dash/src/test/crypto_tests.cpp

787 lines
46 KiB
C++
Raw Normal View History

// Copyright (c) 2014-2015 The Bitcoin Core developers
2014-12-13 05:09:33 +01:00
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "crypto/aes.h"
#include "crypto/chacha20.h"
#include "crypto/chacha_poly_aead.h"
#include "crypto/poly1305.h"
#include "crypto/ripemd160.h"
#include "crypto/sha1.h"
2014-10-26 09:23:23 +01:00
#include "crypto/sha256.h"
#include "crypto/sha512.h"
2014-10-26 09:38:13 +01:00
#include "crypto/hmac_sha256.h"
2014-10-26 09:23:23 +01:00
#include "crypto/hmac_sha512.h"
#include "random.h"
#include "utilstrencodings.h"
2016-03-03 20:20:32 +01:00
#include "test/test_dash.h"
#include <vector>
#include <boost/test/unit_test.hpp>
#include <openssl/aes.h>
HD wallet (#1405) * HD wallet Minimal set of changes (no refactoring) backported from Bitcoin upstream to make HD wallets work in Dash 0.12.1.x+ * minimal bip44 (hardcoded account and change) * minimal bip39 Additional cmd-line options for new wallet: -mnemonic -mnemonicpassphrase * Do not recreate HD wallet on encryption Adjusted keypool.py test * Do not store any private keys for hd wallet besides the master one Derive all keys on the fly. Original idea/implementation - btc PR9298, backported and improved * actually use bip39 * pbkdf2 test * backport wallet-hd.py test * Allow specifying hd seed, add dumphdseed rpc, fix bugs - -hdseed cmd-line param to specify HD seed on wallet creation - dumphdseed rpc to dump HD seed - allow seed of any size - fix dumpwallet rpc bug (wasn't decrypting HD seed) - print HD seed and extended public masterkey on dumpwallet * top up keypool on HD wallet encryption * split HD chain: external/internal * add missing cs_wallet lock in init.cpp * fix `const char *` issues (use strings) * default mnemonic passphrase is an empty string in all cases * store mnemonic/mnemonicpassphrase replace dumphdseed with dumphdinfo * Add fCrypted flag to CHDChain * prepare internal structures for multiple HD accounts (plus some code cleanup) * use secure allocator for storing sensitive HD data * use secure strings for mnemonic(passphrase) * small fix in GenerateNewHDChain * use 24 words for mnemonic by default * make sure mnemonic passphrase provided by user does not exceed 256 symbols * more usage of secure allocators and memory_cleanse * code cleanup * rename: CSecureVector -> SecureVector * add missing include * fix warning in rpcdump.cpp * refactor mnemonic_check (also fix a bug) * move bip39 functions to CMnemonic * Few fixes for CMnemonic: - use `SecureVector` for data, bits, seed - `Check` should return bool * init vectors with desired size where possible
2017-05-29 13:51:40 +02:00
#include <openssl/evp.h>
BOOST_FIXTURE_TEST_SUITE(crypto_tests, BasicTestingSetup)
template<typename Hasher, typename In, typename Out>
void TestVector(const Hasher &h, const In &in, const Out &out) {
Out hash;
2014-06-12 13:34:29 +02:00
BOOST_CHECK(out.size() == h.OUTPUT_SIZE);
hash.resize(out.size());
{
// Test that writing the whole input string at once works.
Hasher(h).Write((unsigned char*)&in[0], in.size()).Finalize(&hash[0]);
BOOST_CHECK(hash == out);
}
for (int i=0; i<32; i++) {
// Test that writing the string broken up in random pieces works.
Hasher hasher(h);
size_t pos = 0;
while (pos < in.size()) {
size_t len = InsecureRandRange((in.size() - pos + 1) / 2 + 1);
hasher.Write((unsigned char*)&in[pos], len);
pos += len;
2014-09-23 17:17:43 +02:00
if (pos > 0 && pos + 2 * out.size() > in.size() && pos < in.size()) {
// Test that writing the rest at once to a copy of a hasher works.
Hasher(hasher).Write((unsigned char*)&in[pos], in.size() - pos).Finalize(&hash[0]);
BOOST_CHECK(hash == out);
}
}
hasher.Finalize(&hash[0]);
BOOST_CHECK(hash == out);
}
}
void TestSHA1(const std::string &in, const std::string &hexout) { TestVector(CSHA1(), in, ParseHex(hexout));}
void TestSHA256(const std::string &in, const std::string &hexout) { TestVector(CSHA256(), in, ParseHex(hexout));}
void TestSHA512(const std::string &in, const std::string &hexout) { TestVector(CSHA512(), in, ParseHex(hexout));}
void TestRIPEMD160(const std::string &in, const std::string &hexout) { TestVector(CRIPEMD160(), in, ParseHex(hexout));}
2014-10-26 09:38:13 +01:00
void TestHMACSHA256(const std::string &hexkey, const std::string &hexin, const std::string &hexout) {
std::vector<unsigned char> key = ParseHex(hexkey);
TestVector(CHMAC_SHA256(key.data(), key.size()), ParseHex(hexin), ParseHex(hexout));
2014-10-26 09:38:13 +01:00
}
void TestHMACSHA512(const std::string &hexkey, const std::string &hexin, const std::string &hexout) {
std::vector<unsigned char> key = ParseHex(hexkey);
TestVector(CHMAC_SHA512(key.data(), key.size()), ParseHex(hexin), ParseHex(hexout));
}
void TestAES128(const std::string &hexkey, const std::string &hexin, const std::string &hexout)
{
std::vector<unsigned char> key = ParseHex(hexkey);
std::vector<unsigned char> in = ParseHex(hexin);
std::vector<unsigned char> correctout = ParseHex(hexout);
std::vector<unsigned char> buf, buf2;
assert(key.size() == 16);
assert(in.size() == 16);
assert(correctout.size() == 16);
AES128Encrypt enc(key.data());
buf.resize(correctout.size());
buf2.resize(correctout.size());
enc.Encrypt(buf.data(), in.data());
BOOST_CHECK_EQUAL(HexStr(buf), HexStr(correctout));
AES128Decrypt dec(key.data());
dec.Decrypt(buf2.data(), buf.data());
BOOST_CHECK_EQUAL(HexStr(buf2), HexStr(in));
}
void TestAES256(const std::string &hexkey, const std::string &hexin, const std::string &hexout)
{
std::vector<unsigned char> key = ParseHex(hexkey);
std::vector<unsigned char> in = ParseHex(hexin);
std::vector<unsigned char> correctout = ParseHex(hexout);
std::vector<unsigned char> buf;
assert(key.size() == 32);
assert(in.size() == 16);
assert(correctout.size() == 16);
AES256Encrypt enc(key.data());
buf.resize(correctout.size());
enc.Encrypt(buf.data(), in.data());
BOOST_CHECK(buf == correctout);
AES256Decrypt dec(key.data());
dec.Decrypt(buf.data(), buf.data());
BOOST_CHECK(buf == in);
}
void TestAES128CBC(const std::string &hexkey, const std::string &hexiv, bool pad, const std::string &hexin, const std::string &hexout)
{
std::vector<unsigned char> key = ParseHex(hexkey);
std::vector<unsigned char> iv = ParseHex(hexiv);
std::vector<unsigned char> in = ParseHex(hexin);
std::vector<unsigned char> correctout = ParseHex(hexout);
std::vector<unsigned char> realout(in.size() + AES_BLOCKSIZE);
// Encrypt the plaintext and verify that it equals the cipher
AES128CBCEncrypt enc(key.data(), iv.data(), pad);
int size = enc.Encrypt(in.data(), in.size(), realout.data());
realout.resize(size);
BOOST_CHECK(realout.size() == correctout.size());
BOOST_CHECK_MESSAGE(realout == correctout, HexStr(realout) + std::string(" != ") + hexout);
// Decrypt the cipher and verify that it equals the plaintext
std::vector<unsigned char> decrypted(correctout.size());
AES128CBCDecrypt dec(key.data(), iv.data(), pad);
size = dec.Decrypt(correctout.data(), correctout.size(), decrypted.data());
decrypted.resize(size);
BOOST_CHECK(decrypted.size() == in.size());
BOOST_CHECK_MESSAGE(decrypted == in, HexStr(decrypted) + std::string(" != ") + hexin);
// Encrypt and re-decrypt substrings of the plaintext and verify that they equal each-other
for(std::vector<unsigned char>::iterator i(in.begin()); i != in.end(); ++i)
{
std::vector<unsigned char> sub(i, in.end());
std::vector<unsigned char> subout(sub.size() + AES_BLOCKSIZE);
int _size = enc.Encrypt(sub.data(), sub.size(), subout.data());
if (_size != 0)
{
subout.resize(_size);
std::vector<unsigned char> subdecrypted(subout.size());
_size = dec.Decrypt(subout.data(), subout.size(), subdecrypted.data());
subdecrypted.resize(_size);
BOOST_CHECK(decrypted.size() == in.size());
BOOST_CHECK_MESSAGE(subdecrypted == sub, HexStr(subdecrypted) + std::string(" != ") + HexStr(sub));
}
}
}
void TestAES256CBC(const std::string &hexkey, const std::string &hexiv, bool pad, const std::string &hexin, const std::string &hexout)
{
std::vector<unsigned char> key = ParseHex(hexkey);
std::vector<unsigned char> iv = ParseHex(hexiv);
std::vector<unsigned char> in = ParseHex(hexin);
std::vector<unsigned char> correctout = ParseHex(hexout);
std::vector<unsigned char> realout(in.size() + AES_BLOCKSIZE);
// Encrypt the plaintext and verify that it equals the cipher
AES256CBCEncrypt enc(key.data(), iv.data(), pad);
int size = enc.Encrypt(in.data(), in.size(), realout.data());
realout.resize(size);
BOOST_CHECK(realout.size() == correctout.size());
BOOST_CHECK_MESSAGE(realout == correctout, HexStr(realout) + std::string(" != ") + hexout);
// Decrypt the cipher and verify that it equals the plaintext
std::vector<unsigned char> decrypted(correctout.size());
AES256CBCDecrypt dec(key.data(), iv.data(), pad);
size = dec.Decrypt(correctout.data(), correctout.size(), decrypted.data());
decrypted.resize(size);
BOOST_CHECK(decrypted.size() == in.size());
BOOST_CHECK_MESSAGE(decrypted == in, HexStr(decrypted) + std::string(" != ") + hexin);
// Encrypt and re-decrypt substrings of the plaintext and verify that they equal each-other
for(std::vector<unsigned char>::iterator i(in.begin()); i != in.end(); ++i)
{
std::vector<unsigned char> sub(i, in.end());
std::vector<unsigned char> subout(sub.size() + AES_BLOCKSIZE);
int _size = enc.Encrypt(sub.data(), sub.size(), subout.data());
if (_size != 0)
{
subout.resize(_size);
std::vector<unsigned char> subdecrypted(subout.size());
_size = dec.Decrypt(subout.data(), subout.size(), subdecrypted.data());
subdecrypted.resize(_size);
BOOST_CHECK(decrypted.size() == in.size());
BOOST_CHECK_MESSAGE(subdecrypted == sub, HexStr(subdecrypted) + std::string(" != ") + HexStr(sub));
}
}
}
void TestChaCha20(const std::string &hex_message, const std::string &hexkey, uint64_t nonce, uint64_t seek, const std::string& hexout)
{
std::vector<unsigned char> key = ParseHex(hexkey);
std::vector<unsigned char> m = ParseHex(hex_message);
ChaCha20 rng(key.data(), key.size());
rng.SetIV(nonce);
rng.Seek(seek);
std::vector<unsigned char> out = ParseHex(hexout);
std::vector<unsigned char> outres;
outres.resize(out.size());
assert(hex_message.empty() || m.size() == out.size());
// perform the ChaCha20 round(s), if message is provided it will output the encrypted ciphertext otherwise the keystream
if (!hex_message.empty()) {
rng.Crypt(m.data(), outres.data(), outres.size());
} else {
rng.Keystream(outres.data(), outres.size());
}
BOOST_CHECK(out == outres);
if (!hex_message.empty()) {
// Manually XOR with the keystream and compare the output
rng.SetIV(nonce);
rng.Seek(seek);
std::vector<unsigned char> only_keystream(outres.size());
rng.Keystream(only_keystream.data(), only_keystream.size());
for (size_t i = 0; i != m.size(); i++) {
outres[i] = m[i] ^ only_keystream[i];
}
BOOST_CHECK(out == outres);
}
}
static void TestPoly1305(const std::string &hexmessage, const std::string &hexkey, const std::string& hextag)
{
std::vector<unsigned char> key = ParseHex(hexkey);
std::vector<unsigned char> m = ParseHex(hexmessage);
std::vector<unsigned char> tag = ParseHex(hextag);
std::vector<unsigned char> tagres;
tagres.resize(POLY1305_TAGLEN);
poly1305_auth(tagres.data(), m.data(), m.size(), key.data());
BOOST_CHECK(tag == tagres);
}
std::string LongTestString(void) {
std::string ret;
for (int i=0; i<200000; i++) {
ret += (unsigned char)(i);
ret += (unsigned char)(i >> 4);
ret += (unsigned char)(i >> 8);
ret += (unsigned char)(i >> 12);
ret += (unsigned char)(i >> 16);
}
return ret;
}
const std::string test1 = LongTestString();
BOOST_AUTO_TEST_CASE(ripemd160_testvectors) {
TestRIPEMD160("", "9c1185a5c5e9fc54612808977ee8f548b2258d31");
TestRIPEMD160("abc", "8eb208f7e05d987a9b044a8e98c6b087f15a0bfc");
TestRIPEMD160("message digest", "5d0689ef49d2fae572b881b123a85ffa21595f36");
TestRIPEMD160("secure hash algorithm", "20397528223b6a5f4cbc2808aba0464e645544f9");
TestRIPEMD160("RIPEMD160 is considered to be safe", "a7d78608c7af8a8e728778e81576870734122b66");
TestRIPEMD160("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
"12a053384a9c0c88e405a06c27dcf49ada62eb2b");
TestRIPEMD160("For this sample, this 63-byte string will be used as input data",
"de90dbfee14b63fb5abf27c2ad4a82aaa5f27a11");
TestRIPEMD160("This is exactly 64 bytes long, not counting the terminating byte",
"eda31d51d3a623b81e19eb02e24ff65d27d67b37");
TestRIPEMD160(std::string(1000000, 'a'), "52783243c1697bdbe16d37f97f68f08325dc1528");
TestRIPEMD160(test1, "464243587bd146ea835cdf57bdae582f25ec45f1");
}
BOOST_AUTO_TEST_CASE(sha1_testvectors) {
TestSHA1("", "da39a3ee5e6b4b0d3255bfef95601890afd80709");
TestSHA1("abc", "a9993e364706816aba3e25717850c26c9cd0d89d");
TestSHA1("message digest", "c12252ceda8be8994d5fa0290a47231c1d16aae3");
TestSHA1("secure hash algorithm", "d4d6d2f0ebe317513bbd8d967d89bac5819c2f60");
TestSHA1("SHA1 is considered to be safe", "f2b6650569ad3a8720348dd6ea6c497dee3a842a");
TestSHA1("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
"84983e441c3bd26ebaae4aa1f95129e5e54670f1");
TestSHA1("For this sample, this 63-byte string will be used as input data",
"4f0ea5cd0585a23d028abdc1a6684e5a8094dc49");
TestSHA1("This is exactly 64 bytes long, not counting the terminating byte",
"fb679f23e7d1ce053313e66e127ab1b444397057");
TestSHA1(std::string(1000000, 'a'), "34aa973cd4c4daa4f61eeb2bdbad27316534016f");
TestSHA1(test1, "b7755760681cbfd971451668f32af5774f4656b5");
}
BOOST_AUTO_TEST_CASE(sha256_testvectors) {
TestSHA256("", "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855");
TestSHA256("abc", "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad");
TestSHA256("message digest",
"f7846f55cf23e14eebeab5b4e1550cad5b509e3348fbc4efa3a1413d393cb650");
TestSHA256("secure hash algorithm",
"f30ceb2bb2829e79e4ca9753d35a8ecc00262d164cc077080295381cbd643f0d");
TestSHA256("SHA256 is considered to be safe",
"6819d915c73f4d1e77e4e1b52d1fa0f9cf9beaead3939f15874bd988e2a23630");
TestSHA256("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
"248d6a61d20638b8e5c026930c3e6039a33ce45964ff2167f6ecedd419db06c1");
TestSHA256("For this sample, this 63-byte string will be used as input data",
"f08a78cbbaee082b052ae0708f32fa1e50c5c421aa772ba5dbb406a2ea6be342");
TestSHA256("This is exactly 64 bytes long, not counting the terminating byte",
"ab64eff7e88e2e46165e29f2bce41826bd4c7b3552f6b382a9e7d3af47c245f8");
TestSHA256("As Bitcoin relies on 80 byte header hashes, we want to have an example for that.",
"7406e8de7d6e4fffc573daef05aefb8806e7790f55eab5576f31349743cca743");
TestSHA256(std::string(1000000, 'a'),
"cdc76e5c9914fb9281a1c7e284d73e67f1809a48a497200e046d39ccc7112cd0");
TestSHA256(test1, "a316d55510b49662420f49d145d42fb83f31ef8dc016aa4e32df049991a91e26");
}
BOOST_AUTO_TEST_CASE(sha512_testvectors) {
TestSHA512("",
"cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce"
"47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e");
TestSHA512("abc",
"ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a"
"2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f");
TestSHA512("message digest",
"107dbf389d9e9f71a3a95f6c055b9251bc5268c2be16d6c13492ea45b0199f33"
"09e16455ab1e96118e8a905d5597b72038ddb372a89826046de66687bb420e7c");
TestSHA512("secure hash algorithm",
"7746d91f3de30c68cec0dd693120a7e8b04d8073cb699bdce1a3f64127bca7a3"
"d5db502e814bb63c063a7a5043b2df87c61133395f4ad1edca7fcf4b30c3236e");
TestSHA512("SHA512 is considered to be safe",
"099e6468d889e1c79092a89ae925a9499b5408e01b66cb5b0a3bd0dfa51a9964"
"6b4a3901caab1318189f74cd8cf2e941829012f2449df52067d3dd5b978456c2");
TestSHA512("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
"204a8fc6dda82f0a0ced7beb8e08a41657c16ef468b228a8279be331a703c335"
"96fd15c13b1b07f9aa1d3bea57789ca031ad85c7a71dd70354ec631238ca3445");
TestSHA512("For this sample, this 63-byte string will be used as input data",
"b3de4afbc516d2478fe9b518d063bda6c8dd65fc38402dd81d1eb7364e72fb6e"
"6663cf6d2771c8f5a6da09601712fb3d2a36c6ffea3e28b0818b05b0a8660766");
TestSHA512("This is exactly 64 bytes long, not counting the terminating byte",
"70aefeaa0e7ac4f8fe17532d7185a289bee3b428d950c14fa8b713ca09814a38"
"7d245870e007a80ad97c369d193e41701aa07f3221d15f0e65a1ff970cedf030");
TestSHA512("abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno"
"ijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu",
"8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018"
"501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909");
TestSHA512(std::string(1000000, 'a'),
"e718483d0ce769644e2e42c7bc15b4638e1f98b13b2044285632a803afa973eb"
"de0ff244877ea60a4cb0432ce577c31beb009c5c2c49aa2e4eadb217ad8cc09b");
TestSHA512(test1,
"40cac46c147e6131c5193dd5f34e9d8bb4951395f27b08c558c65ff4ba2de594"
"37de8c3ef5459d76a52cedc02dc499a3c9ed9dedbfb3281afd9653b8a112fafc");
}
2014-10-26 09:38:13 +01:00
BOOST_AUTO_TEST_CASE(hmac_sha256_testvectors) {
// test cases 1, 2, 3, 4, 6 and 7 of RFC 4231
TestHMACSHA256("0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
"4869205468657265",
"b0344c61d8db38535ca8afceaf0bf12b881dc200c9833da726e9376c2e32cff7");
TestHMACSHA256("4a656665",
"7768617420646f2079612077616e7420666f72206e6f7468696e673f",
"5bdcc146bf60754e6a042426089575c75a003f089d2739839dec58b964ec3843");
TestHMACSHA256("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd"
"dddddddddddddddddddddddddddddddddddd",
"773ea91e36800e46854db8ebd09181a72959098b3ef8c122d9635514ced565fe");
TestHMACSHA256("0102030405060708090a0b0c0d0e0f10111213141516171819",
"cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd"
"cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd",
"82558a389a443c0ea4cc819899f2083a85f0faa3e578f8077a2e3ff46729665b");
TestHMACSHA256("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaa",
"54657374205573696e67204c6172676572205468616e20426c6f636b2d53697a"
"65204b6579202d2048617368204b6579204669727374",
"60e431591ee0b67f0d8a26aacbf5b77f8e0bc6213728c5140546040f0ee37f54");
TestHMACSHA256("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaa",
"5468697320697320612074657374207573696e672061206c6172676572207468"
"616e20626c6f636b2d73697a65206b657920616e642061206c61726765722074"
"68616e20626c6f636b2d73697a6520646174612e20546865206b6579206e6565"
"647320746f20626520686173686564206265666f7265206265696e6720757365"
"642062792074686520484d414320616c676f726974686d2e",
"9b09ffa71b942fcb27635fbcd5b0e944bfdc63644f0713938a7f51535c3a35e2");
}
BOOST_AUTO_TEST_CASE(hmac_sha512_testvectors) {
// test cases 1, 2, 3, 4, 6 and 7 of RFC 4231
TestHMACSHA512("0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
"4869205468657265",
"87aa7cdea5ef619d4ff0b4241a1d6cb02379f4e2ce4ec2787ad0b30545e17cde"
"daa833b7d6b8a702038b274eaea3f4e4be9d914eeb61f1702e696c203a126854");
TestHMACSHA512("4a656665",
"7768617420646f2079612077616e7420666f72206e6f7468696e673f",
"164b7a7bfcf819e2e395fbe73b56e0a387bd64222e831fd610270cd7ea250554"
"9758bf75c05a994a6d034f65f8f0e6fdcaeab1a34d4a6b4b636e070a38bce737");
TestHMACSHA512("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd"
"dddddddddddddddddddddddddddddddddddd",
"fa73b0089d56a284efb0f0756c890be9b1b5dbdd8ee81a3655f83e33b2279d39"
"bf3e848279a722c806b485a47e67c807b946a337bee8942674278859e13292fb");
TestHMACSHA512("0102030405060708090a0b0c0d0e0f10111213141516171819",
"cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd"
"cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd",
"b0ba465637458c6990e5a8c5f61d4af7e576d97ff94b872de76f8050361ee3db"
"a91ca5c11aa25eb4d679275cc5788063a5f19741120c4f2de2adebeb10a298dd");
TestHMACSHA512("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaa",
"54657374205573696e67204c6172676572205468616e20426c6f636b2d53697a"
"65204b6579202d2048617368204b6579204669727374",
"80b24263c7c1a3ebb71493c1dd7be8b49b46d1f41b4aeec1121b013783f8f352"
"6b56d037e05f2598bd0fd2215d6a1e5295e64f73f63f0aec8b915a985d786598");
TestHMACSHA512("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
"aaaaaa",
"5468697320697320612074657374207573696e672061206c6172676572207468"
"616e20626c6f636b2d73697a65206b657920616e642061206c61726765722074"
"68616e20626c6f636b2d73697a6520646174612e20546865206b6579206e6565"
"647320746f20626520686173686564206265666f7265206265696e6720757365"
"642062792074686520484d414320616c676f726974686d2e",
"e37b6a775dc87dbaa4dfa9f96e5e3ffddebd71f8867289865df5a32d20cdc944"
"b6022cac3c4982b10d5eeb55c3e4de15134676fb6de0446065c97440fa8c6a58");
}
BOOST_AUTO_TEST_CASE(aes_testvectors) {
// AES test vectors from FIPS 197.
TestAES128("000102030405060708090a0b0c0d0e0f", "00112233445566778899aabbccddeeff", "69c4e0d86a7b0430d8cdb78070b4c55a");
TestAES256("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", "00112233445566778899aabbccddeeff", "8ea2b7ca516745bfeafc49904b496089");
// AES-ECB test vectors from NIST sp800-38a.
TestAES128("2b7e151628aed2a6abf7158809cf4f3c", "6bc1bee22e409f96e93d7e117393172a", "3ad77bb40d7a3660a89ecaf32466ef97");
TestAES128("2b7e151628aed2a6abf7158809cf4f3c", "ae2d8a571e03ac9c9eb76fac45af8e51", "f5d3d58503b9699de785895a96fdbaaf");
TestAES128("2b7e151628aed2a6abf7158809cf4f3c", "30c81c46a35ce411e5fbc1191a0a52ef", "43b1cd7f598ece23881b00e3ed030688");
TestAES128("2b7e151628aed2a6abf7158809cf4f3c", "f69f2445df4f9b17ad2b417be66c3710", "7b0c785e27e8ad3f8223207104725dd4");
TestAES256("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "6bc1bee22e409f96e93d7e117393172a", "f3eed1bdb5d2a03c064b5a7e3db181f8");
TestAES256("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "ae2d8a571e03ac9c9eb76fac45af8e51", "591ccb10d410ed26dc5ba74a31362870");
TestAES256("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "30c81c46a35ce411e5fbc1191a0a52ef", "b6ed21b99ca6f4f9f153e7b1beafed1d");
TestAES256("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "f69f2445df4f9b17ad2b417be66c3710", "23304b7a39f9f3ff067d8d8f9e24ecc7");
}
BOOST_AUTO_TEST_CASE(aes_cbc_testvectors) {
// NIST AES CBC 128-bit encryption test-vectors
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "000102030405060708090A0B0C0D0E0F", false, \
"6bc1bee22e409f96e93d7e117393172a", "7649abac8119b246cee98e9b12e9197d");
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "7649ABAC8119B246CEE98E9B12E9197D", false, \
"ae2d8a571e03ac9c9eb76fac45af8e51", "5086cb9b507219ee95db113a917678b2");
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "5086cb9b507219ee95db113a917678b2", false, \
"30c81c46a35ce411e5fbc1191a0a52ef", "73bed6b8e3c1743b7116e69e22229516");
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "73bed6b8e3c1743b7116e69e22229516", false, \
"f69f2445df4f9b17ad2b417be66c3710", "3ff1caa1681fac09120eca307586e1a7");
// The same vectors with padding enabled
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "000102030405060708090A0B0C0D0E0F", true, \
"6bc1bee22e409f96e93d7e117393172a", "7649abac8119b246cee98e9b12e9197d8964e0b149c10b7b682e6e39aaeb731c");
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "7649ABAC8119B246CEE98E9B12E9197D", true, \
"ae2d8a571e03ac9c9eb76fac45af8e51", "5086cb9b507219ee95db113a917678b255e21d7100b988ffec32feeafaf23538");
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "5086cb9b507219ee95db113a917678b2", true, \
"30c81c46a35ce411e5fbc1191a0a52ef", "73bed6b8e3c1743b7116e69e22229516f6eccda327bf8e5ec43718b0039adceb");
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "73bed6b8e3c1743b7116e69e22229516", true, \
"f69f2445df4f9b17ad2b417be66c3710", "3ff1caa1681fac09120eca307586e1a78cb82807230e1321d3fae00d18cc2012");
// NIST AES CBC 256-bit encryption test-vectors
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
"000102030405060708090A0B0C0D0E0F", false, "6bc1bee22e409f96e93d7e117393172a", \
"f58c4c04d6e5f1ba779eabfb5f7bfbd6");
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
"F58C4C04D6E5F1BA779EABFB5F7BFBD6", false, "ae2d8a571e03ac9c9eb76fac45af8e51", \
"9cfc4e967edb808d679f777bc6702c7d");
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
"9CFC4E967EDB808D679F777BC6702C7D", false, "30c81c46a35ce411e5fbc1191a0a52ef",
"39f23369a9d9bacfa530e26304231461");
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
"39F23369A9D9BACFA530E26304231461", false, "f69f2445df4f9b17ad2b417be66c3710", \
"b2eb05e2c39be9fcda6c19078c6a9d1b");
// The same vectors with padding enabled
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
"000102030405060708090A0B0C0D0E0F", true, "6bc1bee22e409f96e93d7e117393172a", \
"f58c4c04d6e5f1ba779eabfb5f7bfbd6485a5c81519cf378fa36d42b8547edc0");
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
"F58C4C04D6E5F1BA779EABFB5F7BFBD6", true, "ae2d8a571e03ac9c9eb76fac45af8e51", \
"9cfc4e967edb808d679f777bc6702c7d3a3aa5e0213db1a9901f9036cf5102d2");
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
"9CFC4E967EDB808D679F777BC6702C7D", true, "30c81c46a35ce411e5fbc1191a0a52ef",
"39f23369a9d9bacfa530e263042314612f8da707643c90a6f732b3de1d3f5cee");
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
"39F23369A9D9BACFA530E26304231461", true, "f69f2445df4f9b17ad2b417be66c3710", \
"b2eb05e2c39be9fcda6c19078c6a9d1b3f461796d6b0d6b2e0c2a72b4d80e644");
}
HD wallet (#1405) * HD wallet Minimal set of changes (no refactoring) backported from Bitcoin upstream to make HD wallets work in Dash 0.12.1.x+ * minimal bip44 (hardcoded account and change) * minimal bip39 Additional cmd-line options for new wallet: -mnemonic -mnemonicpassphrase * Do not recreate HD wallet on encryption Adjusted keypool.py test * Do not store any private keys for hd wallet besides the master one Derive all keys on the fly. Original idea/implementation - btc PR9298, backported and improved * actually use bip39 * pbkdf2 test * backport wallet-hd.py test * Allow specifying hd seed, add dumphdseed rpc, fix bugs - -hdseed cmd-line param to specify HD seed on wallet creation - dumphdseed rpc to dump HD seed - allow seed of any size - fix dumpwallet rpc bug (wasn't decrypting HD seed) - print HD seed and extended public masterkey on dumpwallet * top up keypool on HD wallet encryption * split HD chain: external/internal * add missing cs_wallet lock in init.cpp * fix `const char *` issues (use strings) * default mnemonic passphrase is an empty string in all cases * store mnemonic/mnemonicpassphrase replace dumphdseed with dumphdinfo * Add fCrypted flag to CHDChain * prepare internal structures for multiple HD accounts (plus some code cleanup) * use secure allocator for storing sensitive HD data * use secure strings for mnemonic(passphrase) * small fix in GenerateNewHDChain * use 24 words for mnemonic by default * make sure mnemonic passphrase provided by user does not exceed 256 symbols * more usage of secure allocators and memory_cleanse * code cleanup * rename: CSecureVector -> SecureVector * add missing include * fix warning in rpcdump.cpp * refactor mnemonic_check (also fix a bug) * move bip39 functions to CMnemonic * Few fixes for CMnemonic: - use `SecureVector` for data, bits, seed - `Check` should return bool * init vectors with desired size where possible
2017-05-29 13:51:40 +02:00
BOOST_AUTO_TEST_CASE(pbkdf2_hmac_sha512_test) {
// test vectors from
// https://github.com/trezor/trezor-crypto/blob/87c920a7e747f7ed40b6ae841327868ab914435b/tests.c#L1936-L1957
// https://stackoverflow.com/questions/15593184/pbkdf2-hmac-sha-512-test-vectors
uint8_t k[64], s[40];
strcpy((char *)s, "salt");
PKCS5_PBKDF2_HMAC("password", 8, s, 4, 1, EVP_sha512(), 64, k);
BOOST_CHECK(HexStr(k, k + 64) == "867f70cf1ade02cff3752599a3a53dc4af34c7a669815ae5d513554e1c8cf252c02d470a285a0501bad999bfe943c08f050235d7d68b1da55e63f73b60a57fce");
strcpy((char *)s, "salt");
PKCS5_PBKDF2_HMAC("password", 8, s, 4, 2, EVP_sha512(), 64, k);
BOOST_CHECK(HexStr(k, k + 64) == "e1d9c16aa681708a45f5c7c4e215ceb66e011a2e9f0040713f18aefdb866d53cf76cab2868a39b9f7840edce4fef5a82be67335c77a6068e04112754f27ccf4e");
strcpy((char *)s, "salt");
PKCS5_PBKDF2_HMAC("password", 8, s, 4, 4096, EVP_sha512(), 64, k);
BOOST_CHECK(HexStr(k, k + 64) == "d197b1b33db0143e018b12f3d1d1479e6cdebdcc97c5c0f87f6902e072f457b5143f30602641b3d55cd335988cb36b84376060ecd532e039b742a239434af2d5");
strcpy((char *)s, "saltSALTsaltSALTsaltSALTsaltSALTsalt");
PKCS5_PBKDF2_HMAC("passwordPASSWORDpassword", 3*8, s, 9*4, 4096, EVP_sha512(), 64, k);
BOOST_CHECK(HexStr(k, k + 64) == "8c0511f4c6e597c6ac6315d8f0362e225f3c501495ba23b868c005174dc4ee71115b59f9e60cd9532fa33e0f75aefe30225c583a186cd82bd4daea9724a3d3b8");
}
BOOST_AUTO_TEST_CASE(chacha20_testvector)
{
// Test vector from RFC 7539
// test encryption
TestChaCha20("4c616469657320616e642047656e746c656d656e206f662074686520636c617373206f66202739393a204966204920636f756"
"c64206f6666657220796f75206f6e6c79206f6e652074697020666f7220746865206675747572652c2073756e73637265656e"
"20776f756c642062652069742e",
"000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", 0x4a000000UL, 1,
"6e2e359a2568f98041ba0728dd0d6981e97e7aec1d4360c20a27afccfd9fae0bf91b65c5524733ab8f593dabcd62b3571639d"
"624e65152ab8f530c359f0861d807ca0dbf500d6a6156a38e088a22b65e52bc514d16ccf806818ce91ab77937365af90bbf74"
"a35be6b40b8eedf2785e42874d"
);
// test keystream output
TestChaCha20("", "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", 0x4a000000UL, 1,
"224f51f3401bd9e12fde276fb8631ded8c131f823d2c06e27e4fcaec9ef3cf788a3b0aa372600a92b57974cded2b9334794cb"
"a40c63e34cdea212c4cf07d41b769a6749f3f630f4122cafe28ec4dc47e26d4346d70b98c73f3e9c53ac40c5945398b6eda1a"
"832c89c167eacd901d7e2bf363");
// Test vectors from https://tools.ietf.org/html/draft-agl-tls-chacha20poly1305-04#section-7
TestChaCha20("", "0000000000000000000000000000000000000000000000000000000000000000", 0, 0,
"76b8e0ada0f13d90405d6ae55386bd28bdd219b8a08ded1aa836efcc8b770dc7da41597c5157488d7724e03fb8d84a376a43b"
"8f41518a11cc387b669b2ee6586");
TestChaCha20("", "0000000000000000000000000000000000000000000000000000000000000001", 0, 0,
"4540f05a9f1fb296d7736e7b208e3c96eb4fe1834688d2604f450952ed432d41bbe2a0b6ea7566d2a5d1e7e20d42af2c53d79"
"2b1c43fea817e9ad275ae546963");
TestChaCha20("", "0000000000000000000000000000000000000000000000000000000000000000", 0x0100000000000000ULL, 0,
"de9cba7bf3d69ef5e786dc63973f653a0b49e015adbff7134fcb7df137821031e85a050278a7084527214f73efc7fa5b52770"
"62eb7a0433e445f41e3");
TestChaCha20("", "0000000000000000000000000000000000000000000000000000000000000000", 1, 0,
"ef3fdfd6c61578fbf5cf35bd3dd33b8009631634d21e42ac33960bd138e50d32111e4caf237ee53ca8ad6426194a88545ddc4"
"97a0b466e7d6bbdb0041b2f586b");
TestChaCha20("", "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", 0x0706050403020100ULL, 0,
"f798a189f195e66982105ffb640bb7757f579da31602fc93ec01ac56f85ac3c134a4547b733b46413042c9440049176905d3b"
"e59ea1c53f15916155c2be8241a38008b9a26bc35941e2444177c8ade6689de95264986d95889fb60e84629c9bd9a5acb1cc1"
"18be563eb9b3a4a472f82e09a7e778492b562ef7130e88dfe031c79db9d4f7c7a899151b9a475032b63fc385245fe054e3dd5"
"a97a5f576fe064025d3ce042c566ab2c507b138db853e3d6959660996546cc9c4a6eafdc777c040d70eaf46f76dad3979e5c5"
"360c3317166a1c894c94a371876a94df7628fe4eaaf2ccb27d5aaae0ad7ad0f9d4b6ad3b54098746d4524d38407a6deb3ab78"
"fab78c9");
}
BOOST_AUTO_TEST_CASE(poly1305_testvector)
{
// RFC 7539, section 2.5.2.
TestPoly1305("43727970746f6772617068696320466f72756d2052657365617263682047726f7570",
"85d6be7857556d337f4452fe42d506a80103808afb0db2fd4abff6af4149f51b",
"a8061dc1305136c6c22b8baf0c0127a9");
// RFC 7539, section A.3.
TestPoly1305("00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"
"000000000000000000000000000",
"0000000000000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000");
TestPoly1305("416e79207375626d697373696f6e20746f20746865204945544620696e74656e6465642062792074686520436f6e747269627"
"5746f7220666f72207075626c69636174696f6e20617320616c6c206f722070617274206f6620616e204945544620496e7465"
"726e65742d4472616674206f722052464320616e6420616e792073746174656d656e74206d6164652077697468696e2074686"
"520636f6e74657874206f6620616e204945544620616374697669747920697320636f6e7369646572656420616e2022494554"
"4620436f6e747269627574696f6e222e20537563682073746174656d656e747320696e636c756465206f72616c20737461746"
"56d656e747320696e20494554462073657373696f6e732c2061732077656c6c206173207772697474656e20616e6420656c65"
"6374726f6e696320636f6d6d756e69636174696f6e73206d61646520617420616e792074696d65206f7220706c6163652c207"
"768696368206172652061646472657373656420746f",
"0000000000000000000000000000000036e5f6b5c5e06070f0efca96227a863e",
"36e5f6b5c5e06070f0efca96227a863e");
TestPoly1305("416e79207375626d697373696f6e20746f20746865204945544620696e74656e6465642062792074686520436f6e747269627"
"5746f7220666f72207075626c69636174696f6e20617320616c6c206f722070617274206f6620616e204945544620496e7465"
"726e65742d4472616674206f722052464320616e6420616e792073746174656d656e74206d6164652077697468696e2074686"
"520636f6e74657874206f6620616e204945544620616374697669747920697320636f6e7369646572656420616e2022494554"
"4620436f6e747269627574696f6e222e20537563682073746174656d656e747320696e636c756465206f72616c20737461746"
"56d656e747320696e20494554462073657373696f6e732c2061732077656c6c206173207772697474656e20616e6420656c65"
"6374726f6e696320636f6d6d756e69636174696f6e73206d61646520617420616e792074696d65206f7220706c6163652c207"
"768696368206172652061646472657373656420746f",
"36e5f6b5c5e06070f0efca96227a863e00000000000000000000000000000000",
"f3477e7cd95417af89a6b8794c310cf0");
TestPoly1305("2754776173206272696c6c69672c20616e642074686520736c6974687920746f7665730a446964206779726520616e6420676"
"96d626c6520696e2074686520776162653a0a416c6c206d696d737920776572652074686520626f726f676f7665732c0a416e"
"6420746865206d6f6d65207261746873206f757467726162652e",
"1c9240a5eb55d38af333888604f6b5f0473917c1402b80099dca5cbc207075c0",
"4541669a7eaaee61e708dc7cbcc5eb62");
TestPoly1305("ffffffffffffffffffffffffffffffff",
"0200000000000000000000000000000000000000000000000000000000000000",
"03000000000000000000000000000000");
TestPoly1305("02000000000000000000000000000000",
"02000000000000000000000000000000ffffffffffffffffffffffffffffffff",
"03000000000000000000000000000000");
TestPoly1305("fffffffffffffffffffffffffffffffff0ffffffffffffffffffffffffffffff11000000000000000000000000000000",
"0100000000000000000000000000000000000000000000000000000000000000",
"05000000000000000000000000000000");
TestPoly1305("fffffffffffffffffffffffffffffffffbfefefefefefefefefefefefefefefe01010101010101010101010101010101",
"0100000000000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000");
TestPoly1305("fdffffffffffffffffffffffffffffff",
"0200000000000000000000000000000000000000000000000000000000000000",
"faffffffffffffffffffffffffffffff");
TestPoly1305("e33594d7505e43b900000000000000003394d7505e4379cd01000000000000000000000000000000000000000000000001000000000000000000000000000000",
"0100000000000000040000000000000000000000000000000000000000000000",
"14000000000000005500000000000000");
TestPoly1305("e33594d7505e43b900000000000000003394d7505e4379cd010000000000000000000000000000000000000000000000",
"0100000000000000040000000000000000000000000000000000000000000000",
"13000000000000000000000000000000");
}
static void TestChaCha20Poly1305AEAD(bool must_succeed, unsigned int expected_aad_length, const std::string& hex_m, const std::string& hex_k1, const std::string& hex_k2, const std::string& hex_aad_keystream, const std::string& hex_encrypted_message, const std::string& hex_encrypted_message_seq_999)
{
// we need two sequence numbers, one for the payload cipher instance...
uint32_t seqnr_payload = 0;
// ... and one for the AAD (length) cipher instance
uint32_t seqnr_aad = 0;
// we need to keep track of the position in the AAD cipher instance
// keystream since we use the same 64byte output 21 times
// (21 times 3 bytes length < 64)
int aad_pos = 0;
std::vector<unsigned char> aead_K_1 = ParseHex(hex_k1);
std::vector<unsigned char> aead_K_2 = ParseHex(hex_k2);
std::vector<unsigned char> plaintext_buf = ParseHex(hex_m);
std::vector<unsigned char> expected_aad_keystream = ParseHex(hex_aad_keystream);
std::vector<unsigned char> expected_ciphertext_and_mac = ParseHex(hex_encrypted_message);
std::vector<unsigned char> expected_ciphertext_and_mac_sequence999 = ParseHex(hex_encrypted_message_seq_999);
std::vector<unsigned char> ciphertext_buf(plaintext_buf.size() + POLY1305_TAGLEN, 0);
std::vector<unsigned char> plaintext_buf_new(plaintext_buf.size(), 0);
std::vector<unsigned char> cmp_ctx_buffer(64);
uint32_t out_len = 0;
// create the AEAD instance
ChaCha20Poly1305AEAD aead(aead_K_1.data(), aead_K_1.size(), aead_K_2.data(), aead_K_2.size());
// create a chacha20 instance to compare against
ChaCha20 cmp_ctx(aead_K_2.data(), 32);
// encipher
bool res = aead.Crypt(seqnr_payload, seqnr_aad, aad_pos, ciphertext_buf.data(), ciphertext_buf.size(), plaintext_buf.data(), plaintext_buf.size(), true);
// make sure the operation succeeded if expected to succeed
BOOST_CHECK_EQUAL(res, must_succeed);
if (!res) return;
// verify ciphertext & mac against the test vector
BOOST_CHECK_EQUAL(expected_ciphertext_and_mac.size(), ciphertext_buf.size());
BOOST_CHECK(memcmp(ciphertext_buf.data(), expected_ciphertext_and_mac.data(), ciphertext_buf.size()) == 0);
// manually construct the AAD keystream
cmp_ctx.SetIV(seqnr_aad);
cmp_ctx.Seek(0);
cmp_ctx.Keystream(cmp_ctx_buffer.data(), 64);
BOOST_CHECK(memcmp(expected_aad_keystream.data(), cmp_ctx_buffer.data(), expected_aad_keystream.size()) == 0);
// crypt the 3 length bytes and compare the length
uint32_t len_cmp = 0;
len_cmp = (ciphertext_buf[0] ^ cmp_ctx_buffer[aad_pos + 0]) |
(ciphertext_buf[1] ^ cmp_ctx_buffer[aad_pos + 1]) << 8 |
(ciphertext_buf[2] ^ cmp_ctx_buffer[aad_pos + 2]) << 16;
BOOST_CHECK_EQUAL(len_cmp, expected_aad_length);
// encrypt / decrypt 1000 packets
for (size_t i = 0; i < 1000; ++i) {
res = aead.Crypt(seqnr_payload, seqnr_aad, aad_pos, ciphertext_buf.data(), ciphertext_buf.size(), plaintext_buf.data(), plaintext_buf.size(), true);
BOOST_CHECK(res);
BOOST_CHECK(aead.GetLength(&out_len, seqnr_aad, aad_pos, ciphertext_buf.data()));
BOOST_CHECK_EQUAL(out_len, expected_aad_length);
res = aead.Crypt(seqnr_payload, seqnr_aad, aad_pos, plaintext_buf_new.data(), plaintext_buf_new.size(), ciphertext_buf.data(), ciphertext_buf.size(), false);
BOOST_CHECK(res);
// make sure we repetitive get the same plaintext
BOOST_CHECK(memcmp(plaintext_buf.data(), plaintext_buf_new.data(), plaintext_buf.size()) == 0);
// compare sequence number 999 against the test vector
if (seqnr_payload == 999) {
BOOST_CHECK(memcmp(ciphertext_buf.data(), expected_ciphertext_and_mac_sequence999.data(), expected_ciphertext_and_mac_sequence999.size()) == 0);
}
// set nonce and block counter, output the keystream
cmp_ctx.SetIV(seqnr_aad);
cmp_ctx.Seek(0);
cmp_ctx.Keystream(cmp_ctx_buffer.data(), 64);
// crypt the 3 length bytes and compare the length
len_cmp = 0;
len_cmp = (ciphertext_buf[0] ^ cmp_ctx_buffer[aad_pos + 0]) |
(ciphertext_buf[1] ^ cmp_ctx_buffer[aad_pos + 1]) << 8 |
(ciphertext_buf[2] ^ cmp_ctx_buffer[aad_pos + 2]) << 16;
BOOST_CHECK_EQUAL(len_cmp, expected_aad_length);
// increment the sequence number(s)
// always increment the payload sequence number
// increment the AAD keystream position by its size (3)
// increment the AAD sequence number if we would hit the 64 byte limit
seqnr_payload++;
aad_pos += CHACHA20_POLY1305_AEAD_AAD_LEN;
if (aad_pos + CHACHA20_POLY1305_AEAD_AAD_LEN > CHACHA20_ROUND_OUTPUT) {
aad_pos = 0;
seqnr_aad++;
}
}
}
BOOST_AUTO_TEST_CASE(chacha20_poly1305_aead_testvector)
{
/* test chacha20poly1305@bitcoin AEAD */
// must fail with no message
TestChaCha20Poly1305AEAD(false, 0,
"",
"0000000000000000000000000000000000000000000000000000000000000000",
"0000000000000000000000000000000000000000000000000000000000000000", "", "", "");
TestChaCha20Poly1305AEAD(true, 0,
/* m */ "0000000000000000000000000000000000000000000000000000000000000000",
/* k1 (payload) */ "0000000000000000000000000000000000000000000000000000000000000000",
/* k2 (AAD) */ "0000000000000000000000000000000000000000000000000000000000000000",
/* AAD keystream */ "76b8e0ada0f13d90405d6ae55386bd28bdd219b8a08ded1aa836efcc8b770dc7da41597c5157488d7724e03fb8d84a376a43b8f41518a11cc387b669b2ee6586",
/* encrypted message & MAC */ "76b8e09f07e7be5551387a98ba977c732d080dcb0f29a048e3656912c6533e32d2fc11829c1b6c1df1f551cd6131ff08",
/* encrypted message & MAC at sequence 999 */ "b0a03d5bd2855d60699e7d3a3133fa47be740fe4e4c1f967555e2d9271f31c3aaa7aa16ec62c5e24f040c08bb20c3598");
TestChaCha20Poly1305AEAD(true, 1,
"0100000000000000000000000000000000000000000000000000000000000000",
"0000000000000000000000000000000000000000000000000000000000000000",
"0000000000000000000000000000000000000000000000000000000000000000",
"76b8e0ada0f13d90405d6ae55386bd28bdd219b8a08ded1aa836efcc8b770dc7da41597c5157488d7724e03fb8d84a376a43b8f41518a11cc387b669b2ee6586",
"77b8e09f07e7be5551387a98ba977c732d080dcb0f29a048e3656912c6533e32baf0c85b6dff8602b06cf52a6aefc62e",
"b1a03d5bd2855d60699e7d3a3133fa47be740fe4e4c1f967555e2d9271f31c3a8bd94d54b5ecabbc41ffbb0c90924080");
TestChaCha20Poly1305AEAD(true, 255,
"ff0000f195e66982105ffb640bb7757f579da31602fc93ec01ac56f85ac3c134a4547b733b46413042c9440049176905d3be59ea1c53f15916155c2be8241a38008b9a26bc35941e2444177c8ade6689de95264986d95889fb60e84629c9bd9a5acb1cc118be563eb9b3a4a472f82e09a7e778492b562ef7130e88dfe031c79db9d4f7c7a899151b9a475032b63fc385245fe054e3dd5a97a5f576fe064025d3ce042c566ab2c507b138db853e3d6959660996546cc9c4a6eafdc777c040d70eaf46f76dad3979e5c5360c3317166a1c894c94a371876a94df7628fe4eaaf2ccb27d5aaae0ad7ad0f9d4b6ad3b54098746d4524d38407a6deb3ab78fab78c9",
"000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f",
"ff0102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f",
"c640c1711e3ee904ac35c57ab9791c8a1c408603a90b77a83b54f6c844cb4b06d94e7fc6c800e165acd66147e80ec45a567f6ce66d05ec0cae679dceeb890017",
"3940c1e92da4582ff6f92a776aeb14d014d384eeb30f660dacf70a14a23fd31e91212701334e2ce1acf5199dc84f4d61ddbe6571bca5af874b4c9226c26e650995d157644e1848b96ed6c2102d5489a050e71d29a5a66ece11de5fb5c9558d54da28fe45b0bc4db4e5b88030bfc4a352b4b7068eccf656bae7ad6a35615315fc7c49d4200388d5eca67c2e822e069336c69b40db67e0f3c81209c50f3216a4b89fb3ae1b984b7851a2ec6f68ab12b101ab120e1ea7313bb93b5a0f71185c7fea017ddb92769861c29dba4fbc432280d5dff21b36d1c4c790128b22699950bb18bf74c448cdfe547d8ed4f657d8005fdc0cd7a050c2d46050a44c4376355858981fbe8b184288276e7a93eabc899c4a",
"f039c6689eaeef0456685200feaab9d54bbd9acde4410a3b6f4321296f4a8ca2604b49727d8892c57e005d799b2a38e85e809f20146e08eec75169691c8d4f54a0d51a1e1c7b381e0474eb02f994be9415ef3ffcbd2343f0601e1f3b172a1d494f838824e4df570f8e3b0c04e27966e36c82abd352d07054ef7bd36b84c63f9369afe7ed79b94f953873006b920c3fa251a771de1b63da927058ade119aa898b8c97e42a606b2f6df1e2d957c22f7593c1e2002f4252f4c9ae4bf773499e5cfcfe14dfc1ede26508953f88553bf4a76a802f6a0068d59295b01503fd9a600067624203e880fdf53933b96e1f4d9eb3f4e363dd8165a278ff667a41ee42b9892b077cefff92b93441f7be74cf10e6cd");
}
BOOST_AUTO_TEST_CASE(countbits_tests)
{
FastRandomContext ctx;
for (int i = 0; i <= 64; ++i) {
if (i == 0) {
// Check handling of zero.
BOOST_CHECK_EQUAL(CountBits(0), 0);
} else if (i < 10) {
for (uint64_t j = 1 << (i - 1); (j >> i) == 0; ++j) {
// Exhaustively test up to 10 bits
BOOST_CHECK_EQUAL(CountBits(j), i);
}
} else {
for (int k = 0; k < 1000; k++) {
// Randomly test 1000 samples of each length above 10 bits.
uint64_t j = ((uint64_t)1) << (i - 1) | ctx.randbits(i - 1);
BOOST_CHECK_EQUAL(CountBits(j), i);
}
}
}
}
Merge #13191: Specialized double-SHA256 with 64 byte inputs with SSE4.1 and AVX2 4defdfab94504018f822dc34a313ad26cedc8255 [MOVEONLY] Move unused Merkle branch code to tests (Pieter Wuille) 4437d6e1f3107a20a8c7b66be8b4b972a82e3b28 8-way AVX2 implementation for double SHA256 on 64-byte inputs (Pieter Wuille) 230294bf5fdeba7213471cd0b795fb7aa36e5717 4-way SSE4.1 implementation for double SHA256 on 64-byte inputs (Pieter Wuille) 1f0e7ca09c9d7c5787c218156fa5096a1bdf2ea8 Use SHA256D64 in Merkle root computation (Pieter Wuille) d0c96328833127284574bfef26f96aa2e4afc91a Specialized double sha256 for 64 byte inputs (Pieter Wuille) 57f34630fb6c3e218bd19535ac607008cb894173 Refactor SHA256 code (Pieter Wuille) 0df017889b4f61860092e1d54e271092cce55f62 Benchmark Merkle root computation (Pieter Wuille) Pull request description: This introduces a framework for specialized double-SHA256 with 64 byte inputs. 4 different implementations are provided: * Generic C++ (reusing the normal SHA256 code) * Specialized C++ for 64-byte inputs, but no special instructions * 4-way using SSE4.1 intrinsics * 8-way using AVX2 intrinsics On my own system (AVX2 capable), I get these benchmarks for computing the Merkle root of 9001 leaves (supported lengths / special instructions / parallellism): * 7.2 ms with varsize/naive/1way (master, non-SSE4 hardware) * 5.8 ms with size64/naive/1way (this PR, non-SSE4 capable systems) * 4.8 ms with varsize/SSE4/1way (master, SSE4 hardware) * 2.9 ms with size64/SSE4/4way (this PR, SSE4 hardware) * 1.1 ms with size64/AVX2/8way (this PR, AVX2 hardware) Tree-SHA512: efa32d48b32820d9ce788ead4eb583949265be8c2e5f538c94bc914e92d131a57f8c1ee26c6f998e81fb0e30675d4e2eddc3360bcf632676249036018cff343e
2018-06-04 09:11:18 +02:00
BOOST_AUTO_TEST_CASE(sha256d64)
{
for (int i = 0; i <= 32; ++i) {
unsigned char in[64 * 32];
unsigned char out1[32 * 32], out2[32 * 32];
for (int j = 0; j < 64 * i; ++j) {
in[j] = InsecureRandBits(8);
}
for (int j = 0; j < i; ++j) {
CHash256().Write(in + 64 * j, 64).Finalize(out1 + 32 * j);
}
SHA256D64(out2, in, i);
BOOST_CHECK(memcmp(out1, out2, 32 * i) == 0);
}
}
BOOST_AUTO_TEST_SUITE_END()