mirror of
https://github.com/dashpay/dash.git
synced 2024-12-28 21:42:47 +01:00
384 lines
12 KiB
C++
384 lines
12 KiB
C++
|
// Copyright (c) 2016 The Bitcoin Core developers
|
||
|
// Distributed under the MIT software license, see the accompanying
|
||
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||
|
|
||
|
#include "support/lockedpool.h"
|
||
|
#include "support/cleanse.h"
|
||
|
|
||
|
#if defined(HAVE_CONFIG_H)
|
||
|
#include "config/dash-config.h"
|
||
|
#endif
|
||
|
|
||
|
#ifdef WIN32
|
||
|
#ifdef _WIN32_WINNT
|
||
|
#undef _WIN32_WINNT
|
||
|
#endif
|
||
|
#define _WIN32_WINNT 0x0501
|
||
|
#define WIN32_LEAN_AND_MEAN 1
|
||
|
#ifndef NOMINMAX
|
||
|
#define NOMINMAX
|
||
|
#endif
|
||
|
#include <windows.h>
|
||
|
#else
|
||
|
#include <sys/mman.h> // for mmap
|
||
|
#include <sys/resource.h> // for getrlimit
|
||
|
#include <limits.h> // for PAGESIZE
|
||
|
#include <unistd.h> // for sysconf
|
||
|
#endif
|
||
|
|
||
|
LockedPoolManager* LockedPoolManager::_instance = NULL;
|
||
|
std::once_flag LockedPoolManager::init_flag;
|
||
|
|
||
|
/*******************************************************************************/
|
||
|
// Utilities
|
||
|
//
|
||
|
/** Align up to power of 2 */
|
||
|
static inline size_t align_up(size_t x, size_t align)
|
||
|
{
|
||
|
return (x + align - 1) & ~(align - 1);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************/
|
||
|
// Implementation: Arena
|
||
|
|
||
|
Arena::Arena(void *base_in, size_t size_in, size_t alignment_in):
|
||
|
base(static_cast<char*>(base_in)), end(static_cast<char*>(base_in) + size_in), alignment(alignment_in)
|
||
|
{
|
||
|
// Start with one free chunk that covers the entire arena
|
||
|
chunks.emplace(base, Chunk(size_in, false));
|
||
|
}
|
||
|
|
||
|
Arena::~Arena()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void* Arena::alloc(size_t size)
|
||
|
{
|
||
|
// Round to next multiple of alignment
|
||
|
size = align_up(size, alignment);
|
||
|
|
||
|
// Don't handle zero-sized chunks, or those bigger than MAX_SIZE
|
||
|
if (size == 0 || size >= Chunk::MAX_SIZE) {
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
for (auto& chunk: chunks) {
|
||
|
if (!chunk.second.isInUse() && size <= chunk.second.getSize()) {
|
||
|
char* base = chunk.first;
|
||
|
size_t leftover = chunk.second.getSize() - size;
|
||
|
if (leftover > 0) { // Split chunk
|
||
|
chunks.emplace(base + size, Chunk(leftover, false));
|
||
|
chunk.second.setSize(size);
|
||
|
}
|
||
|
chunk.second.setInUse(true);
|
||
|
return reinterpret_cast<void*>(base);
|
||
|
}
|
||
|
}
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
void Arena::free(void *ptr)
|
||
|
{
|
||
|
// Freeing the NULL pointer is OK.
|
||
|
if (ptr == nullptr) {
|
||
|
return;
|
||
|
}
|
||
|
auto i = chunks.find(static_cast<char*>(ptr));
|
||
|
if (i == chunks.end() || !i->second.isInUse()) {
|
||
|
throw std::runtime_error("Arena: invalid or double free");
|
||
|
}
|
||
|
|
||
|
i->second.setInUse(false);
|
||
|
|
||
|
if (i != chunks.begin()) { // Absorb into previous chunk if exists and free
|
||
|
auto prev = i;
|
||
|
--prev;
|
||
|
if (!prev->second.isInUse()) {
|
||
|
// Absorb current chunk size into previous chunk.
|
||
|
prev->second.setSize(prev->second.getSize() + i->second.getSize());
|
||
|
// Erase current chunk. Erasing does not invalidate current
|
||
|
// iterators for a map, except for that pointing to the object
|
||
|
// itself, which will be overwritten in the next statement.
|
||
|
chunks.erase(i);
|
||
|
// From here on, the previous chunk is our current chunk.
|
||
|
i = prev;
|
||
|
}
|
||
|
}
|
||
|
auto next = i;
|
||
|
++next;
|
||
|
if (next != chunks.end()) { // Absorb next chunk if exists and free
|
||
|
if (!next->second.isInUse()) {
|
||
|
// Absurb next chunk size into current chunk
|
||
|
i->second.setSize(i->second.getSize() + next->second.getSize());
|
||
|
// Erase next chunk.
|
||
|
chunks.erase(next);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Arena::Stats Arena::stats() const
|
||
|
{
|
||
|
Arena::Stats r;
|
||
|
r.used = r.free = r.total = r.chunks_used = r.chunks_free = 0;
|
||
|
for (const auto& chunk: chunks) {
|
||
|
if (chunk.second.isInUse()) {
|
||
|
r.used += chunk.second.getSize();
|
||
|
r.chunks_used += 1;
|
||
|
} else {
|
||
|
r.free += chunk.second.getSize();
|
||
|
r.chunks_free += 1;
|
||
|
}
|
||
|
r.total += chunk.second.getSize();
|
||
|
}
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
#ifdef ARENA_DEBUG
|
||
|
void Arena::walk() const
|
||
|
{
|
||
|
for (const auto& chunk: chunks) {
|
||
|
std::cout <<
|
||
|
"0x" << std::hex << std::setw(16) << std::setfill('0') << chunk.first <<
|
||
|
" 0x" << std::hex << std::setw(16) << std::setfill('0') << chunk.second.getSize() <<
|
||
|
" 0x" << chunk.second.isInUse() << std::endl;
|
||
|
}
|
||
|
std::cout << std::endl;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*******************************************************************************/
|
||
|
// Implementation: Win32LockedPageAllocator
|
||
|
|
||
|
#ifdef WIN32
|
||
|
/** LockedPageAllocator specialized for Windows.
|
||
|
*/
|
||
|
class Win32LockedPageAllocator: public LockedPageAllocator
|
||
|
{
|
||
|
public:
|
||
|
Win32LockedPageAllocator();
|
||
|
void* AllocateLocked(size_t len, bool *lockingSuccess);
|
||
|
void FreeLocked(void* addr, size_t len);
|
||
|
size_t GetLimit();
|
||
|
private:
|
||
|
size_t page_size;
|
||
|
};
|
||
|
|
||
|
Win32LockedPageAllocator::Win32LockedPageAllocator()
|
||
|
{
|
||
|
// Determine system page size in bytes
|
||
|
SYSTEM_INFO sSysInfo;
|
||
|
GetSystemInfo(&sSysInfo);
|
||
|
page_size = sSysInfo.dwPageSize;
|
||
|
}
|
||
|
void *Win32LockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
|
||
|
{
|
||
|
len = align_up(len, page_size);
|
||
|
void *addr = VirtualAlloc(nullptr, len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
|
||
|
if (addr) {
|
||
|
// VirtualLock is used to attempt to keep keying material out of swap. Note
|
||
|
// that it does not provide this as a guarantee, but, in practice, memory
|
||
|
// that has been VirtualLock'd almost never gets written to the pagefile
|
||
|
// except in rare circumstances where memory is extremely low.
|
||
|
*lockingSuccess = VirtualLock(const_cast<void*>(addr), len) != 0;
|
||
|
}
|
||
|
return addr;
|
||
|
}
|
||
|
void Win32LockedPageAllocator::FreeLocked(void* addr, size_t len)
|
||
|
{
|
||
|
len = align_up(len, page_size);
|
||
|
memory_cleanse(addr, len);
|
||
|
VirtualUnlock(const_cast<void*>(addr), len);
|
||
|
}
|
||
|
|
||
|
size_t Win32LockedPageAllocator::GetLimit()
|
||
|
{
|
||
|
// TODO is there a limit on windows, how to get it?
|
||
|
return std::numeric_limits<size_t>::max();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*******************************************************************************/
|
||
|
// Implementation: PosixLockedPageAllocator
|
||
|
|
||
|
#ifndef WIN32
|
||
|
/** LockedPageAllocator specialized for OSes that don't try to be
|
||
|
* special snowflakes.
|
||
|
*/
|
||
|
class PosixLockedPageAllocator: public LockedPageAllocator
|
||
|
{
|
||
|
public:
|
||
|
PosixLockedPageAllocator();
|
||
|
void* AllocateLocked(size_t len, bool *lockingSuccess);
|
||
|
void FreeLocked(void* addr, size_t len);
|
||
|
size_t GetLimit();
|
||
|
private:
|
||
|
size_t page_size;
|
||
|
};
|
||
|
|
||
|
PosixLockedPageAllocator::PosixLockedPageAllocator()
|
||
|
{
|
||
|
// Determine system page size in bytes
|
||
|
#if defined(PAGESIZE) // defined in limits.h
|
||
|
page_size = PAGESIZE;
|
||
|
#else // assume some POSIX OS
|
||
|
page_size = sysconf(_SC_PAGESIZE);
|
||
|
#endif
|
||
|
}
|
||
|
void *PosixLockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
|
||
|
{
|
||
|
void *addr;
|
||
|
len = align_up(len, page_size);
|
||
|
addr = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
||
|
if (addr) {
|
||
|
*lockingSuccess = mlock(addr, len) == 0;
|
||
|
}
|
||
|
return addr;
|
||
|
}
|
||
|
void PosixLockedPageAllocator::FreeLocked(void* addr, size_t len)
|
||
|
{
|
||
|
len = align_up(len, page_size);
|
||
|
memory_cleanse(addr, len);
|
||
|
munlock(addr, len);
|
||
|
munmap(addr, len);
|
||
|
}
|
||
|
size_t PosixLockedPageAllocator::GetLimit()
|
||
|
{
|
||
|
#ifdef RLIMIT_MEMLOCK
|
||
|
struct rlimit rlim;
|
||
|
if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) {
|
||
|
if (rlim.rlim_cur != RLIM_INFINITY) {
|
||
|
return rlim.rlim_cur;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
return std::numeric_limits<size_t>::max();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*******************************************************************************/
|
||
|
// Implementation: LockedPool
|
||
|
|
||
|
LockedPool::LockedPool(std::unique_ptr<LockedPageAllocator> allocator_in, LockingFailed_Callback lf_cb_in):
|
||
|
allocator(std::move(allocator_in)), lf_cb(lf_cb_in), cumulative_bytes_locked(0)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
LockedPool::~LockedPool()
|
||
|
{
|
||
|
}
|
||
|
void* LockedPool::alloc(size_t size)
|
||
|
{
|
||
|
std::lock_guard<std::mutex> lock(mutex);
|
||
|
// Try allocating from each current arena
|
||
|
for (auto &arena: arenas) {
|
||
|
void *addr = arena.alloc(size);
|
||
|
if (addr) {
|
||
|
return addr;
|
||
|
}
|
||
|
}
|
||
|
// If that fails, create a new one
|
||
|
if (new_arena(ARENA_SIZE, ARENA_ALIGN)) {
|
||
|
return arenas.back().alloc(size);
|
||
|
}
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
void LockedPool::free(void *ptr)
|
||
|
{
|
||
|
std::lock_guard<std::mutex> lock(mutex);
|
||
|
// TODO we can do better than this linear search by keeping a map of arena
|
||
|
// extents to arena, and looking up the address.
|
||
|
for (auto &arena: arenas) {
|
||
|
if (arena.addressInArena(ptr)) {
|
||
|
arena.free(ptr);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
throw std::runtime_error("LockedPool: invalid address not pointing to any arena");
|
||
|
}
|
||
|
|
||
|
LockedPool::Stats LockedPool::stats() const
|
||
|
{
|
||
|
std::lock_guard<std::mutex> lock(mutex);
|
||
|
LockedPool::Stats r;
|
||
|
r.used = r.free = r.total = r.chunks_used = r.chunks_free = 0;
|
||
|
r.locked = cumulative_bytes_locked;
|
||
|
for (const auto &arena: arenas) {
|
||
|
Arena::Stats i = arena.stats();
|
||
|
r.used += i.used;
|
||
|
r.free += i.free;
|
||
|
r.total += i.total;
|
||
|
r.chunks_used += i.chunks_used;
|
||
|
r.chunks_free += i.chunks_free;
|
||
|
}
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
bool LockedPool::new_arena(size_t size, size_t align)
|
||
|
{
|
||
|
bool locked;
|
||
|
// If this is the first arena, handle this specially: Cap the upper size
|
||
|
// by the process limit. This makes sure that the first arena will at least
|
||
|
// be locked. An exception to this is if the process limit is 0:
|
||
|
// in this case no memory can be locked at all so we'll skip past this logic.
|
||
|
if (arenas.empty()) {
|
||
|
size_t limit = allocator->GetLimit();
|
||
|
if (limit > 0) {
|
||
|
size = std::min(size, limit);
|
||
|
}
|
||
|
}
|
||
|
void *addr = allocator->AllocateLocked(size, &locked);
|
||
|
if (!addr) {
|
||
|
return false;
|
||
|
}
|
||
|
if (locked) {
|
||
|
cumulative_bytes_locked += size;
|
||
|
} else if (lf_cb) { // Call the locking-failed callback if locking failed
|
||
|
if (!lf_cb()) { // If the callback returns false, free the memory and fail, otherwise consider the user warned and proceed.
|
||
|
allocator->FreeLocked(addr, size);
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
arenas.emplace_back(allocator.get(), addr, size, align);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
LockedPool::LockedPageArena::LockedPageArena(LockedPageAllocator *allocator_in, void *base_in, size_t size_in, size_t align_in):
|
||
|
Arena(base_in, size_in, align_in), base(base_in), size(size_in), allocator(allocator_in)
|
||
|
{
|
||
|
}
|
||
|
LockedPool::LockedPageArena::~LockedPageArena()
|
||
|
{
|
||
|
allocator->FreeLocked(base, size);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************/
|
||
|
// Implementation: LockedPoolManager
|
||
|
//
|
||
|
LockedPoolManager::LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator):
|
||
|
LockedPool(std::move(allocator), &LockedPoolManager::LockingFailed)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
bool LockedPoolManager::LockingFailed()
|
||
|
{
|
||
|
// TODO: log something but how? without including util.h
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void LockedPoolManager::CreateInstance()
|
||
|
{
|
||
|
// Using a local static instance guarantees that the object is initialized
|
||
|
// when it's first needed and also deinitialized after all objects that use
|
||
|
// it are done with it. I can think of one unlikely scenario where we may
|
||
|
// have a static deinitialization order/problem, but the check in
|
||
|
// LockedPoolManagerBase's destructor helps us detect if that ever happens.
|
||
|
#ifdef WIN32
|
||
|
std::unique_ptr<LockedPageAllocator> allocator(new Win32LockedPageAllocator());
|
||
|
#else
|
||
|
std::unique_ptr<LockedPageAllocator> allocator(new PosixLockedPageAllocator());
|
||
|
#endif
|
||
|
static LockedPoolManager instance(std::move(allocator));
|
||
|
LockedPoolManager::_instance = &instance;
|
||
|
}
|