dash/src/llmq/quorums_chainlocks.cpp

726 lines
23 KiB
C++
Raw Normal View History

2019-01-22 14:20:32 +01:00
// Copyright (c) 2019 The Dash Core developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
Backport 11651 (#3358) * scripted-diff: Replace #include "" with #include <> (ryanofsky) -BEGIN VERIFY SCRIPT- for f in \ src/*.cpp \ src/*.h \ src/bench/*.cpp \ src/bench/*.h \ src/compat/*.cpp \ src/compat/*.h \ src/consensus/*.cpp \ src/consensus/*.h \ src/crypto/*.cpp \ src/crypto/*.h \ src/crypto/ctaes/*.h \ src/policy/*.cpp \ src/policy/*.h \ src/primitives/*.cpp \ src/primitives/*.h \ src/qt/*.cpp \ src/qt/*.h \ src/qt/test/*.cpp \ src/qt/test/*.h \ src/rpc/*.cpp \ src/rpc/*.h \ src/script/*.cpp \ src/script/*.h \ src/support/*.cpp \ src/support/*.h \ src/support/allocators/*.h \ src/test/*.cpp \ src/test/*.h \ src/wallet/*.cpp \ src/wallet/*.h \ src/wallet/test/*.cpp \ src/wallet/test/*.h \ src/zmq/*.cpp \ src/zmq/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * scripted-diff: Replace #include "" with #include <> (Dash Specific) -BEGIN VERIFY SCRIPT- for f in \ src/bls/*.cpp \ src/bls/*.h \ src/evo/*.cpp \ src/evo/*.h \ src/governance/*.cpp \ src/governance/*.h \ src/llmq/*.cpp \ src/llmq/*.h \ src/masternode/*.cpp \ src/masternode/*.h \ src/privatesend/*.cpp \ src/privatesend/*.h do base=${f%/*}/ relbase=${base#src/} sed -i "s:#include \"\(.*\)\"\(.*\):if test -e \$base'\\1'; then echo \"#include <\"\$relbase\"\\1>\\2\"; else echo \"#include <\\1>\\2\"; fi:e" $f done -END VERIFY SCRIPT- Signed-off-by: Pasta <pasta@dashboost.org> * build: Remove -I for everything but project root Remove -I from build system for everything but the project root, and built-in dependencies. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/Makefile.test.include * qt: refactor: Use absolute include paths in .ui files * qt: refactor: Changes to make include paths absolute This makes all include paths in the GUI absolute. Many changes are involved as every single source file in src/qt/ assumes to be able to use relative includes. Signed-off-by: Pasta <pasta@dashboost.org> # Conflicts: # src/qt/dash.cpp # src/qt/optionsmodel.cpp # src/qt/test/rpcnestedtests.cpp * test: refactor: Use absolute include paths for test data files * Recommend #include<> syntax in developer notes * refactor: Include obj/build.h instead of build.h * END BACKPORT #11651 Remove trailing whitespace causing travis failure * fix backport 11651 Signed-off-by: Pasta <pasta@dashboost.org> * More of 11651 * fix blockchain.cpp Signed-off-by: pasta <pasta@dashboost.org> * Add missing "qt/" in includes * Add missing "test/" in includes * Fix trailing whitespaces Co-authored-by: Wladimir J. van der Laan <laanwj@gmail.com> Co-authored-by: Russell Yanofsky <russ@yanofsky.org> Co-authored-by: MeshCollider <dobsonsa68@gmail.com> Co-authored-by: UdjinM6 <UdjinM6@users.noreply.github.com>
2020-03-19 23:46:56 +01:00
#include <llmq/quorums_chainlocks.h>
#include <llmq/quorums_instantsend.h>
#include <llmq/quorums_utils.h>
#include <chain.h>
#include <masternode/masternode-sync.h>
#include <net_processing.h>
#include <scheduler.h>
#include <spork.h>
#include <txmempool.h>
#include <validation.h>
2019-01-22 14:20:32 +01:00
namespace llmq
{
static const std::string CLSIG_REQUESTID_PREFIX = "clsig";
CChainLocksHandler* chainLocksHandler;
bool CChainLockSig::IsNull() const
{
return nHeight == -1 && blockHash == uint256();
}
2019-01-22 14:20:32 +01:00
std::string CChainLockSig::ToString() const
{
return strprintf("CChainLockSig(nHeight=%d, blockHash=%s)", nHeight, blockHash.ToString());
}
CChainLocksHandler::CChainLocksHandler()
2019-01-22 14:20:32 +01:00
{
scheduler = new CScheduler();
CScheduler::Function serviceLoop = boost::bind(&CScheduler::serviceQueue, scheduler);
scheduler_thread = new boost::thread(boost::bind(&TraceThread<CScheduler::Function>, "cl-schdlr", serviceLoop));
2019-01-22 14:20:32 +01:00
}
CChainLocksHandler::~CChainLocksHandler()
{
scheduler_thread->interrupt();
scheduler_thread->join();
delete scheduler_thread;
delete scheduler;
}
void CChainLocksHandler::Start()
{
quorumSigningManager->RegisterRecoveredSigsListener(this);
scheduler->scheduleEvery([&]() {
CheckActiveState();
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
EnforceBestChainLock();
// regularly retry signing the current chaintip as it might have failed before due to missing islocks
TrySignChainTip();
}, 5000);
}
void CChainLocksHandler::Stop()
2019-01-22 14:20:32 +01:00
{
scheduler->stop();
2019-01-22 14:20:32 +01:00
quorumSigningManager->UnregisterRecoveredSigsListener(this);
}
bool CChainLocksHandler::AlreadyHave(const CInv& inv)
{
LOCK(cs);
return seenChainLocks.count(inv.hash) != 0;
}
bool CChainLocksHandler::GetChainLockByHash(const uint256& hash, llmq::CChainLockSig& ret)
{
LOCK(cs);
if (hash != bestChainLockHash) {
// we only propagate the best one and ditch all the old ones
return false;
}
ret = bestChainLock;
return true;
}
CChainLockSig CChainLocksHandler::GetBestChainLock()
{
LOCK(cs);
return bestChainLock;
}
void CChainLocksHandler::ProcessMessage(CNode* pfrom, const std::string& strCommand, CDataStream& vRecv)
2019-01-22 14:20:32 +01:00
{
if (!AreChainLocksEnabled()) {
2019-01-23 17:40:37 +01:00
return;
}
2019-01-22 14:20:32 +01:00
if (strCommand == NetMsgType::CLSIG) {
CChainLockSig clsig;
vRecv >> clsig;
auto hash = ::SerializeHash(clsig);
ProcessNewChainLock(pfrom->GetId(), clsig, hash);
2019-01-22 14:20:32 +01:00
}
}
void CChainLocksHandler::ProcessNewChainLock(const NodeId from, const llmq::CChainLockSig& clsig, const uint256& hash)
2019-01-22 14:20:32 +01:00
{
CInv clsigInv(MSG_CLSIG, hash);
if (from != -1) {
Multiple fixes and optimizations for LLMQs and ChainLocks (#2724) * Indicate success when signing was unnecessary * Fix typo in name of LLMQ_400_60 * Move RemoveAskFor call for CLSIGs into ProcessNewChainLock In case we got INV items for the same CLSIG that we recreated through HandleNewRecoveredSig, (re-)requesting of the CLSIG from other peers becomes unnecessary. * Move Cleanup() call in CChainLocksHandler::UpdatedBlockTip up We bail out early in a few situations from this method, so that Cleanup() might not be called while its at the bottom. * Bail out from CChainLocksHandler::UpdatedBlockTip if we already got the CLSIG * Call RemoveAskFor when QFCOMMITMENT was received Otherwise we might end up re-requesting it for a very long time when the commitment INV was received shortly before it got mined. * Call RemoveSigSharesForSession when a recovered sig is received Otherwise we end up with session data in node states lingering around until a fake "timeout" occurs (can be seen in the logs). * Better handling of false-positive conflicts in CSigningManager The old code was emitting a lot of messages in logs as it treated sigs for exactly the same session as a conflict. This commit fixes this by looking at the signHash before logging. Also handle a corner-case where a recovered sig might be deleted between the HasRecoveredSigForId and GetRecoveredSigById call. * Don't run into session timeout when sig shares come in slow Instead of just tracking when the first share was received, we now also track when the last (non-duplicate) share was received. Sessios will now timeout 5 minutes after the first share arrives, or 1 minute after the last one arrived.
2019-02-27 14:10:12 +01:00
LOCK(cs_main);
EraseObjectRequest(from, clsigInv);
Multiple fixes and optimizations for LLMQs and ChainLocks (#2724) * Indicate success when signing was unnecessary * Fix typo in name of LLMQ_400_60 * Move RemoveAskFor call for CLSIGs into ProcessNewChainLock In case we got INV items for the same CLSIG that we recreated through HandleNewRecoveredSig, (re-)requesting of the CLSIG from other peers becomes unnecessary. * Move Cleanup() call in CChainLocksHandler::UpdatedBlockTip up We bail out early in a few situations from this method, so that Cleanup() might not be called while its at the bottom. * Bail out from CChainLocksHandler::UpdatedBlockTip if we already got the CLSIG * Call RemoveAskFor when QFCOMMITMENT was received Otherwise we might end up re-requesting it for a very long time when the commitment INV was received shortly before it got mined. * Call RemoveSigSharesForSession when a recovered sig is received Otherwise we end up with session data in node states lingering around until a fake "timeout" occurs (can be seen in the logs). * Better handling of false-positive conflicts in CSigningManager The old code was emitting a lot of messages in logs as it treated sigs for exactly the same session as a conflict. This commit fixes this by looking at the signHash before logging. Also handle a corner-case where a recovered sig might be deleted between the HasRecoveredSigForId and GetRecoveredSigById call. * Don't run into session timeout when sig shares come in slow Instead of just tracking when the first share was received, we now also track when the last (non-duplicate) share was received. Sessios will now timeout 5 minutes after the first share arrives, or 1 minute after the last one arrived.
2019-02-27 14:10:12 +01:00
}
2019-01-22 14:20:32 +01:00
{
LOCK(cs);
if (!seenChainLocks.emplace(hash, GetTimeMillis()).second) {
return;
}
if (!bestChainLock.IsNull() && clsig.nHeight <= bestChainLock.nHeight) {
2019-01-22 14:20:32 +01:00
// no need to process/relay older CLSIGs
return;
}
}
const uint256 requestId = ::SerializeHash(std::make_pair(CLSIG_REQUESTID_PREFIX, clsig.nHeight));
if (!quorumSigningManager->VerifyRecoveredSig(Params().GetConsensus().llmqTypeChainLocks, clsig.nHeight, requestId, clsig.blockHash, clsig.sig)) {
2020-01-28 11:04:47 +01:00
LogPrint(BCLog::CHAINLOCKS, "CChainLocksHandler::%s -- invalid CLSIG (%s), peer=%d\n", __func__, clsig.ToString(), from);
2019-01-22 14:20:32 +01:00
if (from != -1) {
LOCK(cs_main);
Misbehaving(from, 10);
2019-01-22 14:20:32 +01:00
}
return;
}
CBlockIndex* pindex;
{
LOCK(cs_main);
pindex = LookupBlockIndex(clsig.blockHash);
}
{
LOCK(cs);
2019-01-22 14:20:32 +01:00
bestChainLockHash = hash;
bestChainLock = clsig;
if (pindex != nullptr) {
if (pindex->nHeight != clsig.nHeight) {
// Should not happen, same as the conflict check from above.
LogPrintf("CChainLocksHandler::%s -- height of CLSIG (%s) does not match the specified block's height (%d)\n",
__func__, clsig.ToString(), pindex->nHeight);
// Note: not relaying clsig here
return;
}
2019-01-22 14:20:32 +01:00
bestChainLockWithKnownBlock = bestChainLock;
bestChainLockBlockIndex = pindex;
2019-01-22 14:20:32 +01:00
}
// else if (pindex == nullptr)
// Note: make sure to still relay clsig further.
}
2019-01-22 14:20:32 +01:00
// Note: do not hold cs while calling RelayInv
AssertLockNotHeld(cs);
g_connman->RelayInv(clsigInv, LLMQS_PROTO_VERSION);
if (pindex == nullptr) {
// we don't know the block/header for this CLSIG yet, so bail out for now
// when the block or the header later comes in, we will enforce the correct chain
return;
2019-01-22 14:20:32 +01:00
}
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
scheduler->scheduleFromNow([&]() {
CheckActiveState();
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
EnforceBestChainLock();
}, 0);
2019-01-22 14:20:32 +01:00
Backport Bitcoin#9424, Bitcoin#10123 and Bitcoin#10153 (#2918) * Contains dashification. disables `-debug dash` Merge #9424: Change LogAcceptCategory to use uint32_t rather than sets of strings. 6b3bb3d Change LogAcceptCategory to use uint32_t rather than sets of strings. (Gregory Maxwell) Tree-SHA512: ebb5bcf9a7d00a32dd1390b727ff4d29330a038423611da01268d8e1d2c0229e52a1098e751d4e6db73ef4ae862e1e96d38249883fcaf12b68f55ebb01035b34 Signed-off-by: Pasta <Pasta@dash.org> 31 -> 32 Signed-off-by: Pasta <Pasta@dash.org> * Merge #10123: Allow debug logs to be excluded from specified component 3bde556 Add -debugexclude option to switch off logging for specified components (John Newbery) Tree-SHA512: 30202e3f2085fc2fc5dd4bedb92988f4cb162c612a42cf8f6395a7da326f34975ddc347f82bc4ddca6c84c438dc0cc6e87869f90c7ff88105dbeaa52a947fa43 * bump to uint64_t due to added Dash codes Signed-off-by: Pasta <Pasta@dash.org> * bump to uint64_t due to added Dash codes cont. Signed-off-by: Pasta <Pasta@dash.org> * string -> BCLog format Signed-off-by: Pasta <Pasta@dash.org> * uint32_t -> uint64_t Signed-off-by: Pasta <Pasta@dash.org> * Fix CBatchedLogger * Fix most fDebug-s * Fix `debug` rpc * Fix BENCH and RAND conflicts * Add ALERT and use it * Update LogPrint-s in dash-specific code * Tweak few log categories Specifically: - use PRIVATESEND in `CPrivateSendClientManager::GetRandomNotUsedMasternode()` - use ZMQ in `CZMQPublishRawGovernanceVoteNotifier::NotifyGovernanceVote()` and `CZMQPublishRawGovernanceObjectNotifier::NotifyGovernanceObject()` * Drop no longer used MASTERNODE category * Merge #10153: logging: Fix off-by-one for shrinkdebugfile default faab624 logging: Fix off-by-one for shrinkdebugfile (MarcoFalke) Tree-SHA512: d6153e06067906172ff0611af9e585a3ecf0a7d56925b6ad7c12e75aa802441047059b9b6f6c78e79916c3f2abc8f1998bfd2d5b84201ec6421f727c08da3c21 * Shift dash-specific log categories to start from `1ul << 32` to avoid potential future conflicts with bitcoin ones * Fix `dash` category * remove debugCategories Signed-off-by: Pasta <Pasta@dash.org> * Prepend "std::" to find call * Check for BCLog::PRIVATESEND instead of logCategories != BCLog::NONE * Use BCLog::MNPAYMENTS category instead of checking for logCategories != BCLog::NONE * Move "End Dash" comment below "ALERT" When adding new entries here, we'll otherwise get confused with ordering and might end up forgetting that adding something Dash specific must continue with the bit after 43.
2019-05-22 23:51:39 +02:00
LogPrint(BCLog::CHAINLOCKS, "CChainLocksHandler::%s -- processed new CLSIG (%s), peer=%d\n",
2019-01-22 14:20:32 +01:00
__func__, clsig.ToString(), from);
}
void CChainLocksHandler::AcceptedBlockHeader(const CBlockIndex* pindexNew)
{
LOCK(cs);
2019-01-22 14:20:32 +01:00
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
if (pindexNew->GetBlockHash() == bestChainLock.blockHash) {
LogPrintf("CChainLocksHandler::%s -- block header %s came in late, updating and enforcing\n", __func__, pindexNew->GetBlockHash().ToString());
2019-01-22 14:20:32 +01:00
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
if (bestChainLock.nHeight != pindexNew->nHeight) {
// Should not happen, same as the conflict check from ProcessNewChainLock.
LogPrintf("CChainLocksHandler::%s -- height of CLSIG (%s) does not match the specified block's height (%d)\n",
__func__, bestChainLock.ToString(), pindexNew->nHeight);
return;
2019-01-22 14:20:32 +01:00
}
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
// when EnforceBestChainLock is called later, it might end up invalidating other chains but not activating the
// CLSIG locked chain. This happens when only the header is known but the block is still missing yet. The usual
// block processing logic will handle this when the block arrives
bestChainLockWithKnownBlock = bestChainLock;
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
bestChainLockBlockIndex = pindexNew;
2019-01-22 14:20:32 +01:00
}
}
void CChainLocksHandler::UpdatedBlockTip(const CBlockIndex* pindexNew)
2019-01-22 14:20:32 +01:00
{
// don't call TrySignChainTip directly but instead let the scheduler call it. This way we ensure that cs_main is
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
// never locked and TrySignChainTip is not called twice in parallel. Also avoids recursive calls due to
// EnforceBestChainLock switching chains.
LOCK(cs);
if (tryLockChainTipScheduled) {
return;
}
tryLockChainTipScheduled = true;
scheduler->scheduleFromNow([&]() {
CheckActiveState();
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
EnforceBestChainLock();
TrySignChainTip();
LOCK(cs);
tryLockChainTipScheduled = false;
}, 0);
}
void CChainLocksHandler::CheckActiveState()
{
bool fDIP0008Active;
{
LOCK(cs_main);
fDIP0008Active = chainActive.Tip() && chainActive.Tip()->pprev && chainActive.Tip()->pprev->nHeight >= Params().GetConsensus().DIP0008Height;
}
LOCK(cs);
bool oldIsEnforced = isEnforced;
isEnabled = AreChainLocksEnabled();
isEnforced = (fDIP0008Active && isEnabled);
if (!oldIsEnforced && isEnforced) {
// ChainLocks got activated just recently, but it's possible that it was already running before, leaving
// us with some stale values which we should not try to enforce anymore (there probably was a good reason
// to disable spork19)
bestChainLockHash = uint256();
bestChainLock = bestChainLockWithKnownBlock = CChainLockSig();
bestChainLockBlockIndex = lastNotifyChainLockBlockIndex = nullptr;
}
}
void CChainLocksHandler::TrySignChainTip()
{
Cleanup();
if (!fMasternodeMode) {
return;
}
if (!masternodeSync.IsBlockchainSynced()) {
return;
}
const CBlockIndex* pindex;
{
LOCK(cs_main);
pindex = chainActive.Tip();
}
if (!pindex->pprev) {
2019-01-22 14:20:32 +01:00
return;
}
// DIP8 defines a process called "Signing attempts" which should run before the CLSIG is finalized
// To simplify the initial implementation, we skip this process and directly try to create a CLSIG
// This will fail when multiple blocks compete, but we accept this for the initial implementation.
// Later, we'll add the multiple attempts process.
{
LOCK(cs);
if (!isEnabled) {
return;
}
if (pindex->nHeight == lastSignedHeight) {
// already signed this one
return;
}
if (bestChainLock.nHeight >= pindex->nHeight) {
// already got the same CLSIG or a better one
return;
}
if (InternalHasConflictingChainLock(pindex->nHeight, pindex->GetBlockHash())) {
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
// don't sign if another conflicting CLSIG is already present. EnforceBestChainLock will later enforce
// the correct chain.
2019-01-22 14:20:32 +01:00
return;
}
}
2019-01-22 14:20:32 +01:00
Backport Bitcoin#9424, Bitcoin#10123 and Bitcoin#10153 (#2918) * Contains dashification. disables `-debug dash` Merge #9424: Change LogAcceptCategory to use uint32_t rather than sets of strings. 6b3bb3d Change LogAcceptCategory to use uint32_t rather than sets of strings. (Gregory Maxwell) Tree-SHA512: ebb5bcf9a7d00a32dd1390b727ff4d29330a038423611da01268d8e1d2c0229e52a1098e751d4e6db73ef4ae862e1e96d38249883fcaf12b68f55ebb01035b34 Signed-off-by: Pasta <Pasta@dash.org> 31 -> 32 Signed-off-by: Pasta <Pasta@dash.org> * Merge #10123: Allow debug logs to be excluded from specified component 3bde556 Add -debugexclude option to switch off logging for specified components (John Newbery) Tree-SHA512: 30202e3f2085fc2fc5dd4bedb92988f4cb162c612a42cf8f6395a7da326f34975ddc347f82bc4ddca6c84c438dc0cc6e87869f90c7ff88105dbeaa52a947fa43 * bump to uint64_t due to added Dash codes Signed-off-by: Pasta <Pasta@dash.org> * bump to uint64_t due to added Dash codes cont. Signed-off-by: Pasta <Pasta@dash.org> * string -> BCLog format Signed-off-by: Pasta <Pasta@dash.org> * uint32_t -> uint64_t Signed-off-by: Pasta <Pasta@dash.org> * Fix CBatchedLogger * Fix most fDebug-s * Fix `debug` rpc * Fix BENCH and RAND conflicts * Add ALERT and use it * Update LogPrint-s in dash-specific code * Tweak few log categories Specifically: - use PRIVATESEND in `CPrivateSendClientManager::GetRandomNotUsedMasternode()` - use ZMQ in `CZMQPublishRawGovernanceVoteNotifier::NotifyGovernanceVote()` and `CZMQPublishRawGovernanceObjectNotifier::NotifyGovernanceObject()` * Drop no longer used MASTERNODE category * Merge #10153: logging: Fix off-by-one for shrinkdebugfile default faab624 logging: Fix off-by-one for shrinkdebugfile (MarcoFalke) Tree-SHA512: d6153e06067906172ff0611af9e585a3ecf0a7d56925b6ad7c12e75aa802441047059b9b6f6c78e79916c3f2abc8f1998bfd2d5b84201ec6421f727c08da3c21 * Shift dash-specific log categories to start from `1ul << 32` to avoid potential future conflicts with bitcoin ones * Fix `dash` category * remove debugCategories Signed-off-by: Pasta <Pasta@dash.org> * Prepend "std::" to find call * Check for BCLog::PRIVATESEND instead of logCategories != BCLog::NONE * Use BCLog::MNPAYMENTS category instead of checking for logCategories != BCLog::NONE * Move "End Dash" comment below "ALERT" When adding new entries here, we'll otherwise get confused with ordering and might end up forgetting that adding something Dash specific must continue with the bit after 43.
2019-05-22 23:51:39 +02:00
LogPrint(BCLog::CHAINLOCKS, "CChainLocksHandler::%s -- trying to sign %s, height=%d\n", __func__, pindex->GetBlockHash().ToString(), pindex->nHeight);
// When the new IX system is activated, we only try to ChainLock blocks which include safe transactions. A TX is
// considered safe when it is islocked or at least known since 10 minutes (from mempool or block). These checks are
// performed for the tip (which we try to sign) and the previous 5 blocks. If a ChainLocked block is found on the
// way down, we consider all TXs to be safe.
if (IsInstantSendEnabled() && RejectConflictingBlocks()) {
auto pindexWalk = pindex;
while (pindexWalk) {
if (pindex->nHeight - pindexWalk->nHeight > 5) {
// no need to check further down, 6 confs is safe to assume that TXs below this height won't be
// islocked anymore if they aren't already
Backport Bitcoin#9424, Bitcoin#10123 and Bitcoin#10153 (#2918) * Contains dashification. disables `-debug dash` Merge #9424: Change LogAcceptCategory to use uint32_t rather than sets of strings. 6b3bb3d Change LogAcceptCategory to use uint32_t rather than sets of strings. (Gregory Maxwell) Tree-SHA512: ebb5bcf9a7d00a32dd1390b727ff4d29330a038423611da01268d8e1d2c0229e52a1098e751d4e6db73ef4ae862e1e96d38249883fcaf12b68f55ebb01035b34 Signed-off-by: Pasta <Pasta@dash.org> 31 -> 32 Signed-off-by: Pasta <Pasta@dash.org> * Merge #10123: Allow debug logs to be excluded from specified component 3bde556 Add -debugexclude option to switch off logging for specified components (John Newbery) Tree-SHA512: 30202e3f2085fc2fc5dd4bedb92988f4cb162c612a42cf8f6395a7da326f34975ddc347f82bc4ddca6c84c438dc0cc6e87869f90c7ff88105dbeaa52a947fa43 * bump to uint64_t due to added Dash codes Signed-off-by: Pasta <Pasta@dash.org> * bump to uint64_t due to added Dash codes cont. Signed-off-by: Pasta <Pasta@dash.org> * string -> BCLog format Signed-off-by: Pasta <Pasta@dash.org> * uint32_t -> uint64_t Signed-off-by: Pasta <Pasta@dash.org> * Fix CBatchedLogger * Fix most fDebug-s * Fix `debug` rpc * Fix BENCH and RAND conflicts * Add ALERT and use it * Update LogPrint-s in dash-specific code * Tweak few log categories Specifically: - use PRIVATESEND in `CPrivateSendClientManager::GetRandomNotUsedMasternode()` - use ZMQ in `CZMQPublishRawGovernanceVoteNotifier::NotifyGovernanceVote()` and `CZMQPublishRawGovernanceObjectNotifier::NotifyGovernanceObject()` * Drop no longer used MASTERNODE category * Merge #10153: logging: Fix off-by-one for shrinkdebugfile default faab624 logging: Fix off-by-one for shrinkdebugfile (MarcoFalke) Tree-SHA512: d6153e06067906172ff0611af9e585a3ecf0a7d56925b6ad7c12e75aa802441047059b9b6f6c78e79916c3f2abc8f1998bfd2d5b84201ec6421f727c08da3c21 * Shift dash-specific log categories to start from `1ul << 32` to avoid potential future conflicts with bitcoin ones * Fix `dash` category * remove debugCategories Signed-off-by: Pasta <Pasta@dash.org> * Prepend "std::" to find call * Check for BCLog::PRIVATESEND instead of logCategories != BCLog::NONE * Use BCLog::MNPAYMENTS category instead of checking for logCategories != BCLog::NONE * Move "End Dash" comment below "ALERT" When adding new entries here, we'll otherwise get confused with ordering and might end up forgetting that adding something Dash specific must continue with the bit after 43.
2019-05-22 23:51:39 +02:00
LogPrint(BCLog::CHAINLOCKS, "CChainLocksHandler::%s -- tip and previous 5 blocks all safe\n", __func__);
break;
}
if (HasChainLock(pindexWalk->nHeight, pindexWalk->GetBlockHash())) {
// we don't care about islocks for TXs that are ChainLocked already
Backport Bitcoin#9424, Bitcoin#10123 and Bitcoin#10153 (#2918) * Contains dashification. disables `-debug dash` Merge #9424: Change LogAcceptCategory to use uint32_t rather than sets of strings. 6b3bb3d Change LogAcceptCategory to use uint32_t rather than sets of strings. (Gregory Maxwell) Tree-SHA512: ebb5bcf9a7d00a32dd1390b727ff4d29330a038423611da01268d8e1d2c0229e52a1098e751d4e6db73ef4ae862e1e96d38249883fcaf12b68f55ebb01035b34 Signed-off-by: Pasta <Pasta@dash.org> 31 -> 32 Signed-off-by: Pasta <Pasta@dash.org> * Merge #10123: Allow debug logs to be excluded from specified component 3bde556 Add -debugexclude option to switch off logging for specified components (John Newbery) Tree-SHA512: 30202e3f2085fc2fc5dd4bedb92988f4cb162c612a42cf8f6395a7da326f34975ddc347f82bc4ddca6c84c438dc0cc6e87869f90c7ff88105dbeaa52a947fa43 * bump to uint64_t due to added Dash codes Signed-off-by: Pasta <Pasta@dash.org> * bump to uint64_t due to added Dash codes cont. Signed-off-by: Pasta <Pasta@dash.org> * string -> BCLog format Signed-off-by: Pasta <Pasta@dash.org> * uint32_t -> uint64_t Signed-off-by: Pasta <Pasta@dash.org> * Fix CBatchedLogger * Fix most fDebug-s * Fix `debug` rpc * Fix BENCH and RAND conflicts * Add ALERT and use it * Update LogPrint-s in dash-specific code * Tweak few log categories Specifically: - use PRIVATESEND in `CPrivateSendClientManager::GetRandomNotUsedMasternode()` - use ZMQ in `CZMQPublishRawGovernanceVoteNotifier::NotifyGovernanceVote()` and `CZMQPublishRawGovernanceObjectNotifier::NotifyGovernanceObject()` * Drop no longer used MASTERNODE category * Merge #10153: logging: Fix off-by-one for shrinkdebugfile default faab624 logging: Fix off-by-one for shrinkdebugfile (MarcoFalke) Tree-SHA512: d6153e06067906172ff0611af9e585a3ecf0a7d56925b6ad7c12e75aa802441047059b9b6f6c78e79916c3f2abc8f1998bfd2d5b84201ec6421f727c08da3c21 * Shift dash-specific log categories to start from `1ul << 32` to avoid potential future conflicts with bitcoin ones * Fix `dash` category * remove debugCategories Signed-off-by: Pasta <Pasta@dash.org> * Prepend "std::" to find call * Check for BCLog::PRIVATESEND instead of logCategories != BCLog::NONE * Use BCLog::MNPAYMENTS category instead of checking for logCategories != BCLog::NONE * Move "End Dash" comment below "ALERT" When adding new entries here, we'll otherwise get confused with ordering and might end up forgetting that adding something Dash specific must continue with the bit after 43.
2019-05-22 23:51:39 +02:00
LogPrint(BCLog::CHAINLOCKS, "CChainLocksHandler::%s -- chainlock at height %d \n", __func__, pindexWalk->nHeight);
break;
}
auto txids = GetBlockTxs(pindexWalk->GetBlockHash());
if (!txids) {
pindexWalk = pindexWalk->pprev;
continue;
}
for (auto& txid : *txids) {
int64_t txAge = 0;
{
LOCK(cs);
auto it = txFirstSeenTime.find(txid);
if (it != txFirstSeenTime.end()) {
txAge = GetAdjustedTime() - it->second;
}
}
if (txAge < WAIT_FOR_ISLOCK_TIMEOUT && !quorumInstantSendManager->IsLocked(txid)) {
LogPrint(BCLog::CHAINLOCKS, "CChainLocksHandler::%s -- not signing block %s due to TX %s not being islocked and not old enough. age=%d\n", __func__,
pindexWalk->GetBlockHash().ToString(), txid.ToString(), txAge);
return;
}
}
pindexWalk = pindexWalk->pprev;
}
}
uint256 requestId = ::SerializeHash(std::make_pair(CLSIG_REQUESTID_PREFIX, pindex->nHeight));
uint256 msgHash = pindex->GetBlockHash();
2019-01-22 14:20:32 +01:00
{
LOCK(cs);
if (bestChainLock.nHeight >= pindex->nHeight) {
// might have happened while we didn't hold cs
2019-01-22 14:20:32 +01:00
return;
}
lastSignedHeight = pindex->nHeight;
2019-01-22 14:20:32 +01:00
lastSignedRequestId = requestId;
lastSignedMsgHash = msgHash;
}
quorumSigningManager->AsyncSignIfMember(Params().GetConsensus().llmqTypeChainLocks, requestId, msgHash);
2019-01-22 14:20:32 +01:00
}
void CChainLocksHandler::TransactionAddedToMempool(const CTransactionRef& tx, int64_t nAcceptTime)
2019-05-27 13:48:01 +02:00
{
if (tx->IsCoinBase() || tx->vin.empty()) {
return;
}
LOCK(cs);
txFirstSeenTime.emplace(tx->GetHash(), nAcceptTime);
2019-05-27 13:48:01 +02:00
}
void CChainLocksHandler::BlockConnected(const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindex, const std::vector<CTransactionRef>& vtxConflicted)
{
if (!masternodeSync.IsBlockchainSynced()) {
return;
}
// We listen for BlockConnected so that we can collect all TX ids of all included TXs of newly received blocks
// We need this information later when we try to sign a new tip, so that we can determine if all included TXs are
// safe.
LOCK(cs);
auto it = blockTxs.find(pindex->GetBlockHash());
if (it == blockTxs.end()) {
// we must create this entry even if there are no lockable transactions in the block, so that TrySignChainTip
// later knows about this block
it = blockTxs.emplace(pindex->GetBlockHash(), std::make_shared<std::unordered_set<uint256, StaticSaltedHasher>>()).first;
}
auto& txids = *it->second;
int64_t curTime = GetAdjustedTime();
for (const auto& tx : pblock->vtx) {
if (tx->IsCoinBase() || tx->vin.empty()) {
continue;
}
txids.emplace(tx->GetHash());
txFirstSeenTime.emplace(tx->GetHash(), curTime);
}
2019-05-27 13:48:01 +02:00
}
void CChainLocksHandler::BlockDisconnected(const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexDisconnected)
{
LOCK(cs);
blockTxs.erase(pindexDisconnected->GetBlockHash());
2019-05-27 13:48:01 +02:00
}
CChainLocksHandler::BlockTxs::mapped_type CChainLocksHandler::GetBlockTxs(const uint256& blockHash)
{
AssertLockNotHeld(cs);
AssertLockNotHeld(cs_main);
CChainLocksHandler::BlockTxs::mapped_type ret;
{
LOCK(cs);
auto it = blockTxs.find(blockHash);
if (it != blockTxs.end()) {
ret = it->second;
}
}
if (!ret) {
// This should only happen when freshly started.
// If running for some time, SyncTransaction should have been called before which fills blockTxs.
Backport Bitcoin#9424, Bitcoin#10123 and Bitcoin#10153 (#2918) * Contains dashification. disables `-debug dash` Merge #9424: Change LogAcceptCategory to use uint32_t rather than sets of strings. 6b3bb3d Change LogAcceptCategory to use uint32_t rather than sets of strings. (Gregory Maxwell) Tree-SHA512: ebb5bcf9a7d00a32dd1390b727ff4d29330a038423611da01268d8e1d2c0229e52a1098e751d4e6db73ef4ae862e1e96d38249883fcaf12b68f55ebb01035b34 Signed-off-by: Pasta <Pasta@dash.org> 31 -> 32 Signed-off-by: Pasta <Pasta@dash.org> * Merge #10123: Allow debug logs to be excluded from specified component 3bde556 Add -debugexclude option to switch off logging for specified components (John Newbery) Tree-SHA512: 30202e3f2085fc2fc5dd4bedb92988f4cb162c612a42cf8f6395a7da326f34975ddc347f82bc4ddca6c84c438dc0cc6e87869f90c7ff88105dbeaa52a947fa43 * bump to uint64_t due to added Dash codes Signed-off-by: Pasta <Pasta@dash.org> * bump to uint64_t due to added Dash codes cont. Signed-off-by: Pasta <Pasta@dash.org> * string -> BCLog format Signed-off-by: Pasta <Pasta@dash.org> * uint32_t -> uint64_t Signed-off-by: Pasta <Pasta@dash.org> * Fix CBatchedLogger * Fix most fDebug-s * Fix `debug` rpc * Fix BENCH and RAND conflicts * Add ALERT and use it * Update LogPrint-s in dash-specific code * Tweak few log categories Specifically: - use PRIVATESEND in `CPrivateSendClientManager::GetRandomNotUsedMasternode()` - use ZMQ in `CZMQPublishRawGovernanceVoteNotifier::NotifyGovernanceVote()` and `CZMQPublishRawGovernanceObjectNotifier::NotifyGovernanceObject()` * Drop no longer used MASTERNODE category * Merge #10153: logging: Fix off-by-one for shrinkdebugfile default faab624 logging: Fix off-by-one for shrinkdebugfile (MarcoFalke) Tree-SHA512: d6153e06067906172ff0611af9e585a3ecf0a7d56925b6ad7c12e75aa802441047059b9b6f6c78e79916c3f2abc8f1998bfd2d5b84201ec6421f727c08da3c21 * Shift dash-specific log categories to start from `1ul << 32` to avoid potential future conflicts with bitcoin ones * Fix `dash` category * remove debugCategories Signed-off-by: Pasta <Pasta@dash.org> * Prepend "std::" to find call * Check for BCLog::PRIVATESEND instead of logCategories != BCLog::NONE * Use BCLog::MNPAYMENTS category instead of checking for logCategories != BCLog::NONE * Move "End Dash" comment below "ALERT" When adding new entries here, we'll otherwise get confused with ordering and might end up forgetting that adding something Dash specific must continue with the bit after 43.
2019-05-22 23:51:39 +02:00
LogPrint(BCLog::CHAINLOCKS, "CChainLocksHandler::%s -- blockTxs for %s not found. Trying ReadBlockFromDisk\n", __func__,
blockHash.ToString());
uint32_t blockTime;
{
LOCK(cs_main);
auto pindex = LookupBlockIndex(blockHash);
CBlock block;
if (!ReadBlockFromDisk(block, pindex, Params().GetConsensus())) {
return nullptr;
}
ret = std::make_shared<std::unordered_set<uint256, StaticSaltedHasher>>();
for (auto& tx : block.vtx) {
if (tx->IsCoinBase() || tx->vin.empty()) {
continue;
}
ret->emplace(tx->GetHash());
}
blockTime = block.nTime;
}
LOCK(cs);
blockTxs.emplace(blockHash, ret);
for (auto& txid : *ret) {
txFirstSeenTime.emplace(txid, blockTime);
}
}
return ret;
}
bool CChainLocksHandler::IsTxSafeForMining(const uint256& txid)
{
if (!RejectConflictingBlocks()) {
return true;
}
Remove legacy InstantSend code (#3020) * Remove ppszTypeName from protocol.cpp and reimplement GetCommand This removes the need to carefully maintain ppszTypeName, which required correct order and also did not allow to permanently remove old message types. To get the command name for an INV type, GetCommandInternal uses a switch which needs to be maintained from now on. The way this is implemented also resembles the way it is implemented in Bitcoin today, but it's not identical. The original PR that introduced the switch case in Bitcoin was part of the Segwit changes and thus never got backported. I decided to implement it in a slightly different way that avoids throwing exceptions when an unknown INV type is encountered. IsKnownType will now also leverage GetCommandInternal() to figure out if the INV type is known locally. This has the side effect of old/legacy message types to return false from now on. We will depend on this side effect in later commits when we remove legacy InstantSend code. * Stop handling/relaying legacy IX messages When we receive an IX message, we simply treat it as a regular TX and relay it as such. We'll however still request IX messages when they are announced to us. We can't simply revert to requesting TX messages in this case as it might result in the other peer not answering due to the TX not being in mapRelay yet. We should at some point in the future completely drop handling of IX messages instead. * Remove IsNewInstantSendEnabled() and only use IsInstantSendEnabled() * Remove legacy InstantSend from GUI * Remove InstantSend from Bitcoin/Dash URIs * Remove legacy InstantSend from RPC commands * Remove legacy InstantSend from wallet * Remove legacy instantsend.h include * Remove legacy InstantSend from validation code * Completely remove remaining legacy InstantSend code * Remove now unused spork * Fix InstantSend related test failures * Remove now obsolete auto IS tests * Make spork2 and spork3 disabled by default This should have no influence on mainnet as these sporks are actually set there. This will however affect regtest, which shouldn't have LLMQ based InstantSend enabled by default. * Remove instantsend tests from dip3-deterministicmns.py These were only testing legacy InstantSend * Fix .QCheckBox#checkUsePrivateSend styling a bit * s/TXLEGACYLOCKREQUEST/LEGACYTXLOCKREQUEST/ * Revert "verified via InstantSend" back to "verified via LLMQ based InstantSend" * Use cmd == nullptr instead of !cmd * Remove last parameter from AvailableCoins call This was for fUseInstantSend which is not present anymore since rebase
2019-07-09 16:50:08 +02:00
if (!IsInstantSendEnabled()) {
return true;
}
int64_t txAge = 0;
{
LOCK(cs);
if (!isEnabled || !isEnforced) {
return true;
}
auto it = txFirstSeenTime.find(txid);
if (it != txFirstSeenTime.end()) {
txAge = GetAdjustedTime() - it->second;
}
}
if (txAge < WAIT_FOR_ISLOCK_TIMEOUT && !quorumInstantSendManager->IsLocked(txid)) {
return false;
}
return true;
}
2019-01-22 14:20:32 +01:00
// WARNING: cs_main and cs should not be held!
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
// This should also not be called from validation signals, as this might result in recursive calls
2019-01-22 14:20:32 +01:00
void CChainLocksHandler::EnforceBestChainLock()
{
AssertLockNotHeld(cs);
AssertLockNotHeld(cs_main);
std::shared_ptr<CChainLockSig> clsig;
2019-01-22 14:20:32 +01:00
const CBlockIndex* pindex;
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
const CBlockIndex* currentBestChainLockBlockIndex;
2019-01-22 14:20:32 +01:00
{
LOCK(cs);
if (!isEnforced) {
return;
}
clsig = std::make_shared<CChainLockSig>(bestChainLockWithKnownBlock);
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
pindex = currentBestChainLockBlockIndex = this->bestChainLockBlockIndex;
if (!currentBestChainLockBlockIndex) {
// we don't have the header/block, so we can't do anything right now
return;
}
2019-01-22 14:20:32 +01:00
}
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
bool activateNeeded;
CValidationState state;
const auto &params = Params();
2019-01-22 14:20:32 +01:00
{
LOCK(cs_main);
// Go backwards through the chain referenced by clsig until we find a block that is part of the main chain.
// For each of these blocks, check if there are children that are NOT part of the chain referenced by clsig
// and mark all of them as conflicting.
2019-01-22 14:20:32 +01:00
while (pindex && !chainActive.Contains(pindex)) {
// Mark all blocks that have the same prevBlockHash but are not equal to blockHash as conflicting
2019-01-22 14:20:32 +01:00
auto itp = mapPrevBlockIndex.equal_range(pindex->pprev->GetBlockHash());
for (auto jt = itp.first; jt != itp.second; ++jt) {
if (jt->second == pindex) {
continue;
}
if (!MarkConflictingBlock(state, params, jt->second)) {
LogPrintf("CChainLocksHandler::%s -- MarkConflictingBlock failed: %s\n", __func__, FormatStateMessage(state));
// This should not have happened and we are in a state were it's not safe to continue anymore
assert(false);
}
LogPrintf("CChainLocksHandler::%s -- CLSIG (%s) marked block %s as conflicting\n",
__func__, clsig->ToString(), jt->second->GetBlockHash().ToString());
2019-01-22 14:20:32 +01:00
}
pindex = pindex->pprev;
}
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
// In case blocks from the correct chain are invalid at the moment, reconsider them. The only case where this
// can happen right now is when missing superblock triggers caused the main chain to be dismissed first. When
// the trigger later appears, this should bring us to the correct chain eventually. Please note that this does
// NOT enforce invalid blocks in any way, it just causes re-validation.
if (!currentBestChainLockBlockIndex->IsValid()) {
ResetBlockFailureFlags(LookupBlockIndex(currentBestChainLockBlockIndex->GetBlockHash()));
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
}
activateNeeded = chainActive.Tip()->GetAncestor(currentBestChainLockBlockIndex->nHeight) != currentBestChainLockBlockIndex;
2019-01-22 14:20:32 +01:00
}
if (activateNeeded && !ActivateBestChain(state, params)) {
LogPrintf("CChainLocksHandler::%s -- ActivateBestChain failed: %s\n", __func__, FormatStateMessage(state));
Multiple fixes/refactorings for ChainLocks (#2765) * Print which DKG type aborted * Don't directly call EnforceBestChainLock and instead schedule the call Calling EnforceBestChainLock might result in switching chains, which in turn might end up calling signals, so we get into a recursive call chain. Better to call EnforceBestChainLock from the scheduler. * Regularly call EnforceBestChainLock and reset error flags on locked chain * Don't invalidate blocks from CChainLocksHandler::TrySignChainTip As the name of this method implies, it's trying to sign something and not enforce/invalidate chains. Invalidating blocks is the job of EnforceBestChainLock. * Only call ActivateBestChain when tip != best CL tip * Fix unprotected access of bestChainLockBlockIndex and bail out if its null * Fix ChainLocks tests after changes in enforcement handling * Only invoke NotifyChainLock signal from EnforceBestChainLock This ensures that NotifyChainLock is not prematurely called before the block is fully connected. * Use a mutex to ensure that only one thread executes ActivateBestChain It might happen that 2 threads enter ActivateBestChain at the same time start processing block by block, while randomly switching between threads so that sometimes one thread processed the block and then another one processes it. A mutex protects ActivateBestChain now against this race. * Rename local copy of bestChainLockBlockIndex to currentBestChainLockBlockIndex * Don't call ActivateBestChain when best CL is part of the main chain
2019-03-13 14:00:54 +01:00
}
const CBlockIndex* pindexNotify = nullptr;
{
LOCK(cs_main);
if (lastNotifyChainLockBlockIndex != currentBestChainLockBlockIndex &&
chainActive.Tip()->GetAncestor(currentBestChainLockBlockIndex->nHeight) == currentBestChainLockBlockIndex) {
lastNotifyChainLockBlockIndex = currentBestChainLockBlockIndex;
pindexNotify = currentBestChainLockBlockIndex;
}
}
if (pindexNotify) {
GetMainSignals().NotifyChainLock(pindexNotify, clsig);
2019-01-22 14:20:32 +01:00
}
}
void CChainLocksHandler::HandleNewRecoveredSig(const llmq::CRecoveredSig& recoveredSig)
{
CChainLockSig clsig;
{
LOCK(cs);
if (!isEnabled) {
return;
}
2019-01-22 14:20:32 +01:00
if (recoveredSig.id != lastSignedRequestId || recoveredSig.msgHash != lastSignedMsgHash) {
// this is not what we signed, so lets not create a CLSIG for it
return;
}
if (bestChainLock.nHeight >= lastSignedHeight) {
// already got the same or a better CLSIG through the CLSIG message
return;
}
clsig.nHeight = lastSignedHeight;
clsig.blockHash = lastSignedMsgHash;
clsig.sig = recoveredSig.sig.Get();
2019-01-22 14:20:32 +01:00
}
ProcessNewChainLock(-1, clsig, ::SerializeHash(clsig));
}
bool CChainLocksHandler::HasChainLock(int nHeight, const uint256& blockHash)
{
LOCK(cs);
return InternalHasChainLock(nHeight, blockHash);
}
bool CChainLocksHandler::InternalHasChainLock(int nHeight, const uint256& blockHash)
{
AssertLockHeld(cs);
if (!isEnforced) {
return false;
}
2019-01-22 14:20:32 +01:00
if (!bestChainLockBlockIndex) {
return false;
}
if (nHeight > bestChainLockBlockIndex->nHeight) {
return false;
}
if (nHeight == bestChainLockBlockIndex->nHeight) {
return blockHash == bestChainLockBlockIndex->GetBlockHash();
}
auto pAncestor = bestChainLockBlockIndex->GetAncestor(nHeight);
return pAncestor && pAncestor->GetBlockHash() == blockHash;
}
bool CChainLocksHandler::HasConflictingChainLock(int nHeight, const uint256& blockHash)
{
LOCK(cs);
return InternalHasConflictingChainLock(nHeight, blockHash);
}
bool CChainLocksHandler::InternalHasConflictingChainLock(int nHeight, const uint256& blockHash)
{
AssertLockHeld(cs);
if (!isEnforced) {
return false;
}
2019-01-22 14:20:32 +01:00
if (!bestChainLockBlockIndex) {
return false;
}
if (nHeight > bestChainLockBlockIndex->nHeight) {
return false;
}
if (nHeight == bestChainLockBlockIndex->nHeight) {
return blockHash != bestChainLockBlockIndex->GetBlockHash();
}
auto pAncestor = bestChainLockBlockIndex->GetAncestor(nHeight);
assert(pAncestor);
return pAncestor->GetBlockHash() != blockHash;
}
void CChainLocksHandler::Cleanup()
{
if (!masternodeSync.IsBlockchainSynced()) {
return;
}
2019-01-22 14:20:32 +01:00
{
LOCK(cs);
if (GetTimeMillis() - lastCleanupTime < CLEANUP_INTERVAL) {
return;
}
}
// need mempool.cs due to GetTransaction calls
LOCK2(cs_main, mempool.cs);
LOCK(cs);
2019-01-22 14:20:32 +01:00
for (auto it = seenChainLocks.begin(); it != seenChainLocks.end(); ) {
if (GetTimeMillis() - it->second >= CLEANUP_SEEN_TIMEOUT) {
it = seenChainLocks.erase(it);
} else {
++it;
}
}
for (auto it = blockTxs.begin(); it != blockTxs.end(); ) {
auto pindex = LookupBlockIndex(it->first);
if (InternalHasChainLock(pindex->nHeight, pindex->GetBlockHash())) {
for (auto& txid : *it->second) {
txFirstSeenTime.erase(txid);
}
it = blockTxs.erase(it);
} else if (InternalHasConflictingChainLock(pindex->nHeight, pindex->GetBlockHash())) {
it = blockTxs.erase(it);
} else {
++it;
}
}
for (auto it = txFirstSeenTime.begin(); it != txFirstSeenTime.end(); ) {
CTransactionRef tx;
uint256 hashBlock;
if (!GetTransaction(it->first, tx, Params().GetConsensus(), hashBlock)) {
// tx has vanished, probably due to conflicts
it = txFirstSeenTime.erase(it);
} else if (!hashBlock.IsNull()) {
auto pindex = LookupBlockIndex(hashBlock);
if (chainActive.Tip()->GetAncestor(pindex->nHeight) == pindex && chainActive.Height() - pindex->nHeight >= 6) {
// tx got confirmed >= 6 times, so we can stop keeping track of it
it = txFirstSeenTime.erase(it);
} else {
++it;
}
} else {
++it;
}
}
2019-01-22 14:20:32 +01:00
lastCleanupTime = GetTimeMillis();
}
bool AreChainLocksEnabled()
{
return sporkManager.IsSporkActive(SPORK_19_CHAINLOCKS_ENABLED);
}
} // namespace llmq