dash/src/prevector.h

572 lines
19 KiB
C
Raw Normal View History

// Copyright (c) 2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_PREVECTOR_H
#define BITCOIN_PREVECTOR_H
2015-10-29 07:11:24 +01:00
#include <assert.h>
2015-10-29 07:11:24 +01:00
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <algorithm>
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
#include <cstddef>
2015-10-29 07:11:24 +01:00
#include <iterator>
#include <type_traits>
2015-10-29 07:11:24 +01:00
/** Implements a drop-in replacement for std::vector<T> which stores up to N
* elements directly (without heap allocation). The types Size and Diff are
* used to store element counts, and can be any unsigned + signed type.
*
* Storage layout is either:
* - Direct allocation:
* - Size _size: the number of used elements (between 0 and N)
* - T direct[N]: an array of N elements of type T
* (only the first _size are initialized).
* - Indirect allocation:
* - Size _size: the number of used elements plus N + 1
* - Size capacity: the number of allocated elements
* - T* indirect: a pointer to an array of capacity elements of type T
* (only the first _size are initialized).
*
* The data type T must be movable by memmove/realloc(). Once we switch to C++,
* move constructors can be used instead.
*/
template<unsigned int N, typename T, typename Size = uint32_t, typename Diff = int32_t>
class prevector {
public:
typedef Size size_type;
typedef Diff difference_type;
typedef T value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
class iterator {
T* ptr;
public:
typedef Diff difference_type;
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef std::random_access_iterator_tag iterator_category;
iterator(T* ptr_) : ptr(ptr_) {}
T& operator*() const { return *ptr; }
T* operator->() const { return ptr; }
T& operator[](size_type pos) { return ptr[pos]; }
const T& operator[](size_type pos) const { return ptr[pos]; }
iterator& operator++() { ptr++; return *this; }
iterator& operator--() { ptr--; return *this; }
iterator operator++(int) { iterator copy(*this); ++(*this); return copy; }
iterator operator--(int) { iterator copy(*this); --(*this); return copy; }
difference_type friend operator-(iterator a, iterator b) { return (&(*a) - &(*b)); }
iterator operator+(size_type n) { return iterator(ptr + n); }
iterator& operator+=(size_type n) { ptr += n; return *this; }
iterator operator-(size_type n) { return iterator(ptr - n); }
iterator& operator-=(size_type n) { ptr -= n; return *this; }
bool operator==(iterator x) const { return ptr == x.ptr; }
bool operator!=(iterator x) const { return ptr != x.ptr; }
bool operator>=(iterator x) const { return ptr >= x.ptr; }
bool operator<=(iterator x) const { return ptr <= x.ptr; }
bool operator>(iterator x) const { return ptr > x.ptr; }
bool operator<(iterator x) const { return ptr < x.ptr; }
};
class reverse_iterator {
T* ptr;
public:
typedef Diff difference_type;
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef std::bidirectional_iterator_tag iterator_category;
reverse_iterator(T* ptr_) : ptr(ptr_) {}
T& operator*() { return *ptr; }
const T& operator*() const { return *ptr; }
T* operator->() { return ptr; }
const T* operator->() const { return ptr; }
reverse_iterator& operator--() { ptr++; return *this; }
reverse_iterator& operator++() { ptr--; return *this; }
reverse_iterator operator++(int) { reverse_iterator copy(*this); ++(*this); return copy; }
reverse_iterator operator--(int) { reverse_iterator copy(*this); --(*this); return copy; }
bool operator==(reverse_iterator x) const { return ptr == x.ptr; }
bool operator!=(reverse_iterator x) const { return ptr != x.ptr; }
};
class const_iterator {
const T* ptr;
public:
typedef Diff difference_type;
typedef const T value_type;
typedef const T* pointer;
typedef const T& reference;
typedef std::random_access_iterator_tag iterator_category;
const_iterator(const T* ptr_) : ptr(ptr_) {}
const_iterator(iterator x) : ptr(&(*x)) {}
const T& operator*() const { return *ptr; }
const T* operator->() const { return ptr; }
const T& operator[](size_type pos) const { return ptr[pos]; }
const_iterator& operator++() { ptr++; return *this; }
const_iterator& operator--() { ptr--; return *this; }
const_iterator operator++(int) { const_iterator copy(*this); ++(*this); return copy; }
const_iterator operator--(int) { const_iterator copy(*this); --(*this); return copy; }
difference_type friend operator-(const_iterator a, const_iterator b) { return (&(*a) - &(*b)); }
const_iterator operator+(size_type n) { return const_iterator(ptr + n); }
const_iterator& operator+=(size_type n) { ptr += n; return *this; }
const_iterator operator-(size_type n) { return const_iterator(ptr - n); }
const_iterator& operator-=(size_type n) { ptr -= n; return *this; }
bool operator==(const_iterator x) const { return ptr == x.ptr; }
bool operator!=(const_iterator x) const { return ptr != x.ptr; }
bool operator>=(const_iterator x) const { return ptr >= x.ptr; }
bool operator<=(const_iterator x) const { return ptr <= x.ptr; }
bool operator>(const_iterator x) const { return ptr > x.ptr; }
bool operator<(const_iterator x) const { return ptr < x.ptr; }
};
class const_reverse_iterator {
const T* ptr;
public:
typedef Diff difference_type;
typedef const T value_type;
typedef const T* pointer;
typedef const T& reference;
typedef std::bidirectional_iterator_tag iterator_category;
const_reverse_iterator(const T* ptr_) : ptr(ptr_) {}
2015-10-29 07:11:24 +01:00
const_reverse_iterator(reverse_iterator x) : ptr(&(*x)) {}
const T& operator*() const { return *ptr; }
const T* operator->() const { return ptr; }
const_reverse_iterator& operator--() { ptr++; return *this; }
const_reverse_iterator& operator++() { ptr--; return *this; }
const_reverse_iterator operator++(int) { const_reverse_iterator copy(*this); ++(*this); return copy; }
const_reverse_iterator operator--(int) { const_reverse_iterator copy(*this); --(*this); return copy; }
bool operator==(const_reverse_iterator x) const { return ptr == x.ptr; }
bool operator!=(const_reverse_iterator x) const { return ptr != x.ptr; }
};
private:
#pragma pack(push, 1)
2015-12-01 15:20:35 +01:00
union direct_or_indirect {
2015-10-29 07:11:24 +01:00
char direct[sizeof(T) * N];
struct {
char* indirect;
size_type capacity;
2015-10-29 07:11:24 +01:00
};
};
#pragma pack(pop)
alignas(char*) direct_or_indirect _union = {};
size_type _size = 0;
static_assert(alignof(char*) % alignof(size_type) == 0 && sizeof(char*) % alignof(size_type) == 0, "size_type cannot have more restrictive alignment requirement than pointer");
static_assert(alignof(char*) % alignof(T) == 0, "value_type T cannot have more restrictive alignment requirement than pointer");
2015-10-29 07:11:24 +01:00
T* direct_ptr(difference_type pos) { return reinterpret_cast<T*>(_union.direct) + pos; }
const T* direct_ptr(difference_type pos) const { return reinterpret_cast<const T*>(_union.direct) + pos; }
T* indirect_ptr(difference_type pos) { return reinterpret_cast<T*>(_union.indirect) + pos; }
const T* indirect_ptr(difference_type pos) const { return reinterpret_cast<const T*>(_union.indirect) + pos; }
bool is_direct() const { return _size <= N; }
void change_capacity(size_type new_capacity) {
if (new_capacity <= N) {
if (!is_direct()) {
T* indirect = indirect_ptr(0);
T* src = indirect;
T* dst = direct_ptr(0);
memcpy(dst, src, size() * sizeof(T));
free(indirect);
_size -= N + 1;
}
} else {
if (!is_direct()) {
/* FIXME: Because malloc/realloc here won't call new_handler if allocation fails, assert
success. These should instead use an allocator or new/delete so that handlers
are called as necessary, but performance would be slightly degraded by doing so. */
2015-10-29 07:11:24 +01:00
_union.indirect = static_cast<char*>(realloc(_union.indirect, ((size_t)sizeof(T)) * new_capacity));
assert(_union.indirect);
2015-10-29 07:11:24 +01:00
_union.capacity = new_capacity;
} else {
char* new_indirect = static_cast<char*>(malloc(((size_t)sizeof(T)) * new_capacity));
assert(new_indirect);
2015-10-29 07:11:24 +01:00
T* src = direct_ptr(0);
T* dst = reinterpret_cast<T*>(new_indirect);
memcpy(dst, src, size() * sizeof(T));
_union.indirect = new_indirect;
_union.capacity = new_capacity;
_size += N + 1;
}
}
}
T* item_ptr(difference_type pos) { return is_direct() ? direct_ptr(pos) : indirect_ptr(pos); }
const T* item_ptr(difference_type pos) const { return is_direct() ? direct_ptr(pos) : indirect_ptr(pos); }
void fill(T* dst, ptrdiff_t count, const T& value = T{}) {
std::fill_n(dst, count, value);
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
}
template<typename InputIterator>
void fill(T* dst, InputIterator first, InputIterator last) {
while (first != last) {
new(static_cast<void*>(dst)) T(*first);
++dst;
++first;
}
}
void fill(T* dst, const_iterator first, const_iterator last) {
ptrdiff_t count = last - first;
fill(dst, &*first, count);
}
void fill(T* dst, const T* src, ptrdiff_t count) {
if (std::is_trivially_constructible<T>::value) {
::memmove(dst, src, count * sizeof(T));
} else {
for (ptrdiff_t i = 0; i < count; i++) {
new(static_cast<void*>(dst)) T(*src);
++dst;
++src;
}
}
}
2015-10-29 07:11:24 +01:00
public:
void assign(size_type n, const T& val) {
clear();
if (capacity() < n) {
change_capacity(n);
}
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
_size += n;
fill(item_ptr(0), n, val);
2015-10-29 07:11:24 +01:00
}
template<typename InputIterator>
void assign(InputIterator first, InputIterator last) {
size_type n = last - first;
clear();
if (capacity() < n) {
change_capacity(n);
}
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
_size += n;
fill(item_ptr(0), first, last);
2015-10-29 07:11:24 +01:00
}
prevector() {}
2015-10-29 07:11:24 +01:00
explicit prevector(size_type n) {
2015-10-29 07:11:24 +01:00
resize(n);
}
explicit prevector(size_type n, const T& val) {
2015-10-29 07:11:24 +01:00
change_capacity(n);
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
_size += n;
fill(item_ptr(0), n, val);
2015-10-29 07:11:24 +01:00
}
template<typename InputIterator>
prevector(InputIterator first, InputIterator last) {
2015-10-29 07:11:24 +01:00
size_type n = last - first;
change_capacity(n);
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
_size += n;
fill(item_ptr(0), first, last);
2015-10-29 07:11:24 +01:00
}
prevector(const prevector<N, T, Size, Diff>& other) {
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
size_type n = other.size();
change_capacity(n);
_size += n;
fill(item_ptr(0), other.begin(), other.end());
2015-10-29 07:11:24 +01:00
}
prevector(prevector<N, T, Size, Diff>&& other) {
swap(other);
}
2015-10-29 07:11:24 +01:00
prevector& operator=(const prevector<N, T, Size, Diff>& other) {
if (&other == this) {
return *this;
}
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
assign(other.begin(), other.end());
2015-10-29 07:11:24 +01:00
return *this;
}
prevector& operator=(prevector<N, T, Size, Diff>&& other) {
swap(other);
return *this;
}
2015-10-29 07:11:24 +01:00
size_type size() const {
return is_direct() ? _size : _size - N - 1;
}
bool empty() const {
return size() == 0;
}
iterator begin() { return iterator(item_ptr(0)); }
const_iterator begin() const { return const_iterator(item_ptr(0)); }
iterator end() { return iterator(item_ptr(size())); }
const_iterator end() const { return const_iterator(item_ptr(size())); }
reverse_iterator rbegin() { return reverse_iterator(item_ptr(size() - 1)); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(item_ptr(size() - 1)); }
reverse_iterator rend() { return reverse_iterator(item_ptr(-1)); }
const_reverse_iterator rend() const { return const_reverse_iterator(item_ptr(-1)); }
size_t capacity() const {
if (is_direct()) {
return N;
} else {
return _union.capacity;
}
}
T& operator[](size_type pos) {
return *item_ptr(pos);
}
const T& operator[](size_type pos) const {
return *item_ptr(pos);
}
void resize(size_type new_size) {
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
size_type cur_size = size();
if (cur_size == new_size) {
return;
}
if (cur_size > new_size) {
erase(item_ptr(new_size), end());
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
return;
2015-10-29 07:11:24 +01:00
}
if (new_size > capacity()) {
change_capacity(new_size);
}
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
ptrdiff_t increase = new_size - cur_size;
fill(item_ptr(cur_size), increase);
_size += increase;
2015-10-29 07:11:24 +01:00
}
void reserve(size_type new_capacity) {
if (new_capacity > capacity()) {
change_capacity(new_capacity);
}
}
void shrink_to_fit() {
change_capacity(size());
}
void clear() {
resize(0);
}
iterator insert(iterator pos, const T& value) {
size_type p = pos - begin();
size_type new_size = size() + 1;
if (capacity() < new_size) {
change_capacity(new_size + (new_size >> 1));
}
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
T* ptr = item_ptr(p);
memmove(ptr + 1, ptr, (size() - p) * sizeof(T));
2015-10-29 07:11:24 +01:00
_size++;
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
new(static_cast<void*>(ptr)) T(value);
return iterator(ptr);
2015-10-29 07:11:24 +01:00
}
void insert(iterator pos, size_type count, const T& value) {
size_type p = pos - begin();
size_type new_size = size() + count;
if (capacity() < new_size) {
change_capacity(new_size + (new_size >> 1));
}
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
T* ptr = item_ptr(p);
memmove(ptr + count, ptr, (size() - p) * sizeof(T));
2015-10-29 07:11:24 +01:00
_size += count;
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
fill(item_ptr(p), count, value);
2015-10-29 07:11:24 +01:00
}
template<typename InputIterator>
void insert(iterator pos, InputIterator first, InputIterator last) {
size_type p = pos - begin();
difference_type count = last - first;
size_type new_size = size() + count;
if (capacity() < new_size) {
change_capacity(new_size + (new_size >> 1));
}
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
T* ptr = item_ptr(p);
memmove(ptr + count, ptr, (size() - p) * sizeof(T));
2015-10-29 07:11:24 +01:00
_size += count;
Merge #12549: Make prevector::resize() and other prevector operations much faster 5aad635 Use memset() to optimize prevector::resize() (Evan Klitzke) e46be25 Reduce redundant code of prevector and speed it up (Akio Nakamura) f0e7aa7 Add new prevector benchmarks. (Evan Klitzke) Pull request description: This branch optimizes various `prevector` operations, especially resizing vectors. While profiling the `loadblk` thread I noticed that a lot of time was being spent in `prevector::resize()` which led to this work. I have some data here indicating that it takes up **37%** of the time in `ReadBlockFromDisk()`: https://monad.io/readblockfromdisk.svg This branch improves things significantly. For trivial types, the new results for the prevector benchmark are: * `PrevectorClearTrivial` which tests `prevector::clear()` becomes 24.6x faster * `PrevectorDestructorTrivial` which tests `prevector::~prevector()` becomes 20.5x faster * `PrevectorResizeTrivial` which tests `prevector::resize()` becomes 20.3x faster Note that in practice it looks like the prevector is only used to contain `unsigned char` types, which is a trivial type. The benchmarks are testing a bit of an extreme case, but the changes here are motivated by the profiling data for `ReadBlockFromDisk()` I linked to above. The pull request here consists of a series of three commits: * The first adds new benchmarks but does not change the prevector code. * The second is from @AkioNak , and merges some prevector optimizations he submitted in #11988 * The third optimizes `prevector::resize()` to use `memset()` when the prevector contains trivially constructible types Tree-SHA512: 28f7cbb91a19f9f43b6a5942781d7eb2e3197389186b666f086b69df12bee37773140f765426d715bfb8ebff79cb27a5f1206d0325b54b4aa65598b50fb18368
2018-03-01 12:12:55 +01:00
fill(ptr, first, last);
2015-10-29 07:11:24 +01:00
}
Merge #12324: speed up Unserialize_impl for prevector 86b47fa741408b061ab0bda784b8678bfd7dfa88 speed up Unserialize_impl for prevector (Akio Nakamura) Pull request description: The unserializer for prevector uses `resize()` for reserve the area, but it's prefer to use `reserve()` because `resize()` have overhead to call its constructor many times. However, `reserve()` does not change the value of `_size` (a private member of prevector). This PR make the logic of read from stream to callback function, and prevector handles initilizing new values with that call-back and ajust the value of `_size`. The changes are as follows: 1. prevector.h Add a public member function named 'append'. This function has 2 params, number of elemenst to append and call-back function that initilizing new appended values. 2. serialize.h In the following two function: - `Unserialize_impl(Stream& is, prevector<N, T>& v, const unsigned char&)` - `Unserialize_impl(Stream& is, prevector<N, T>& v, const V&)` Make a callback function from each original logic of reading values from stream, and call prevector's `append()`. 3. test/prevector_tests.cpp Add a test for `append()`. ## A benchmark result is following: [Machine] MacBook Pro (macOS 10.13.3/i7 2.2GHz/mem 16GB/SSD) [result] DeserializeAndCheckBlockTest => 22% faster DeserializeBlockTest => 29% faster [before PR] # Benchmark, evals, iterations, total, min, max, median DeserializeAndCheckBlockTest, 60, 160, 94.4901, 0.0094644, 0.0104715, 0.0098339 DeserializeBlockTest, 60, 130, 65.0964, 0.00800362, 0.00895134, 0.00824187 [After PR] # Benchmark, evals, iterations, total, min, max, median DeserializeAndCheckBlockTest, 60, 160, 77.1597, 0.00767013, 0.00858959, 0.00805757 DeserializeBlockTest, 60, 130, 49.9443, 0.00613926, 0.00691187, 0.00635527 ACKs for top commit: laanwj: utACK 86b47fa741408b061ab0bda784b8678bfd7dfa88 Tree-SHA512: 62ea121ccd45a306fefc67485a1b03a853435af762607dae2426a87b15a3033d802c8556e1923727ddd1023a1837d0e5f6720c2c77b38196907e750e15fbb902
2019-06-18 16:52:11 +02:00
inline void resize_uninitialized(size_type new_size) {
// resize_uninitialized changes the size of the prevector but does not initialize it.
// If size < new_size, the added elements must be initialized explicitly.
if (capacity() < new_size) {
change_capacity(new_size);
_size += new_size - size();
return;
}
if (new_size < size()) {
erase(item_ptr(new_size), end());
} else {
_size += new_size - size();
}
}
2015-10-29 07:11:24 +01:00
iterator erase(iterator pos) {
return erase(pos, pos + 1);
2015-10-29 07:11:24 +01:00
}
iterator erase(iterator first, iterator last) {
// Erase is not allowed to the change the object's capacity. That means
// that when starting with an indirectly allocated prevector with
// size and capacity > N, the result may be a still indirectly allocated
// prevector with size <= N and capacity > N. A shrink_to_fit() call is
// necessary to switch to the (more efficient) directly allocated
// representation (with capacity N and size <= N).
2015-10-29 07:11:24 +01:00
iterator p = first;
char* endp = (char*)&(*end());
if (!std::is_trivially_destructible<T>::value) {
while (p != last) {
(*p).~T();
_size--;
++p;
}
} else {
_size -= last - p;
2015-10-29 07:11:24 +01:00
}
memmove(&(*first), &(*last), endp - ((char*)(&(*last))));
return first;
}
template<typename... Args>
void emplace_back(Args&&... args) {
2015-10-29 07:11:24 +01:00
size_type new_size = size() + 1;
if (capacity() < new_size) {
change_capacity(new_size + (new_size >> 1));
}
new(item_ptr(size())) T(std::forward<Args>(args)...);
2015-10-29 07:11:24 +01:00
_size++;
}
void push_back(const T& value) {
emplace_back(value);
}
2015-10-29 07:11:24 +01:00
void pop_back() {
erase(end() - 1, end());
2015-10-29 07:11:24 +01:00
}
T& front() {
return *item_ptr(0);
}
const T& front() const {
return *item_ptr(0);
}
T& back() {
return *item_ptr(size() - 1);
}
const T& back() const {
return *item_ptr(size() - 1);
}
void swap(prevector<N, T, Size, Diff>& other) {
std::swap(_union, other._union);
2015-10-29 07:11:24 +01:00
std::swap(_size, other._size);
}
~prevector() {
if (!std::is_trivially_destructible<T>::value) {
clear();
}
2015-10-29 07:11:24 +01:00
if (!is_direct()) {
free(_union.indirect);
_union.indirect = nullptr;
2015-10-29 07:11:24 +01:00
}
}
bool operator==(const prevector<N, T, Size, Diff>& other) const {
if (other.size() != size()) {
return false;
}
const_iterator b1 = begin();
const_iterator b2 = other.begin();
const_iterator e1 = end();
while (b1 != e1) {
if ((*b1) != (*b2)) {
return false;
}
++b1;
++b2;
}
return true;
}
bool operator!=(const prevector<N, T, Size, Diff>& other) const {
return !(*this == other);
}
bool operator<(const prevector<N, T, Size, Diff>& other) const {
if (size() < other.size()) {
return true;
}
if (size() > other.size()) {
return false;
}
const_iterator b1 = begin();
const_iterator b2 = other.begin();
const_iterator e1 = end();
while (b1 != e1) {
if ((*b1) < (*b2)) {
return true;
}
if ((*b2) < (*b1)) {
return false;
}
++b1;
++b2;
}
return false;
}
size_t allocated_memory() const {
if (is_direct()) {
return 0;
} else {
return ((size_t)(sizeof(T))) * _union.capacity;
}
}
value_type* data() {
return item_ptr(0);
}
const value_type* data() const {
return item_ptr(0);
}
template<typename V>
static void assign_to(const_iterator b, const_iterator e, V& v) {
// We know that internally the iterators are pointing to continues memory, so we can directly use the pointers here
// This avoids internal use of std::copy and operator++ on the iterators and instead allows efficient memcpy/memmove
if (std::is_trivially_constructible<T>::value) {
auto s = e - b;
if (v.size() != s) {
v.resize(s);
}
2021-09-23 22:55:45 +02:00
if (!v.empty()) {
::memmove(v.data(), &*b, s);
}
} else {
v.assign(&*b, &*e);
}
}
2015-10-29 07:11:24 +01:00
};
#endif // BITCOIN_PREVECTOR_H