefined, or defined from star imports: test_framework.mininode, test_framework.script, test_framework.util ./test/functional/feature_rbf.py:25:13: F405 COIN may be undefined, or defined from star imports: test_framework.mininode, test_framework.script, test_framework.util ./test/functional/feature_rbf.py:26:31: F405 satoshi_round may be undefined, or defined from star imports: test_framework.mininode, test_framework.script, test_framework.util ./test/functional/feature_rbf.py:26:60: F405 COIN may be undefined, or defined from star imports: test_framework.mininode, test_framework.script, test_framework.util ./test/functional/feature_rbf.py:30:41: F405 satoshi_round may be undefined, or defined from star imports: test_framework.mininode, test_framework.script, test_framework.util ./test/functional/feature_rbf.py:30:68: F405 COIN may be undefined, or defined from star imports: test_framework.mininode, test_framework.script, test_framework.util $ ``` After this commit: ``` $ contrib/devtools/lint-python.sh | head -10 $ ``` Tree-SHA512: 3f826d39cffb6438388e5efcb20a9622ff8238247e882d68f7b38609877421b2a8e10e9229575f8eb6a8fa42dec4256986692e92922c86171f750a0e887438d9
2018-08-13 14:24:43 +02:00
class LLMQChainLocksTest(DashTestFramework):
def set_test_params(self):
self.set_dash_test_params(4, 3, fast_dip3_enforcement=True)
def run_test(self):
# Connect all nodes to node1 so that we always have the whole network connected
# Otherwise only masternode connections will be established between nodes, which won't propagate TXs/blocks
# Usually node0 is the one that does this, but in this test we isolate it multiple times
for i in range(len(self.nodes)):
if i != 1:
connect_nodes(self.nodes[i], 1)
self.activate_dip8()
self.nodes[0].spork("SPORK_17_QUORUM_DKG_ENABLED", 0)
self.wait_for_sporks_same()
self.log.info("Mining 4 quorums")
for i in range(4):
self.mine_quorum()
self.log.info("Mine single block, wait for chainlock")
self.nodes[0].generate(1)
self.wait_for_chainlocked_block_all_nodes(self.nodes[0].getbestblockhash())
self.log.info("Mine many blocks, wait for chainlock")
self.nodes[0].generate(20)
# We need more time here due to 20 blocks being generated at once
self.wait_for_chainlocked_block_all_nodes(self.nodes[0].getbestblockhash(), timeout=30)
self.log.info("Assert that all blocks up until the tip are chainlocked")
for h in range(1, self.nodes[0].getblockcount()):
block = self.nodes[0].getblock(self.nodes[0].getblockhash(h))
2021-08-27 21:03:02 +02:00
assert block['chainlock']
self.log.info("Isolate node, mine on another, and reconnect")
isolate_node(self.nodes[0])
node0_mining_addr = self.nodes[0].getnewaddress()
node0_tip = self.nodes[0].getbestblockhash()
self.nodes[1].generatetoaddress(5, node0_mining_addr)
self.wait_for_chainlocked_block(self.nodes[1], self.nodes[1].getbestblockhash())
2021-08-27 21:03:02 +02:00
assert self.nodes[0].getbestblockhash() == node0_tip
reconnect_isolated_node(self.nodes[0], 1)
self.nodes[1].generatetoaddress(1, node0_mining_addr)
self.wait_for_chainlocked_block_all_nodes(self.nodes[1].getbestblockhash())
self.log.info("Isolate node, mine on both parts of the network, and reconnect")
isolate_node(self.nodes[0])
bad_tip = self.nodes[0].generate(5)[-1]
self.nodes[1].generatetoaddress(1, node0_mining_addr)
good_tip = self.nodes[1].getbestblockhash()
self.wait_for_chainlocked_block(self.nodes[1], good_tip)
2021-08-27 21:03:02 +02:00
assert not self.nodes[0].getblock(self.nodes[0].getbestblockhash())["chainlock"]
reconnect_isolated_node(self.nodes[0], 1)
self.nodes[1].generatetoaddress(1, node0_mining_addr)
self.wait_for_chainlocked_block_all_nodes(self.nodes[1].getbestblockhash())
2021-08-27 21:03:02 +02:00
assert self.nodes[0].getblock(self.nodes[0].getbestblockhash())["previousblockhash"] == good_tip
assert self.nodes[1].getblock(self.nodes[1].getbestblockhash())["previousblockhash"] == good_tip
self.log.info("The tip mined while this node was isolated should be marked conflicting now")
found = False
for tip in self.nodes[0].getchaintips(2):
if tip["hash"] == bad_tip:
2021-08-27 21:03:02 +02:00
assert tip["status"] == "conflicting"
found = True
break
2021-08-27 21:03:02 +02:00
assert found
self.log.info("Keep node connected and let it try to reorg the chain")
good_tip = self.nodes[0].getbestblockhash()
self.log.info("Restart it so that it forgets all the chainlock messages from the past")
2019-07-04 16:48:01 +02:00
self.stop_node(0)
self.start_node(0)
connect_nodes(self.nodes[0], 1)
2021-08-27 21:03:02 +02:00
assert self.nodes[0].getbestblockhash() == good_tip
self.nodes[0].invalidateblock(good_tip)
self.log.info("Now try to reorg the chain")
self.nodes[0].generate(2)
time.sleep(6)
2021-08-27 21:03:02 +02:00
assert self.nodes[1].getbestblockhash() == good_tip
bad_tip = self.nodes[0].generate(2)[-1]
time.sleep(6)
2021-08-27 21:03:02 +02:00
assert self.nodes[0].getbestblockhash() == bad_tip
assert self.nodes[1].getbestblockhash() == good_tip
self.log.info("Now let the node which is on the wrong chain reorg back to the locked chain")
self.nodes[0].reconsiderblock(good_tip)
2021-08-27 21:03:02 +02:00
assert self.nodes[0].getbestblockhash() != good_tip
good_fork = good_tip
good_tip = self.nodes[1].generatetoaddress(1, node0_mining_addr)[-1] # this should mark bad_tip as conflicting
self.wait_for_chainlocked_block_all_nodes(good_tip)
2021-08-27 21:03:02 +02:00
assert self.nodes[0].getbestblockhash() == good_tip
found = False
for tip in self.nodes[0].getchaintips(2):
if tip["hash"] == bad_tip:
2021-08-27 21:03:02 +02:00
assert tip["status"] == "conflicting"
found = True
break
2021-08-27 21:03:02 +02:00
assert found
self.log.info("Should switch to the best non-conflicting tip (not to the most work chain) on restart")
2021-08-27 21:03:02 +02:00
assert int(self.nodes[0].getblock(bad_tip)["chainwork"], 16) > int(self.nodes[1].getblock(good_tip)["chainwork"], 16)
self.stop_node(0)
self.start_node(0)
self.nodes[0].invalidateblock(good_fork)
self.stop_node(0)
self.start_node(0)
time.sleep(1)
2021-08-27 21:03:02 +02:00
assert self.nodes[0].getbestblockhash() == good_tip
self.log.info("Isolate a node and let it create some transactions which won't get IS locked")
force_finish_mnsync(self.nodes[0])
isolate_node(self.nodes[0])
Implement retroactive IS locking of transactions first seen in blocks instead of mempool (#2770) * Don't rely on UTXO set in CheckCanLock The UTXO set only works for TXs in the mempool and won't work when we try to retroactively lock unlocked TXs from blocks. This is safe as ProcessTx is only called when a TX was accepted into the mempool or connected in a block, which means that all input checks were good. * Rename RetryLockMempoolTxs to RetryLockTxs and let it retry connected TXs * Instead of manually calling ProcessTx, let SyncTransaction handle all cases SyncTransaction is called from AcceptToMemoryPool and when transactions got connected in a block. So this is the time we want to run TXs through ProcessTx. This also enables retroactive signing of TXs that were unknown before a new block appeared. * Test retroactive signing and safe TXs in LLMQ ChainLocks tests * Also test for retroactive signing of chained TXs * Honor lockedParentTx when looking for TXs to retry signing * Stop scanning for TXs to retry after a depth of 6 * Generate 6 block to avoid retroactive signing overloading Travis * Avoid retroactive signing * Don't rely on NewPoWValidBlock and use SyncTransaction to build blockTxs NewPoWValidBlock is not guaranteed to be called when blocks come in fast. When a block is accepted in AcceptBlock, NewPoWValidBlock is only called when the new block is a successor of the currently active tip. This is not the case when after the first block a second block is accepted immediately as the first block is not connected yet. This might be a bug actually in the handling of NewPoWValidBlock, so we might need to check/fix this later, but currently I prefer to not touch that part. Instead, we now use SyncTransaction to gather TXs for blockTxs. This works because SyncTransaction is called for all transactions in a freshly connected block in one go. The call also happens before UpdatedBlockTip is called, so it's fine with the existing logic. * Use tx.IsCoinBase() instead of checking index 0 Also check for empty vin.
2019-03-19 11:55:51 +01:00
txs = []
for i in range(3):
txs.append(self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1))
txs += self.create_chained_txs(self.nodes[0], 1)
self.log.info("Assert that after block generation these TXs are NOT included (as they are \"unsafe\")")
node0_tip = self.nodes[0].generate(1)[-1]
Implement retroactive IS locking of transactions first seen in blocks instead of mempool (#2770) * Don't rely on UTXO set in CheckCanLock The UTXO set only works for TXs in the mempool and won't work when we try to retroactively lock unlocked TXs from blocks. This is safe as ProcessTx is only called when a TX was accepted into the mempool or connected in a block, which means that all input checks were good. * Rename RetryLockMempoolTxs to RetryLockTxs and let it retry connected TXs * Instead of manually calling ProcessTx, let SyncTransaction handle all cases SyncTransaction is called from AcceptToMemoryPool and when transactions got connected in a block. So this is the time we want to run TXs through ProcessTx. This also enables retroactive signing of TXs that were unknown before a new block appeared. * Test retroactive signing and safe TXs in LLMQ ChainLocks tests * Also test for retroactive signing of chained TXs * Honor lockedParentTx when looking for TXs to retry signing * Stop scanning for TXs to retry after a depth of 6 * Generate 6 block to avoid retroactive signing overloading Travis * Avoid retroactive signing * Don't rely on NewPoWValidBlock and use SyncTransaction to build blockTxs NewPoWValidBlock is not guaranteed to be called when blocks come in fast. When a block is accepted in AcceptBlock, NewPoWValidBlock is only called when the new block is a successor of the currently active tip. This is not the case when after the first block a second block is accepted immediately as the first block is not connected yet. This might be a bug actually in the handling of NewPoWValidBlock, so we might need to check/fix this later, but currently I prefer to not touch that part. Instead, we now use SyncTransaction to gather TXs for blockTxs. This works because SyncTransaction is called for all transactions in a freshly connected block in one go. The call also happens before UpdatedBlockTip is called, so it's fine with the existing logic. * Use tx.IsCoinBase() instead of checking index 0 Also check for empty vin.
2019-03-19 11:55:51 +01:00
for txid in txs:
tx = self.nodes[0].getrawtransaction(txid, 1)
2021-08-27 21:03:02 +02:00
assert "confirmations" not in tx
time.sleep(1)
node0_tip_block = self.nodes[0].getblock(node0_tip)
2021-08-27 21:03:02 +02:00
assert not node0_tip_block["chainlock"]
assert node0_tip_block["previousblockhash"] == good_tip
self.log.info("Disable LLMQ based InstantSend for a very short time (this never gets propagated to other nodes)")
Remove legacy InstantSend code (#3020) * Remove ppszTypeName from protocol.cpp and reimplement GetCommand This removes the need to carefully maintain ppszTypeName, which required correct order and also did not allow to permanently remove old message types. To get the command name for an INV type, GetCommandInternal uses a switch which needs to be maintained from now on. The way this is implemented also resembles the way it is implemented in Bitcoin today, but it's not identical. The original PR that introduced the switch case in Bitcoin was part of the Segwit changes and thus never got backported. I decided to implement it in a slightly different way that avoids throwing exceptions when an unknown INV type is encountered. IsKnownType will now also leverage GetCommandInternal() to figure out if the INV type is known locally. This has the side effect of old/legacy message types to return false from now on. We will depend on this side effect in later commits when we remove legacy InstantSend code. * Stop handling/relaying legacy IX messages When we receive an IX message, we simply treat it as a regular TX and relay it as such. We'll however still request IX messages when they are announced to us. We can't simply revert to requesting TX messages in this case as it might result in the other peer not answering due to the TX not being in mapRelay yet. We should at some point in the future completely drop handling of IX messages instead. * Remove IsNewInstantSendEnabled() and only use IsInstantSendEnabled() * Remove legacy InstantSend from GUI * Remove InstantSend from Bitcoin/Dash URIs * Remove legacy InstantSend from RPC commands * Remove legacy InstantSend from wallet * Remove legacy instantsend.h include * Remove legacy InstantSend from validation code * Completely remove remaining legacy InstantSend code * Remove now unused spork * Fix InstantSend related test failures * Remove now obsolete auto IS tests * Make spork2 and spork3 disabled by default This should have no influence on mainnet as these sporks are actually set there. This will however affect regtest, which shouldn't have LLMQ based InstantSend enabled by default. * Remove instantsend tests from dip3-deterministicmns.py These were only testing legacy InstantSend * Fix .QCheckBox#checkUsePrivateSend styling a bit * s/TXLEGACYLOCKREQUEST/LEGACYTXLOCKREQUEST/ * Revert "verified via InstantSend" back to "verified via LLMQ based InstantSend" * Use cmd == nullptr instead of !cmd * Remove last parameter from AvailableCoins call This was for fUseInstantSend which is not present anymore since rebase
2019-07-09 16:50:08 +02:00
self.nodes[0].spork("SPORK_2_INSTANTSEND_ENABLED", 4070908800)
self.log.info("Now the TXs should be included")
Implement retroactive IS locking of transactions first seen in blocks instead of mempool (#2770) * Don't rely on UTXO set in CheckCanLock The UTXO set only works for TXs in the mempool and won't work when we try to retroactively lock unlocked TXs from blocks. This is safe as ProcessTx is only called when a TX was accepted into the mempool or connected in a block, which means that all input checks were good. * Rename RetryLockMempoolTxs to RetryLockTxs and let it retry connected TXs * Instead of manually calling ProcessTx, let SyncTransaction handle all cases SyncTransaction is called from AcceptToMemoryPool and when transactions got connected in a block. So this is the time we want to run TXs through ProcessTx. This also enables retroactive signing of TXs that were unknown before a new block appeared. * Test retroactive signing and safe TXs in LLMQ ChainLocks tests * Also test for retroactive signing of chained TXs * Honor lockedParentTx when looking for TXs to retry signing * Stop scanning for TXs to retry after a depth of 6 * Generate 6 block to avoid retroactive signing overloading Travis * Avoid retroactive signing * Don't rely on NewPoWValidBlock and use SyncTransaction to build blockTxs NewPoWValidBlock is not guaranteed to be called when blocks come in fast. When a block is accepted in AcceptBlock, NewPoWValidBlock is only called when the new block is a successor of the currently active tip. This is not the case when after the first block a second block is accepted immediately as the first block is not connected yet. This might be a bug actually in the handling of NewPoWValidBlock, so we might need to check/fix this later, but currently I prefer to not touch that part. Instead, we now use SyncTransaction to gather TXs for blockTxs. This works because SyncTransaction is called for all transactions in a freshly connected block in one go. The call also happens before UpdatedBlockTip is called, so it's fine with the existing logic. * Use tx.IsCoinBase() instead of checking index 0 Also check for empty vin.
2019-03-19 11:55:51 +01:00
self.nodes[0].generate(1)
Remove legacy InstantSend code (#3020) * Remove ppszTypeName from protocol.cpp and reimplement GetCommand This removes the need to carefully maintain ppszTypeName, which required correct order and also did not allow to permanently remove old message types. To get the command name for an INV type, GetCommandInternal uses a switch which needs to be maintained from now on. The way this is implemented also resembles the way it is implemented in Bitcoin today, but it's not identical. The original PR that introduced the switch case in Bitcoin was part of the Segwit changes and thus never got backported. I decided to implement it in a slightly different way that avoids throwing exceptions when an unknown INV type is encountered. IsKnownType will now also leverage GetCommandInternal() to figure out if the INV type is known locally. This has the side effect of old/legacy message types to return false from now on. We will depend on this side effect in later commits when we remove legacy InstantSend code. * Stop handling/relaying legacy IX messages When we receive an IX message, we simply treat it as a regular TX and relay it as such. We'll however still request IX messages when they are announced to us. We can't simply revert to requesting TX messages in this case as it might result in the other peer not answering due to the TX not being in mapRelay yet. We should at some point in the future completely drop handling of IX messages instead. * Remove IsNewInstantSendEnabled() and only use IsInstantSendEnabled() * Remove legacy InstantSend from GUI * Remove InstantSend from Bitcoin/Dash URIs * Remove legacy InstantSend from RPC commands * Remove legacy InstantSend from wallet * Remove legacy instantsend.h include * Remove legacy InstantSend from validation code * Completely remove remaining legacy InstantSend code * Remove now unused spork * Fix InstantSend related test failures * Remove now obsolete auto IS tests * Make spork2 and spork3 disabled by default This should have no influence on mainnet as these sporks are actually set there. This will however affect regtest, which shouldn't have LLMQ based InstantSend enabled by default. * Remove instantsend tests from dip3-deterministicmns.py These were only testing legacy InstantSend * Fix .QCheckBox#checkUsePrivateSend styling a bit * s/TXLEGACYLOCKREQUEST/LEGACYTXLOCKREQUEST/ * Revert "verified via InstantSend" back to "verified via LLMQ based InstantSend" * Use cmd == nullptr instead of !cmd * Remove last parameter from AvailableCoins call This was for fUseInstantSend which is not present anymore since rebase
2019-07-09 16:50:08 +02:00
self.nodes[0].spork("SPORK_2_INSTANTSEND_ENABLED", 0)
self.log.info("Assert that TXs got included now")
Implement retroactive IS locking of transactions first seen in blocks instead of mempool (#2770) * Don't rely on UTXO set in CheckCanLock The UTXO set only works for TXs in the mempool and won't work when we try to retroactively lock unlocked TXs from blocks. This is safe as ProcessTx is only called when a TX was accepted into the mempool or connected in a block, which means that all input checks were good. * Rename RetryLockMempoolTxs to RetryLockTxs and let it retry connected TXs * Instead of manually calling ProcessTx, let SyncTransaction handle all cases SyncTransaction is called from AcceptToMemoryPool and when transactions got connected in a block. So this is the time we want to run TXs through ProcessTx. This also enables retroactive signing of TXs that were unknown before a new block appeared. * Test retroactive signing and safe TXs in LLMQ ChainLocks tests * Also test for retroactive signing of chained TXs * Honor lockedParentTx when looking for TXs to retry signing * Stop scanning for TXs to retry after a depth of 6 * Generate 6 block to avoid retroactive signing overloading Travis * Avoid retroactive signing * Don't rely on NewPoWValidBlock and use SyncTransaction to build blockTxs NewPoWValidBlock is not guaranteed to be called when blocks come in fast. When a block is accepted in AcceptBlock, NewPoWValidBlock is only called when the new block is a successor of the currently active tip. This is not the case when after the first block a second block is accepted immediately as the first block is not connected yet. This might be a bug actually in the handling of NewPoWValidBlock, so we might need to check/fix this later, but currently I prefer to not touch that part. Instead, we now use SyncTransaction to gather TXs for blockTxs. This works because SyncTransaction is called for all transactions in a freshly connected block in one go. The call also happens before UpdatedBlockTip is called, so it's fine with the existing logic. * Use tx.IsCoinBase() instead of checking index 0 Also check for empty vin.
2019-03-19 11:55:51 +01:00
for txid in txs:
tx = self.nodes[0].getrawtransaction(txid, 1)
2021-08-27 21:03:02 +02:00
assert "confirmations" in tx and tx["confirmations"] > 0
Implement retroactive IS locking of transactions first seen in blocks instead of mempool (#2770) * Don't rely on UTXO set in CheckCanLock The UTXO set only works for TXs in the mempool and won't work when we try to retroactively lock unlocked TXs from blocks. This is safe as ProcessTx is only called when a TX was accepted into the mempool or connected in a block, which means that all input checks were good. * Rename RetryLockMempoolTxs to RetryLockTxs and let it retry connected TXs * Instead of manually calling ProcessTx, let SyncTransaction handle all cases SyncTransaction is called from AcceptToMemoryPool and when transactions got connected in a block. So this is the time we want to run TXs through ProcessTx. This also enables retroactive signing of TXs that were unknown before a new block appeared. * Test retroactive signing and safe TXs in LLMQ ChainLocks tests * Also test for retroactive signing of chained TXs * Honor lockedParentTx when looking for TXs to retry signing * Stop scanning for TXs to retry after a depth of 6 * Generate 6 block to avoid retroactive signing overloading Travis * Avoid retroactive signing * Don't rely on NewPoWValidBlock and use SyncTransaction to build blockTxs NewPoWValidBlock is not guaranteed to be called when blocks come in fast. When a block is accepted in AcceptBlock, NewPoWValidBlock is only called when the new block is a successor of the currently active tip. This is not the case when after the first block a second block is accepted immediately as the first block is not connected yet. This might be a bug actually in the handling of NewPoWValidBlock, so we might need to check/fix this later, but currently I prefer to not touch that part. Instead, we now use SyncTransaction to gather TXs for blockTxs. This works because SyncTransaction is called for all transactions in a freshly connected block in one go. The call also happens before UpdatedBlockTip is called, so it's fine with the existing logic. * Use tx.IsCoinBase() instead of checking index 0 Also check for empty vin.
2019-03-19 11:55:51 +01:00
# Enable network on first node again, which will cause the blocks to propagate and IS locks to happen retroactively
# for the mined TXs, which will then allow the network to create a CLSIG
self.log.info("Re-enable network on first node and wait for chainlock")
reconnect_isolated_node(self.nodes[0], 1)
self.wait_for_chainlocked_block(self.nodes[0], self.nodes[0].getbestblockhash(), timeout=30)
Implement retroactive IS locking of transactions first seen in blocks instead of mempool (#2770) * Don't rely on UTXO set in CheckCanLock The UTXO set only works for TXs in the mempool and won't work when we try to retroactively lock unlocked TXs from blocks. This is safe as ProcessTx is only called when a TX was accepted into the mempool or connected in a block, which means that all input checks were good. * Rename RetryLockMempoolTxs to RetryLockTxs and let it retry connected TXs * Instead of manually calling ProcessTx, let SyncTransaction handle all cases SyncTransaction is called from AcceptToMemoryPool and when transactions got connected in a block. So this is the time we want to run TXs through ProcessTx. This also enables retroactive signing of TXs that were unknown before a new block appeared. * Test retroactive signing and safe TXs in LLMQ ChainLocks tests * Also test for retroactive signing of chained TXs * Honor lockedParentTx when looking for TXs to retry signing * Stop scanning for TXs to retry after a depth of 6 * Generate 6 block to avoid retroactive signing overloading Travis * Avoid retroactive signing * Don't rely on NewPoWValidBlock and use SyncTransaction to build blockTxs NewPoWValidBlock is not guaranteed to be called when blocks come in fast. When a block is accepted in AcceptBlock, NewPoWValidBlock is only called when the new block is a successor of the currently active tip. This is not the case when after the first block a second block is accepted immediately as the first block is not connected yet. This might be a bug actually in the handling of NewPoWValidBlock, so we might need to check/fix this later, but currently I prefer to not touch that part. Instead, we now use SyncTransaction to gather TXs for blockTxs. This works because SyncTransaction is called for all transactions in a freshly connected block in one go. The call also happens before UpdatedBlockTip is called, so it's fine with the existing logic. * Use tx.IsCoinBase() instead of checking index 0 Also check for empty vin.
2019-03-19 11:55:51 +01:00
def create_chained_txs(self, node, amount):
txid = node.sendtoaddress(node.getnewaddress(), amount)
tx = node.getrawtransaction(txid, 1)
inputs = []
valueIn = 0
for txout in tx["vout"]:
inputs.append({"txid": txid, "vout": txout["n"]})
valueIn += txout["value"]
outputs = {
node.getnewaddress(): round(float(valueIn) - 0.0001, 6)
}
rawtx = node.createrawtransaction(inputs, outputs)
rawtx = node.signrawtransactionwithwallet(rawtx)
Implement retroactive IS locking of transactions first seen in blocks instead of mempool (#2770) * Don't rely on UTXO set in CheckCanLock The UTXO set only works for TXs in the mempool and won't work when we try to retroactively lock unlocked TXs from blocks. This is safe as ProcessTx is only called when a TX was accepted into the mempool or connected in a block, which means that all input checks were good. * Rename RetryLockMempoolTxs to RetryLockTxs and let it retry connected TXs * Instead of manually calling ProcessTx, let SyncTransaction handle all cases SyncTransaction is called from AcceptToMemoryPool and when transactions got connected in a block. So this is the time we want to run TXs through ProcessTx. This also enables retroactive signing of TXs that were unknown before a new block appeared. * Test retroactive signing and safe TXs in LLMQ ChainLocks tests * Also test for retroactive signing of chained TXs * Honor lockedParentTx when looking for TXs to retry signing * Stop scanning for TXs to retry after a depth of 6 * Generate 6 block to avoid retroactive signing overloading Travis * Avoid retroactive signing * Don't rely on NewPoWValidBlock and use SyncTransaction to build blockTxs NewPoWValidBlock is not guaranteed to be called when blocks come in fast. When a block is accepted in AcceptBlock, NewPoWValidBlock is only called when the new block is a successor of the currently active tip. This is not the case when after the first block a second block is accepted immediately as the first block is not connected yet. This might be a bug actually in the handling of NewPoWValidBlock, so we might need to check/fix this later, but currently I prefer to not touch that part. Instead, we now use SyncTransaction to gather TXs for blockTxs. This works because SyncTransaction is called for all transactions in a freshly connected block in one go. The call also happens before UpdatedBlockTip is called, so it's fine with the existing logic. * Use tx.IsCoinBase() instead of checking index 0 Also check for empty vin.
2019-03-19 11:55:51 +01:00
rawtxid = node.sendrawtransaction(rawtx["hex"])
return [txid, rawtxid]
if __name__ == '__main__':
LLMQChainLocksTest().main()