mirror of
https://github.com/dashpay/dash.git
synced 2024-12-25 20:12:57 +01:00
Merge pull request #5118
50f71cd
boost: code movement only: split CECKey into separate files (Cory Fields)bdaec6a
boost: remove CPubKey dependency from CECKey. Follow-up ofe405aa48
(Cory Fields)
This commit is contained in:
commit
068b7f8ee2
@ -84,6 +84,7 @@ BITCOIN_CORE_H = \
|
|||||||
core_io.h \
|
core_io.h \
|
||||||
crypter.h \
|
crypter.h \
|
||||||
db.h \
|
db.h \
|
||||||
|
ecwrapper.h \
|
||||||
hash.h \
|
hash.h \
|
||||||
init.h \
|
init.h \
|
||||||
key.h \
|
key.h \
|
||||||
@ -214,6 +215,7 @@ libbitcoin_common_a_SOURCES = \
|
|||||||
core.cpp \
|
core.cpp \
|
||||||
core_read.cpp \
|
core_read.cpp \
|
||||||
core_write.cpp \
|
core_write.cpp \
|
||||||
|
ecwrapper.cpp \
|
||||||
hash.cpp \
|
hash.cpp \
|
||||||
key.cpp \
|
key.cpp \
|
||||||
keystore.cpp \
|
keystore.cpp \
|
||||||
|
333
src/ecwrapper.cpp
Normal file
333
src/ecwrapper.cpp
Normal file
@ -0,0 +1,333 @@
|
|||||||
|
// Copyright (c) 2009-2014 The Bitcoin developers
|
||||||
|
// Distributed under the MIT/X11 software license, see the accompanying
|
||||||
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||||
|
|
||||||
|
#include "ecwrapper.h"
|
||||||
|
|
||||||
|
#include "serialize.h"
|
||||||
|
#include "uint256.h"
|
||||||
|
|
||||||
|
#include <openssl/bn.h>
|
||||||
|
#include <openssl/ecdsa.h>
|
||||||
|
#include <openssl/obj_mac.h>
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
// Generate a private key from just the secret parameter
|
||||||
|
int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key)
|
||||||
|
{
|
||||||
|
int ok = 0;
|
||||||
|
BN_CTX *ctx = NULL;
|
||||||
|
EC_POINT *pub_key = NULL;
|
||||||
|
|
||||||
|
if (!eckey) return 0;
|
||||||
|
|
||||||
|
const EC_GROUP *group = EC_KEY_get0_group(eckey);
|
||||||
|
|
||||||
|
if ((ctx = BN_CTX_new()) == NULL)
|
||||||
|
goto err;
|
||||||
|
|
||||||
|
pub_key = EC_POINT_new(group);
|
||||||
|
|
||||||
|
if (pub_key == NULL)
|
||||||
|
goto err;
|
||||||
|
|
||||||
|
if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx))
|
||||||
|
goto err;
|
||||||
|
|
||||||
|
EC_KEY_set_private_key(eckey,priv_key);
|
||||||
|
EC_KEY_set_public_key(eckey,pub_key);
|
||||||
|
|
||||||
|
ok = 1;
|
||||||
|
|
||||||
|
err:
|
||||||
|
|
||||||
|
if (pub_key)
|
||||||
|
EC_POINT_free(pub_key);
|
||||||
|
if (ctx != NULL)
|
||||||
|
BN_CTX_free(ctx);
|
||||||
|
|
||||||
|
return(ok);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields
|
||||||
|
// recid selects which key is recovered
|
||||||
|
// if check is non-zero, additional checks are performed
|
||||||
|
int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check)
|
||||||
|
{
|
||||||
|
if (!eckey) return 0;
|
||||||
|
|
||||||
|
int ret = 0;
|
||||||
|
BN_CTX *ctx = NULL;
|
||||||
|
|
||||||
|
BIGNUM *x = NULL;
|
||||||
|
BIGNUM *e = NULL;
|
||||||
|
BIGNUM *order = NULL;
|
||||||
|
BIGNUM *sor = NULL;
|
||||||
|
BIGNUM *eor = NULL;
|
||||||
|
BIGNUM *field = NULL;
|
||||||
|
EC_POINT *R = NULL;
|
||||||
|
EC_POINT *O = NULL;
|
||||||
|
EC_POINT *Q = NULL;
|
||||||
|
BIGNUM *rr = NULL;
|
||||||
|
BIGNUM *zero = NULL;
|
||||||
|
int n = 0;
|
||||||
|
int i = recid / 2;
|
||||||
|
|
||||||
|
const EC_GROUP *group = EC_KEY_get0_group(eckey);
|
||||||
|
if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; }
|
||||||
|
BN_CTX_start(ctx);
|
||||||
|
order = BN_CTX_get(ctx);
|
||||||
|
if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; }
|
||||||
|
x = BN_CTX_get(ctx);
|
||||||
|
if (!BN_copy(x, order)) { ret=-1; goto err; }
|
||||||
|
if (!BN_mul_word(x, i)) { ret=-1; goto err; }
|
||||||
|
if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; }
|
||||||
|
field = BN_CTX_get(ctx);
|
||||||
|
if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; }
|
||||||
|
if (BN_cmp(x, field) >= 0) { ret=0; goto err; }
|
||||||
|
if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
|
||||||
|
if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; }
|
||||||
|
if (check)
|
||||||
|
{
|
||||||
|
if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
|
||||||
|
if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; }
|
||||||
|
if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; }
|
||||||
|
}
|
||||||
|
if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
|
||||||
|
n = EC_GROUP_get_degree(group);
|
||||||
|
e = BN_CTX_get(ctx);
|
||||||
|
if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; }
|
||||||
|
if (8*msglen > n) BN_rshift(e, e, 8-(n & 7));
|
||||||
|
zero = BN_CTX_get(ctx);
|
||||||
|
if (!BN_zero(zero)) { ret=-1; goto err; }
|
||||||
|
if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; }
|
||||||
|
rr = BN_CTX_get(ctx);
|
||||||
|
if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; }
|
||||||
|
sor = BN_CTX_get(ctx);
|
||||||
|
if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; }
|
||||||
|
eor = BN_CTX_get(ctx);
|
||||||
|
if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; }
|
||||||
|
if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; }
|
||||||
|
if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; }
|
||||||
|
|
||||||
|
ret = 1;
|
||||||
|
|
||||||
|
err:
|
||||||
|
if (ctx) {
|
||||||
|
BN_CTX_end(ctx);
|
||||||
|
BN_CTX_free(ctx);
|
||||||
|
}
|
||||||
|
if (R != NULL) EC_POINT_free(R);
|
||||||
|
if (O != NULL) EC_POINT_free(O);
|
||||||
|
if (Q != NULL) EC_POINT_free(Q);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // anon namespace
|
||||||
|
|
||||||
|
CECKey::CECKey() {
|
||||||
|
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
|
||||||
|
assert(pkey != NULL);
|
||||||
|
}
|
||||||
|
|
||||||
|
CECKey::~CECKey() {
|
||||||
|
EC_KEY_free(pkey);
|
||||||
|
}
|
||||||
|
|
||||||
|
void CECKey::GetSecretBytes(unsigned char vch[32]) const {
|
||||||
|
const BIGNUM *bn = EC_KEY_get0_private_key(pkey);
|
||||||
|
assert(bn);
|
||||||
|
int nBytes = BN_num_bytes(bn);
|
||||||
|
int n=BN_bn2bin(bn,&vch[32 - nBytes]);
|
||||||
|
assert(n == nBytes);
|
||||||
|
memset(vch, 0, 32 - nBytes);
|
||||||
|
}
|
||||||
|
|
||||||
|
void CECKey::SetSecretBytes(const unsigned char vch[32]) {
|
||||||
|
bool ret;
|
||||||
|
BIGNUM bn;
|
||||||
|
BN_init(&bn);
|
||||||
|
ret = BN_bin2bn(vch, 32, &bn) != NULL;
|
||||||
|
assert(ret);
|
||||||
|
ret = EC_KEY_regenerate_key(pkey, &bn) != 0;
|
||||||
|
assert(ret);
|
||||||
|
BN_clear_free(&bn);
|
||||||
|
}
|
||||||
|
|
||||||
|
int CECKey::GetPrivKeySize(bool fCompressed) {
|
||||||
|
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
|
||||||
|
return i2d_ECPrivateKey(pkey, NULL);
|
||||||
|
}
|
||||||
|
int CECKey::GetPrivKey(unsigned char* privkey, bool fCompressed) {
|
||||||
|
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
|
||||||
|
return i2d_ECPrivateKey(pkey, &privkey);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CECKey::SetPrivKey(const unsigned char* privkey, size_t size, bool fSkipCheck) {
|
||||||
|
if (d2i_ECPrivateKey(&pkey, &privkey, size)) {
|
||||||
|
if(fSkipCheck)
|
||||||
|
return true;
|
||||||
|
|
||||||
|
// d2i_ECPrivateKey returns true if parsing succeeds.
|
||||||
|
// This doesn't necessarily mean the key is valid.
|
||||||
|
if (EC_KEY_check_key(pkey))
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
void CECKey::GetPubKey(std::vector<unsigned char> &pubkey, bool fCompressed) {
|
||||||
|
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
|
||||||
|
int nSize = i2o_ECPublicKey(pkey, NULL);
|
||||||
|
assert(nSize);
|
||||||
|
assert(nSize <= 65);
|
||||||
|
pubkey.clear();
|
||||||
|
pubkey.resize(nSize);
|
||||||
|
unsigned char *pbegin(begin_ptr(pubkey));
|
||||||
|
int nSize2 = i2o_ECPublicKey(pkey, &pbegin);
|
||||||
|
assert(nSize == nSize2);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CECKey::SetPubKey(const unsigned char* pubkey, size_t size) {
|
||||||
|
return o2i_ECPublicKey(&pkey, &pubkey, size) != NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CECKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool lowS) {
|
||||||
|
vchSig.clear();
|
||||||
|
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
|
||||||
|
if (sig == NULL)
|
||||||
|
return false;
|
||||||
|
BN_CTX *ctx = BN_CTX_new();
|
||||||
|
BN_CTX_start(ctx);
|
||||||
|
const EC_GROUP *group = EC_KEY_get0_group(pkey);
|
||||||
|
BIGNUM *order = BN_CTX_get(ctx);
|
||||||
|
BIGNUM *halforder = BN_CTX_get(ctx);
|
||||||
|
EC_GROUP_get_order(group, order, ctx);
|
||||||
|
BN_rshift1(halforder, order);
|
||||||
|
if (lowS && BN_cmp(sig->s, halforder) > 0) {
|
||||||
|
// enforce low S values, by negating the value (modulo the order) if above order/2.
|
||||||
|
BN_sub(sig->s, order, sig->s);
|
||||||
|
}
|
||||||
|
BN_CTX_end(ctx);
|
||||||
|
BN_CTX_free(ctx);
|
||||||
|
unsigned int nSize = ECDSA_size(pkey);
|
||||||
|
vchSig.resize(nSize); // Make sure it is big enough
|
||||||
|
unsigned char *pos = &vchSig[0];
|
||||||
|
nSize = i2d_ECDSA_SIG(sig, &pos);
|
||||||
|
ECDSA_SIG_free(sig);
|
||||||
|
vchSig.resize(nSize); // Shrink to fit actual size
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CECKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
|
||||||
|
// -1 = error, 0 = bad sig, 1 = good
|
||||||
|
if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1)
|
||||||
|
return false;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CECKey::SignCompact(const uint256 &hash, unsigned char *p64, int &rec) {
|
||||||
|
bool fOk = false;
|
||||||
|
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
|
||||||
|
if (sig==NULL)
|
||||||
|
return false;
|
||||||
|
memset(p64, 0, 64);
|
||||||
|
int nBitsR = BN_num_bits(sig->r);
|
||||||
|
int nBitsS = BN_num_bits(sig->s);
|
||||||
|
if (nBitsR <= 256 && nBitsS <= 256) {
|
||||||
|
std::vector<unsigned char> pubkey;
|
||||||
|
GetPubKey(pubkey, true);
|
||||||
|
for (int i=0; i<4; i++) {
|
||||||
|
CECKey keyRec;
|
||||||
|
if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1) {
|
||||||
|
std::vector<unsigned char> pubkeyRec;
|
||||||
|
keyRec.GetPubKey(pubkeyRec, true);
|
||||||
|
if (pubkeyRec == pubkey) {
|
||||||
|
rec = i;
|
||||||
|
fOk = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
assert(fOk);
|
||||||
|
BN_bn2bin(sig->r,&p64[32-(nBitsR+7)/8]);
|
||||||
|
BN_bn2bin(sig->s,&p64[64-(nBitsS+7)/8]);
|
||||||
|
}
|
||||||
|
ECDSA_SIG_free(sig);
|
||||||
|
return fOk;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CECKey::Recover(const uint256 &hash, const unsigned char *p64, int rec)
|
||||||
|
{
|
||||||
|
if (rec<0 || rec>=3)
|
||||||
|
return false;
|
||||||
|
ECDSA_SIG *sig = ECDSA_SIG_new();
|
||||||
|
BN_bin2bn(&p64[0], 32, sig->r);
|
||||||
|
BN_bin2bn(&p64[32], 32, sig->s);
|
||||||
|
bool ret = ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), rec, 0) == 1;
|
||||||
|
ECDSA_SIG_free(sig);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CECKey::TweakSecret(unsigned char vchSecretOut[32], const unsigned char vchSecretIn[32], const unsigned char vchTweak[32])
|
||||||
|
{
|
||||||
|
bool ret = true;
|
||||||
|
BN_CTX *ctx = BN_CTX_new();
|
||||||
|
BN_CTX_start(ctx);
|
||||||
|
BIGNUM *bnSecret = BN_CTX_get(ctx);
|
||||||
|
BIGNUM *bnTweak = BN_CTX_get(ctx);
|
||||||
|
BIGNUM *bnOrder = BN_CTX_get(ctx);
|
||||||
|
EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp256k1);
|
||||||
|
EC_GROUP_get_order(group, bnOrder, ctx); // what a grossly inefficient way to get the (constant) group order...
|
||||||
|
BN_bin2bn(vchTweak, 32, bnTweak);
|
||||||
|
if (BN_cmp(bnTweak, bnOrder) >= 0)
|
||||||
|
ret = false; // extremely unlikely
|
||||||
|
BN_bin2bn(vchSecretIn, 32, bnSecret);
|
||||||
|
BN_add(bnSecret, bnSecret, bnTweak);
|
||||||
|
BN_nnmod(bnSecret, bnSecret, bnOrder, ctx);
|
||||||
|
if (BN_is_zero(bnSecret))
|
||||||
|
ret = false; // ridiculously unlikely
|
||||||
|
int nBits = BN_num_bits(bnSecret);
|
||||||
|
memset(vchSecretOut, 0, 32);
|
||||||
|
BN_bn2bin(bnSecret, &vchSecretOut[32-(nBits+7)/8]);
|
||||||
|
EC_GROUP_free(group);
|
||||||
|
BN_CTX_end(ctx);
|
||||||
|
BN_CTX_free(ctx);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CECKey::TweakPublic(const unsigned char vchTweak[32]) {
|
||||||
|
bool ret = true;
|
||||||
|
BN_CTX *ctx = BN_CTX_new();
|
||||||
|
BN_CTX_start(ctx);
|
||||||
|
BIGNUM *bnTweak = BN_CTX_get(ctx);
|
||||||
|
BIGNUM *bnOrder = BN_CTX_get(ctx);
|
||||||
|
BIGNUM *bnOne = BN_CTX_get(ctx);
|
||||||
|
const EC_GROUP *group = EC_KEY_get0_group(pkey);
|
||||||
|
EC_GROUP_get_order(group, bnOrder, ctx); // what a grossly inefficient way to get the (constant) group order...
|
||||||
|
BN_bin2bn(vchTweak, 32, bnTweak);
|
||||||
|
if (BN_cmp(bnTweak, bnOrder) >= 0)
|
||||||
|
ret = false; // extremely unlikely
|
||||||
|
EC_POINT *point = EC_POINT_dup(EC_KEY_get0_public_key(pkey), group);
|
||||||
|
BN_one(bnOne);
|
||||||
|
EC_POINT_mul(group, point, bnTweak, point, bnOne, ctx);
|
||||||
|
if (EC_POINT_is_at_infinity(group, point))
|
||||||
|
ret = false; // ridiculously unlikely
|
||||||
|
EC_KEY_set_public_key(pkey, point);
|
||||||
|
EC_POINT_free(point);
|
||||||
|
BN_CTX_end(ctx);
|
||||||
|
BN_CTX_free(ctx);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CECKey::SanityCheck()
|
||||||
|
{
|
||||||
|
EC_KEY *pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
|
||||||
|
if(pkey == NULL)
|
||||||
|
return false;
|
||||||
|
EC_KEY_free(pkey);
|
||||||
|
|
||||||
|
// TODO Is there more EC functionality that could be missing?
|
||||||
|
return true;
|
||||||
|
}
|
46
src/ecwrapper.h
Normal file
46
src/ecwrapper.h
Normal file
@ -0,0 +1,46 @@
|
|||||||
|
// Copyright (c) 2009-2014 The Bitcoin developers
|
||||||
|
// Distributed under the MIT/X11 software license, see the accompanying
|
||||||
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||||
|
|
||||||
|
#ifndef BITCOIN_EC_WRAPPER_H
|
||||||
|
#define BITCOIN_EC_WRAPPER_H
|
||||||
|
|
||||||
|
#include <cstddef>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include <openssl/ec.h>
|
||||||
|
|
||||||
|
class uint256;
|
||||||
|
|
||||||
|
// RAII Wrapper around OpenSSL's EC_KEY
|
||||||
|
class CECKey {
|
||||||
|
private:
|
||||||
|
EC_KEY *pkey;
|
||||||
|
|
||||||
|
public:
|
||||||
|
CECKey();
|
||||||
|
~CECKey();
|
||||||
|
|
||||||
|
void GetSecretBytes(unsigned char vch[32]) const;
|
||||||
|
void SetSecretBytes(const unsigned char vch[32]);
|
||||||
|
int GetPrivKeySize(bool fCompressed);
|
||||||
|
int GetPrivKey(unsigned char* privkey, bool fCompressed);
|
||||||
|
bool SetPrivKey(const unsigned char* privkey, size_t size, bool fSkipCheck=false);
|
||||||
|
void GetPubKey(std::vector<unsigned char>& pubkey, bool fCompressed);
|
||||||
|
bool SetPubKey(const unsigned char* pubkey, size_t size);
|
||||||
|
bool Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool lowS);
|
||||||
|
bool Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig);
|
||||||
|
bool SignCompact(const uint256 &hash, unsigned char *p64, int &rec);
|
||||||
|
|
||||||
|
// reconstruct public key from a compact signature
|
||||||
|
// This is only slightly more CPU intensive than just verifying it.
|
||||||
|
// If this function succeeds, the recovered public key is guaranteed to be valid
|
||||||
|
// (the signature is a valid signature of the given data for that key)
|
||||||
|
bool Recover(const uint256 &hash, const unsigned char *p64, int rec);
|
||||||
|
|
||||||
|
static bool TweakSecret(unsigned char vchSecretOut[32], const unsigned char vchSecretIn[32], const unsigned char vchTweak[32]);
|
||||||
|
bool TweakPublic(const unsigned char vchTweak[32]);
|
||||||
|
static bool SanityCheck();
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif
|
366
src/key.cpp
366
src/key.cpp
@ -10,12 +10,10 @@
|
|||||||
#ifdef USE_SECP256K1
|
#ifdef USE_SECP256K1
|
||||||
#include <secp256k1.h>
|
#include <secp256k1.h>
|
||||||
#else
|
#else
|
||||||
#include <openssl/bn.h>
|
#include "ecwrapper.h"
|
||||||
#include <openssl/ecdsa.h>
|
|
||||||
#include <openssl/obj_mac.h>
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// anonymous namespace with local implementation code (OpenSSL interaction)
|
// anonymous namespace
|
||||||
namespace {
|
namespace {
|
||||||
|
|
||||||
#ifdef USE_SECP256K1
|
#ifdef USE_SECP256K1
|
||||||
@ -31,326 +29,6 @@ public:
|
|||||||
};
|
};
|
||||||
static CSecp256k1Init instance_of_csecp256k1;
|
static CSecp256k1Init instance_of_csecp256k1;
|
||||||
|
|
||||||
#else
|
|
||||||
|
|
||||||
// Generate a private key from just the secret parameter
|
|
||||||
int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key)
|
|
||||||
{
|
|
||||||
int ok = 0;
|
|
||||||
BN_CTX *ctx = NULL;
|
|
||||||
EC_POINT *pub_key = NULL;
|
|
||||||
|
|
||||||
if (!eckey) return 0;
|
|
||||||
|
|
||||||
const EC_GROUP *group = EC_KEY_get0_group(eckey);
|
|
||||||
|
|
||||||
if ((ctx = BN_CTX_new()) == NULL)
|
|
||||||
goto err;
|
|
||||||
|
|
||||||
pub_key = EC_POINT_new(group);
|
|
||||||
|
|
||||||
if (pub_key == NULL)
|
|
||||||
goto err;
|
|
||||||
|
|
||||||
if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx))
|
|
||||||
goto err;
|
|
||||||
|
|
||||||
EC_KEY_set_private_key(eckey,priv_key);
|
|
||||||
EC_KEY_set_public_key(eckey,pub_key);
|
|
||||||
|
|
||||||
ok = 1;
|
|
||||||
|
|
||||||
err:
|
|
||||||
|
|
||||||
if (pub_key)
|
|
||||||
EC_POINT_free(pub_key);
|
|
||||||
if (ctx != NULL)
|
|
||||||
BN_CTX_free(ctx);
|
|
||||||
|
|
||||||
return(ok);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields
|
|
||||||
// recid selects which key is recovered
|
|
||||||
// if check is non-zero, additional checks are performed
|
|
||||||
int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check)
|
|
||||||
{
|
|
||||||
if (!eckey) return 0;
|
|
||||||
|
|
||||||
int ret = 0;
|
|
||||||
BN_CTX *ctx = NULL;
|
|
||||||
|
|
||||||
BIGNUM *x = NULL;
|
|
||||||
BIGNUM *e = NULL;
|
|
||||||
BIGNUM *order = NULL;
|
|
||||||
BIGNUM *sor = NULL;
|
|
||||||
BIGNUM *eor = NULL;
|
|
||||||
BIGNUM *field = NULL;
|
|
||||||
EC_POINT *R = NULL;
|
|
||||||
EC_POINT *O = NULL;
|
|
||||||
EC_POINT *Q = NULL;
|
|
||||||
BIGNUM *rr = NULL;
|
|
||||||
BIGNUM *zero = NULL;
|
|
||||||
int n = 0;
|
|
||||||
int i = recid / 2;
|
|
||||||
|
|
||||||
const EC_GROUP *group = EC_KEY_get0_group(eckey);
|
|
||||||
if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; }
|
|
||||||
BN_CTX_start(ctx);
|
|
||||||
order = BN_CTX_get(ctx);
|
|
||||||
if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; }
|
|
||||||
x = BN_CTX_get(ctx);
|
|
||||||
if (!BN_copy(x, order)) { ret=-1; goto err; }
|
|
||||||
if (!BN_mul_word(x, i)) { ret=-1; goto err; }
|
|
||||||
if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; }
|
|
||||||
field = BN_CTX_get(ctx);
|
|
||||||
if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; }
|
|
||||||
if (BN_cmp(x, field) >= 0) { ret=0; goto err; }
|
|
||||||
if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
|
|
||||||
if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; }
|
|
||||||
if (check)
|
|
||||||
{
|
|
||||||
if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
|
|
||||||
if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; }
|
|
||||||
if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; }
|
|
||||||
}
|
|
||||||
if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
|
|
||||||
n = EC_GROUP_get_degree(group);
|
|
||||||
e = BN_CTX_get(ctx);
|
|
||||||
if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; }
|
|
||||||
if (8*msglen > n) BN_rshift(e, e, 8-(n & 7));
|
|
||||||
zero = BN_CTX_get(ctx);
|
|
||||||
if (!BN_zero(zero)) { ret=-1; goto err; }
|
|
||||||
if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; }
|
|
||||||
rr = BN_CTX_get(ctx);
|
|
||||||
if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; }
|
|
||||||
sor = BN_CTX_get(ctx);
|
|
||||||
if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; }
|
|
||||||
eor = BN_CTX_get(ctx);
|
|
||||||
if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; }
|
|
||||||
if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; }
|
|
||||||
if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; }
|
|
||||||
|
|
||||||
ret = 1;
|
|
||||||
|
|
||||||
err:
|
|
||||||
if (ctx) {
|
|
||||||
BN_CTX_end(ctx);
|
|
||||||
BN_CTX_free(ctx);
|
|
||||||
}
|
|
||||||
if (R != NULL) EC_POINT_free(R);
|
|
||||||
if (O != NULL) EC_POINT_free(O);
|
|
||||||
if (Q != NULL) EC_POINT_free(Q);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
// RAII Wrapper around OpenSSL's EC_KEY
|
|
||||||
class CECKey {
|
|
||||||
private:
|
|
||||||
EC_KEY *pkey;
|
|
||||||
|
|
||||||
public:
|
|
||||||
CECKey() {
|
|
||||||
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
|
|
||||||
assert(pkey != NULL);
|
|
||||||
}
|
|
||||||
|
|
||||||
~CECKey() {
|
|
||||||
EC_KEY_free(pkey);
|
|
||||||
}
|
|
||||||
|
|
||||||
void GetSecretBytes(unsigned char vch[32]) const {
|
|
||||||
const BIGNUM *bn = EC_KEY_get0_private_key(pkey);
|
|
||||||
assert(bn);
|
|
||||||
int nBytes = BN_num_bytes(bn);
|
|
||||||
int n=BN_bn2bin(bn,&vch[32 - nBytes]);
|
|
||||||
assert(n == nBytes);
|
|
||||||
memset(vch, 0, 32 - nBytes);
|
|
||||||
}
|
|
||||||
|
|
||||||
void SetSecretBytes(const unsigned char vch[32]) {
|
|
||||||
bool ret;
|
|
||||||
BIGNUM bn;
|
|
||||||
BN_init(&bn);
|
|
||||||
ret = BN_bin2bn(vch, 32, &bn) != NULL;
|
|
||||||
assert(ret);
|
|
||||||
ret = EC_KEY_regenerate_key(pkey, &bn) != 0;
|
|
||||||
assert(ret);
|
|
||||||
BN_clear_free(&bn);
|
|
||||||
}
|
|
||||||
|
|
||||||
int GetPrivKeySize(bool fCompressed) {
|
|
||||||
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
|
|
||||||
return i2d_ECPrivateKey(pkey, NULL);
|
|
||||||
}
|
|
||||||
int GetPrivKey(unsigned char* privkey, bool fCompressed) {
|
|
||||||
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
|
|
||||||
return i2d_ECPrivateKey(pkey, &privkey);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool SetPrivKey(const unsigned char* privkey, size_t size, bool fSkipCheck=false) {
|
|
||||||
if (d2i_ECPrivateKey(&pkey, &privkey, size)) {
|
|
||||||
if(fSkipCheck)
|
|
||||||
return true;
|
|
||||||
|
|
||||||
// d2i_ECPrivateKey returns true if parsing succeeds.
|
|
||||||
// This doesn't necessarily mean the key is valid.
|
|
||||||
if (EC_KEY_check_key(pkey))
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
void GetPubKey(CPubKey &pubkey, bool fCompressed) {
|
|
||||||
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
|
|
||||||
int nSize = i2o_ECPublicKey(pkey, NULL);
|
|
||||||
assert(nSize);
|
|
||||||
assert(nSize <= 65);
|
|
||||||
unsigned char c[65];
|
|
||||||
unsigned char *pbegin = c;
|
|
||||||
int nSize2 = i2o_ECPublicKey(pkey, &pbegin);
|
|
||||||
assert(nSize == nSize2);
|
|
||||||
pubkey.Set(&c[0], &c[nSize]);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool SetPubKey(const CPubKey &pubkey) {
|
|
||||||
const unsigned char* pbegin = pubkey.begin();
|
|
||||||
return o2i_ECPublicKey(&pkey, &pbegin, pubkey.size()) != NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool lowS) {
|
|
||||||
vchSig.clear();
|
|
||||||
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
|
|
||||||
if (sig == NULL)
|
|
||||||
return false;
|
|
||||||
BN_CTX *ctx = BN_CTX_new();
|
|
||||||
BN_CTX_start(ctx);
|
|
||||||
const EC_GROUP *group = EC_KEY_get0_group(pkey);
|
|
||||||
BIGNUM *order = BN_CTX_get(ctx);
|
|
||||||
BIGNUM *halforder = BN_CTX_get(ctx);
|
|
||||||
EC_GROUP_get_order(group, order, ctx);
|
|
||||||
BN_rshift1(halforder, order);
|
|
||||||
if (lowS && BN_cmp(sig->s, halforder) > 0) {
|
|
||||||
// enforce low S values, by negating the value (modulo the order) if above order/2.
|
|
||||||
BN_sub(sig->s, order, sig->s);
|
|
||||||
}
|
|
||||||
BN_CTX_end(ctx);
|
|
||||||
BN_CTX_free(ctx);
|
|
||||||
unsigned int nSize = ECDSA_size(pkey);
|
|
||||||
vchSig.resize(nSize); // Make sure it is big enough
|
|
||||||
unsigned char *pos = &vchSig[0];
|
|
||||||
nSize = i2d_ECDSA_SIG(sig, &pos);
|
|
||||||
ECDSA_SIG_free(sig);
|
|
||||||
vchSig.resize(nSize); // Shrink to fit actual size
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
|
|
||||||
// -1 = error, 0 = bad sig, 1 = good
|
|
||||||
if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1)
|
|
||||||
return false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool SignCompact(const uint256 &hash, unsigned char *p64, int &rec) {
|
|
||||||
bool fOk = false;
|
|
||||||
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
|
|
||||||
if (sig==NULL)
|
|
||||||
return false;
|
|
||||||
memset(p64, 0, 64);
|
|
||||||
int nBitsR = BN_num_bits(sig->r);
|
|
||||||
int nBitsS = BN_num_bits(sig->s);
|
|
||||||
if (nBitsR <= 256 && nBitsS <= 256) {
|
|
||||||
CPubKey pubkey;
|
|
||||||
GetPubKey(pubkey, true);
|
|
||||||
for (int i=0; i<4; i++) {
|
|
||||||
CECKey keyRec;
|
|
||||||
if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1) {
|
|
||||||
CPubKey pubkeyRec;
|
|
||||||
keyRec.GetPubKey(pubkeyRec, true);
|
|
||||||
if (pubkeyRec == pubkey) {
|
|
||||||
rec = i;
|
|
||||||
fOk = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
assert(fOk);
|
|
||||||
BN_bn2bin(sig->r,&p64[32-(nBitsR+7)/8]);
|
|
||||||
BN_bn2bin(sig->s,&p64[64-(nBitsS+7)/8]);
|
|
||||||
}
|
|
||||||
ECDSA_SIG_free(sig);
|
|
||||||
return fOk;
|
|
||||||
}
|
|
||||||
|
|
||||||
// reconstruct public key from a compact signature
|
|
||||||
// This is only slightly more CPU intensive than just verifying it.
|
|
||||||
// If this function succeeds, the recovered public key is guaranteed to be valid
|
|
||||||
// (the signature is a valid signature of the given data for that key)
|
|
||||||
bool Recover(const uint256 &hash, const unsigned char *p64, int rec)
|
|
||||||
{
|
|
||||||
if (rec<0 || rec>=3)
|
|
||||||
return false;
|
|
||||||
ECDSA_SIG *sig = ECDSA_SIG_new();
|
|
||||||
BN_bin2bn(&p64[0], 32, sig->r);
|
|
||||||
BN_bin2bn(&p64[32], 32, sig->s);
|
|
||||||
bool ret = ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), rec, 0) == 1;
|
|
||||||
ECDSA_SIG_free(sig);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
static bool TweakSecret(unsigned char vchSecretOut[32], const unsigned char vchSecretIn[32], const unsigned char vchTweak[32])
|
|
||||||
{
|
|
||||||
bool ret = true;
|
|
||||||
BN_CTX *ctx = BN_CTX_new();
|
|
||||||
BN_CTX_start(ctx);
|
|
||||||
BIGNUM *bnSecret = BN_CTX_get(ctx);
|
|
||||||
BIGNUM *bnTweak = BN_CTX_get(ctx);
|
|
||||||
BIGNUM *bnOrder = BN_CTX_get(ctx);
|
|
||||||
EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp256k1);
|
|
||||||
EC_GROUP_get_order(group, bnOrder, ctx); // what a grossly inefficient way to get the (constant) group order...
|
|
||||||
BN_bin2bn(vchTweak, 32, bnTweak);
|
|
||||||
if (BN_cmp(bnTweak, bnOrder) >= 0)
|
|
||||||
ret = false; // extremely unlikely
|
|
||||||
BN_bin2bn(vchSecretIn, 32, bnSecret);
|
|
||||||
BN_add(bnSecret, bnSecret, bnTweak);
|
|
||||||
BN_nnmod(bnSecret, bnSecret, bnOrder, ctx);
|
|
||||||
if (BN_is_zero(bnSecret))
|
|
||||||
ret = false; // ridiculously unlikely
|
|
||||||
int nBits = BN_num_bits(bnSecret);
|
|
||||||
memset(vchSecretOut, 0, 32);
|
|
||||||
BN_bn2bin(bnSecret, &vchSecretOut[32-(nBits+7)/8]);
|
|
||||||
EC_GROUP_free(group);
|
|
||||||
BN_CTX_end(ctx);
|
|
||||||
BN_CTX_free(ctx);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool TweakPublic(const unsigned char vchTweak[32]) {
|
|
||||||
bool ret = true;
|
|
||||||
BN_CTX *ctx = BN_CTX_new();
|
|
||||||
BN_CTX_start(ctx);
|
|
||||||
BIGNUM *bnTweak = BN_CTX_get(ctx);
|
|
||||||
BIGNUM *bnOrder = BN_CTX_get(ctx);
|
|
||||||
BIGNUM *bnOne = BN_CTX_get(ctx);
|
|
||||||
const EC_GROUP *group = EC_KEY_get0_group(pkey);
|
|
||||||
EC_GROUP_get_order(group, bnOrder, ctx); // what a grossly inefficient way to get the (constant) group order...
|
|
||||||
BN_bin2bn(vchTweak, 32, bnTweak);
|
|
||||||
if (BN_cmp(bnTweak, bnOrder) >= 0)
|
|
||||||
ret = false; // extremely unlikely
|
|
||||||
EC_POINT *point = EC_POINT_dup(EC_KEY_get0_public_key(pkey), group);
|
|
||||||
BN_one(bnOne);
|
|
||||||
EC_POINT_mul(group, point, bnTweak, point, bnOne, ctx);
|
|
||||||
if (EC_POINT_is_at_infinity(group, point))
|
|
||||||
ret = false; // ridiculously unlikely
|
|
||||||
EC_KEY_set_public_key(pkey, point);
|
|
||||||
EC_POINT_free(point);
|
|
||||||
BN_CTX_end(ctx);
|
|
||||||
BN_CTX_free(ctx);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
int CompareBigEndian(const unsigned char *c1, size_t c1len, const unsigned char *c2, size_t c2len) {
|
int CompareBigEndian(const unsigned char *c1, size_t c1len, const unsigned char *c2, size_t c2len) {
|
||||||
@ -455,19 +133,21 @@ CPrivKey CKey::GetPrivKey() const {
|
|||||||
|
|
||||||
CPubKey CKey::GetPubKey() const {
|
CPubKey CKey::GetPubKey() const {
|
||||||
assert(fValid);
|
assert(fValid);
|
||||||
CPubKey pubkey;
|
CPubKey result;
|
||||||
#ifdef USE_SECP256K1
|
#ifdef USE_SECP256K1
|
||||||
int clen = 65;
|
int clen = 65;
|
||||||
int ret = secp256k1_ecdsa_pubkey_create((unsigned char*)pubkey.begin(), &clen, begin(), fCompressed);
|
int ret = secp256k1_ecdsa_pubkey_create((unsigned char*)result.begin(), &clen, begin(), fCompressed);
|
||||||
|
assert((int)result.size() == clen);
|
||||||
assert(ret);
|
assert(ret);
|
||||||
assert(pubkey.IsValid());
|
|
||||||
assert((int)pubkey.size() == clen);
|
|
||||||
#else
|
#else
|
||||||
|
std::vector<unsigned char> pubkey;
|
||||||
CECKey key;
|
CECKey key;
|
||||||
key.SetSecretBytes(vch);
|
key.SetSecretBytes(vch);
|
||||||
key.GetPubKey(pubkey, fCompressed);
|
key.GetPubKey(pubkey, fCompressed);
|
||||||
|
result.Set(pubkey.begin(), pubkey.end());
|
||||||
#endif
|
#endif
|
||||||
return pubkey;
|
assert(result.IsValid());
|
||||||
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool lowS) const {
|
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool lowS) const {
|
||||||
@ -544,7 +224,7 @@ bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchS
|
|||||||
return false;
|
return false;
|
||||||
#else
|
#else
|
||||||
CECKey key;
|
CECKey key;
|
||||||
if (!key.SetPubKey(*this))
|
if (!key.SetPubKey(begin(), size()))
|
||||||
return false;
|
return false;
|
||||||
if (!key.Verify(hash, vchSig))
|
if (!key.Verify(hash, vchSig))
|
||||||
return false;
|
return false;
|
||||||
@ -566,7 +246,9 @@ bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned cha
|
|||||||
CECKey key;
|
CECKey key;
|
||||||
if (!key.Recover(hash, &vchSig[1], recid))
|
if (!key.Recover(hash, &vchSig[1], recid))
|
||||||
return false;
|
return false;
|
||||||
key.GetPubKey(*this, fComp);
|
std::vector<unsigned char> pubkey;
|
||||||
|
key.GetPubKey(pubkey, fComp);
|
||||||
|
Set(pubkey.begin(), pubkey.end());
|
||||||
#endif
|
#endif
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
@ -579,7 +261,7 @@ bool CPubKey::IsFullyValid() const {
|
|||||||
return false;
|
return false;
|
||||||
#else
|
#else
|
||||||
CECKey key;
|
CECKey key;
|
||||||
if (!key.SetPubKey(*this))
|
if (!key.SetPubKey(begin(), size()))
|
||||||
return false;
|
return false;
|
||||||
#endif
|
#endif
|
||||||
return true;
|
return true;
|
||||||
@ -595,9 +277,11 @@ bool CPubKey::Decompress() {
|
|||||||
assert(clen == (int)size());
|
assert(clen == (int)size());
|
||||||
#else
|
#else
|
||||||
CECKey key;
|
CECKey key;
|
||||||
if (!key.SetPubKey(*this))
|
if (!key.SetPubKey(begin(), size()))
|
||||||
return false;
|
return false;
|
||||||
key.GetPubKey(*this, false);
|
std::vector<unsigned char> pubkey;
|
||||||
|
key.GetPubKey(pubkey, false);
|
||||||
|
Set(pubkey.begin(), pubkey.end());
|
||||||
#endif
|
#endif
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
@ -652,9 +336,11 @@ bool CPubKey::Derive(CPubKey& pubkeyChild, unsigned char ccChild[32], unsigned i
|
|||||||
bool ret = secp256k1_ecdsa_pubkey_tweak_add((unsigned char*)pubkeyChild.begin(), pubkeyChild.size(), out);
|
bool ret = secp256k1_ecdsa_pubkey_tweak_add((unsigned char*)pubkeyChild.begin(), pubkeyChild.size(), out);
|
||||||
#else
|
#else
|
||||||
CECKey key;
|
CECKey key;
|
||||||
bool ret = key.SetPubKey(*this);
|
bool ret = key.SetPubKey(begin(), size());
|
||||||
ret &= key.TweakPublic(out);
|
ret &= key.TweakPublic(out);
|
||||||
key.GetPubKey(pubkeyChild, true);
|
std::vector<unsigned char> pubkey;
|
||||||
|
key.GetPubKey(pubkey, true);
|
||||||
|
pubkeyChild.Set(pubkey.begin(), pubkey.end());
|
||||||
#endif
|
#endif
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
@ -739,12 +425,6 @@ bool ECC_InitSanityCheck() {
|
|||||||
#ifdef USE_SECP256K1
|
#ifdef USE_SECP256K1
|
||||||
return true;
|
return true;
|
||||||
#else
|
#else
|
||||||
EC_KEY *pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
|
return CECKey::SanityCheck();
|
||||||
if(pkey == NULL)
|
|
||||||
return false;
|
|
||||||
EC_KEY_free(pkey);
|
|
||||||
|
|
||||||
// TODO Is there more EC functionality that could be missing?
|
|
||||||
return true;
|
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user