Simple benchmarking framework
Benchmarking framework, loosely based on google's micro-benchmarking
library (https://github.com/google/benchmark)
Wny not use the Google Benchmark framework? Because adding Even More Dependencies
isn't worth it. If we get a dozen or three benchmarks and need nanosecond-accurate
timings of threaded code then switching to the full-blown Google Benchmark library
should be considered.
The benchmark framework is hard-coded to run each benchmark for one wall-clock second,
and then spits out .csv-format timing information to stdout. It is left as an
exercise for later (or maybe never) to add command-line arguments to specify which
benchmark(s) to run, how long to run them for, how to format results, etc etc etc.
Again, see the Google Benchmark framework for where that might end up.
See src/bench/MilliSleep.cpp for a sanity-test benchmark that just benchmarks
'sleep 100 milliseconds.'
To compile and run benchmarks:
cd src; make bench
Sample output:
Benchmark,count,min,max,average
Sleep100ms,10,0.101854,0.105059,0.103881
2015-09-24 19:13:38 +02:00
|
|
|
// Copyright (c) 2015 The Bitcoin Core developers
|
|
|
|
// Distributed under the MIT software license, see the accompanying
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
2015-10-27 17:44:13 +01:00
|
|
|
|
|
|
|
#ifndef BITCOIN_BENCH_BENCH_H
|
|
|
|
#define BITCOIN_BENCH_BENCH_H
|
|
|
|
|
2017-05-18 02:17:51 +02:00
|
|
|
#include <functional>
|
2015-10-27 17:44:13 +01:00
|
|
|
#include <map>
|
|
|
|
#include <string>
|
2020-07-20 17:03:57 +02:00
|
|
|
#include <vector>
|
2017-11-08 08:32:54 +01:00
|
|
|
#include <chrono>
|
2015-10-27 17:44:13 +01:00
|
|
|
|
2021-06-26 12:03:16 +02:00
|
|
|
#include <bench/nanobench.h>
|
2015-10-27 17:44:13 +01:00
|
|
|
#include <boost/preprocessor/cat.hpp>
|
|
|
|
#include <boost/preprocessor/stringize.hpp>
|
Simple benchmarking framework
Benchmarking framework, loosely based on google's micro-benchmarking
library (https://github.com/google/benchmark)
Wny not use the Google Benchmark framework? Because adding Even More Dependencies
isn't worth it. If we get a dozen or three benchmarks and need nanosecond-accurate
timings of threaded code then switching to the full-blown Google Benchmark library
should be considered.
The benchmark framework is hard-coded to run each benchmark for one wall-clock second,
and then spits out .csv-format timing information to stdout. It is left as an
exercise for later (or maybe never) to add command-line arguments to specify which
benchmark(s) to run, how long to run them for, how to format results, etc etc etc.
Again, see the Google Benchmark framework for where that might end up.
See src/bench/MilliSleep.cpp for a sanity-test benchmark that just benchmarks
'sleep 100 milliseconds.'
To compile and run benchmarks:
cd src; make bench
Sample output:
Benchmark,count,min,max,average
Sleep100ms,10,0.101854,0.105059,0.103881
2015-09-24 19:13:38 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Usage:
|
|
|
|
|
2021-06-26 12:03:16 +02:00
|
|
|
static void CODE_TO_TIME(benchmark::Bench& bench)
|
Simple benchmarking framework
Benchmarking framework, loosely based on google's micro-benchmarking
library (https://github.com/google/benchmark)
Wny not use the Google Benchmark framework? Because adding Even More Dependencies
isn't worth it. If we get a dozen or three benchmarks and need nanosecond-accurate
timings of threaded code then switching to the full-blown Google Benchmark library
should be considered.
The benchmark framework is hard-coded to run each benchmark for one wall-clock second,
and then spits out .csv-format timing information to stdout. It is left as an
exercise for later (or maybe never) to add command-line arguments to specify which
benchmark(s) to run, how long to run them for, how to format results, etc etc etc.
Again, see the Google Benchmark framework for where that might end up.
See src/bench/MilliSleep.cpp for a sanity-test benchmark that just benchmarks
'sleep 100 milliseconds.'
To compile and run benchmarks:
cd src; make bench
Sample output:
Benchmark,count,min,max,average
Sleep100ms,10,0.101854,0.105059,0.103881
2015-09-24 19:13:38 +02:00
|
|
|
{
|
|
|
|
... do any setup needed...
|
2021-06-26 12:03:16 +02:00
|
|
|
nanobench::Config().run([&] {
|
Simple benchmarking framework
Benchmarking framework, loosely based on google's micro-benchmarking
library (https://github.com/google/benchmark)
Wny not use the Google Benchmark framework? Because adding Even More Dependencies
isn't worth it. If we get a dozen or three benchmarks and need nanosecond-accurate
timings of threaded code then switching to the full-blown Google Benchmark library
should be considered.
The benchmark framework is hard-coded to run each benchmark for one wall-clock second,
and then spits out .csv-format timing information to stdout. It is left as an
exercise for later (or maybe never) to add command-line arguments to specify which
benchmark(s) to run, how long to run them for, how to format results, etc etc etc.
Again, see the Google Benchmark framework for where that might end up.
See src/bench/MilliSleep.cpp for a sanity-test benchmark that just benchmarks
'sleep 100 milliseconds.'
To compile and run benchmarks:
cd src; make bench
Sample output:
Benchmark,count,min,max,average
Sleep100ms,10,0.101854,0.105059,0.103881
2015-09-24 19:13:38 +02:00
|
|
|
... do stuff you want to time...
|
2021-06-26 12:03:16 +02:00
|
|
|
});
|
Simple benchmarking framework
Benchmarking framework, loosely based on google's micro-benchmarking
library (https://github.com/google/benchmark)
Wny not use the Google Benchmark framework? Because adding Even More Dependencies
isn't worth it. If we get a dozen or three benchmarks and need nanosecond-accurate
timings of threaded code then switching to the full-blown Google Benchmark library
should be considered.
The benchmark framework is hard-coded to run each benchmark for one wall-clock second,
and then spits out .csv-format timing information to stdout. It is left as an
exercise for later (or maybe never) to add command-line arguments to specify which
benchmark(s) to run, how long to run them for, how to format results, etc etc etc.
Again, see the Google Benchmark framework for where that might end up.
See src/bench/MilliSleep.cpp for a sanity-test benchmark that just benchmarks
'sleep 100 milliseconds.'
To compile and run benchmarks:
cd src; make bench
Sample output:
Benchmark,count,min,max,average
Sleep100ms,10,0.101854,0.105059,0.103881
2015-09-24 19:13:38 +02:00
|
|
|
... do any cleanup needed...
|
|
|
|
}
|
|
|
|
|
2021-06-26 12:03:16 +02:00
|
|
|
BENCHMARK(CODE_TO_TIME);
|
Simple benchmarking framework
Benchmarking framework, loosely based on google's micro-benchmarking
library (https://github.com/google/benchmark)
Wny not use the Google Benchmark framework? Because adding Even More Dependencies
isn't worth it. If we get a dozen or three benchmarks and need nanosecond-accurate
timings of threaded code then switching to the full-blown Google Benchmark library
should be considered.
The benchmark framework is hard-coded to run each benchmark for one wall-clock second,
and then spits out .csv-format timing information to stdout. It is left as an
exercise for later (or maybe never) to add command-line arguments to specify which
benchmark(s) to run, how long to run them for, how to format results, etc etc etc.
Again, see the Google Benchmark framework for where that might end up.
See src/bench/MilliSleep.cpp for a sanity-test benchmark that just benchmarks
'sleep 100 milliseconds.'
To compile and run benchmarks:
cd src; make bench
Sample output:
Benchmark,count,min,max,average
Sleep100ms,10,0.101854,0.105059,0.103881
2015-09-24 19:13:38 +02:00
|
|
|
|
|
|
|
*/
|
2020-07-20 17:03:57 +02:00
|
|
|
|
Simple benchmarking framework
Benchmarking framework, loosely based on google's micro-benchmarking
library (https://github.com/google/benchmark)
Wny not use the Google Benchmark framework? Because adding Even More Dependencies
isn't worth it. If we get a dozen or three benchmarks and need nanosecond-accurate
timings of threaded code then switching to the full-blown Google Benchmark library
should be considered.
The benchmark framework is hard-coded to run each benchmark for one wall-clock second,
and then spits out .csv-format timing information to stdout. It is left as an
exercise for later (or maybe never) to add command-line arguments to specify which
benchmark(s) to run, how long to run them for, how to format results, etc etc etc.
Again, see the Google Benchmark framework for where that might end up.
See src/bench/MilliSleep.cpp for a sanity-test benchmark that just benchmarks
'sleep 100 milliseconds.'
To compile and run benchmarks:
cd src; make bench
Sample output:
Benchmark,count,min,max,average
Sleep100ms,10,0.101854,0.105059,0.103881
2015-09-24 19:13:38 +02:00
|
|
|
namespace benchmark {
|
2020-07-20 17:03:57 +02:00
|
|
|
|
2021-06-26 12:03:16 +02:00
|
|
|
using ankerl::nanobench::Bench;
|
Simple benchmarking framework
Benchmarking framework, loosely based on google's micro-benchmarking
library (https://github.com/google/benchmark)
Wny not use the Google Benchmark framework? Because adding Even More Dependencies
isn't worth it. If we get a dozen or three benchmarks and need nanosecond-accurate
timings of threaded code then switching to the full-blown Google Benchmark library
should be considered.
The benchmark framework is hard-coded to run each benchmark for one wall-clock second,
and then spits out .csv-format timing information to stdout. It is left as an
exercise for later (or maybe never) to add command-line arguments to specify which
benchmark(s) to run, how long to run them for, how to format results, etc etc etc.
Again, see the Google Benchmark framework for where that might end up.
See src/bench/MilliSleep.cpp for a sanity-test benchmark that just benchmarks
'sleep 100 milliseconds.'
To compile and run benchmarks:
cd src; make bench
Sample output:
Benchmark,count,min,max,average
Sleep100ms,10,0.101854,0.105059,0.103881
2015-09-24 19:13:38 +02:00
|
|
|
|
2021-06-26 12:03:16 +02:00
|
|
|
typedef std::function<void(Bench&)> BenchFunction;
|
Simple benchmarking framework
Benchmarking framework, loosely based on google's micro-benchmarking
library (https://github.com/google/benchmark)
Wny not use the Google Benchmark framework? Because adding Even More Dependencies
isn't worth it. If we get a dozen or three benchmarks and need nanosecond-accurate
timings of threaded code then switching to the full-blown Google Benchmark library
should be considered.
The benchmark framework is hard-coded to run each benchmark for one wall-clock second,
and then spits out .csv-format timing information to stdout. It is left as an
exercise for later (or maybe never) to add command-line arguments to specify which
benchmark(s) to run, how long to run them for, how to format results, etc etc etc.
Again, see the Google Benchmark framework for where that might end up.
See src/bench/MilliSleep.cpp for a sanity-test benchmark that just benchmarks
'sleep 100 milliseconds.'
To compile and run benchmarks:
cd src; make bench
Sample output:
Benchmark,count,min,max,average
Sleep100ms,10,0.101854,0.105059,0.103881
2015-09-24 19:13:38 +02:00
|
|
|
|
2021-06-26 12:03:16 +02:00
|
|
|
struct Args {
|
|
|
|
std::string regex_filter;
|
|
|
|
bool is_list_only;
|
|
|
|
std::vector<double> asymptote;
|
|
|
|
std::string output_csv;
|
|
|
|
std::string output_json;
|
2020-07-20 17:03:57 +02:00
|
|
|
};
|
Simple benchmarking framework
Benchmarking framework, loosely based on google's micro-benchmarking
library (https://github.com/google/benchmark)
Wny not use the Google Benchmark framework? Because adding Even More Dependencies
isn't worth it. If we get a dozen or three benchmarks and need nanosecond-accurate
timings of threaded code then switching to the full-blown Google Benchmark library
should be considered.
The benchmark framework is hard-coded to run each benchmark for one wall-clock second,
and then spits out .csv-format timing information to stdout. It is left as an
exercise for later (or maybe never) to add command-line arguments to specify which
benchmark(s) to run, how long to run them for, how to format results, etc etc etc.
Again, see the Google Benchmark framework for where that might end up.
See src/bench/MilliSleep.cpp for a sanity-test benchmark that just benchmarks
'sleep 100 milliseconds.'
To compile and run benchmarks:
cd src; make bench
Sample output:
Benchmark,count,min,max,average
Sleep100ms,10,0.101854,0.105059,0.103881
2015-09-24 19:13:38 +02:00
|
|
|
|
2020-07-20 17:03:57 +02:00
|
|
|
class BenchRunner
|
|
|
|
{
|
2021-06-26 12:03:16 +02:00
|
|
|
typedef std::map<std::string, BenchFunction> BenchmarkMap;
|
2020-07-20 17:03:57 +02:00
|
|
|
static BenchmarkMap& benchmarks();
|
|
|
|
|
|
|
|
public:
|
2021-06-26 12:03:16 +02:00
|
|
|
BenchRunner(std::string name, BenchFunction func);
|
2020-07-20 17:03:57 +02:00
|
|
|
|
2021-06-26 12:03:16 +02:00
|
|
|
static void RunAll(const Args& args);
|
2020-07-20 17:03:57 +02:00
|
|
|
};
|
Simple benchmarking framework
Benchmarking framework, loosely based on google's micro-benchmarking
library (https://github.com/google/benchmark)
Wny not use the Google Benchmark framework? Because adding Even More Dependencies
isn't worth it. If we get a dozen or three benchmarks and need nanosecond-accurate
timings of threaded code then switching to the full-blown Google Benchmark library
should be considered.
The benchmark framework is hard-coded to run each benchmark for one wall-clock second,
and then spits out .csv-format timing information to stdout. It is left as an
exercise for later (or maybe never) to add command-line arguments to specify which
benchmark(s) to run, how long to run them for, how to format results, etc etc etc.
Again, see the Google Benchmark framework for where that might end up.
See src/bench/MilliSleep.cpp for a sanity-test benchmark that just benchmarks
'sleep 100 milliseconds.'
To compile and run benchmarks:
cd src; make bench
Sample output:
Benchmark,count,min,max,average
Sleep100ms,10,0.101854,0.105059,0.103881
2015-09-24 19:13:38 +02:00
|
|
|
}
|
2021-06-26 12:03:16 +02:00
|
|
|
// BENCHMARK(foo) expands to: benchmark::BenchRunner bench_11foo("foo");
|
|
|
|
#define BENCHMARK(n) \
|
|
|
|
benchmark::BenchRunner BOOST_PP_CAT(bench_, BOOST_PP_CAT(__LINE__, n))(BOOST_PP_STRINGIZE(n), n);
|
Simple benchmarking framework
Benchmarking framework, loosely based on google's micro-benchmarking
library (https://github.com/google/benchmark)
Wny not use the Google Benchmark framework? Because adding Even More Dependencies
isn't worth it. If we get a dozen or three benchmarks and need nanosecond-accurate
timings of threaded code then switching to the full-blown Google Benchmark library
should be considered.
The benchmark framework is hard-coded to run each benchmark for one wall-clock second,
and then spits out .csv-format timing information to stdout. It is left as an
exercise for later (or maybe never) to add command-line arguments to specify which
benchmark(s) to run, how long to run them for, how to format results, etc etc etc.
Again, see the Google Benchmark framework for where that might end up.
See src/bench/MilliSleep.cpp for a sanity-test benchmark that just benchmarks
'sleep 100 milliseconds.'
To compile and run benchmarks:
cd src; make bench
Sample output:
Benchmark,count,min,max,average
Sleep100ms,10,0.101854,0.105059,0.103881
2015-09-24 19:13:38 +02:00
|
|
|
|
2015-10-27 17:44:13 +01:00
|
|
|
#endif // BITCOIN_BENCH_BENCH_H
|