Merge #6257: backport: Merge bitcoin#22579, 23964

387f8b1105 Merge bitcoin/bitcoin#23964: Update test/sanitizer_suppressions/lsan (MarcoFalke)
eb6e2d29a6 Merge bitcoin/bitcoin#22579: doc: Add references for the generator/constant used in Bech32(m) (W. J. van der Laan)

Pull request description:

  bitcoin backport

ACKs for top commit:
  PastaPastaPasta:
    utACK 387f8b1105

Tree-SHA512: 78c9397e8fae6c9c3c958307f26d2bf87e8d19404e39b468b5b6bc9b8b8a57229b6162d2dabc8552c7eb1d98cf268713f20cfacaf5ffc983f43533296b82a6f2
This commit is contained in:
pasta 2024-10-05 12:12:37 -05:00
commit 07aa0961c4
No known key found for this signature in database
GPG Key ID: E2F3D7916E722D38
2 changed files with 32 additions and 5 deletions

View File

@ -57,6 +57,26 @@ uint32_t PolyMod(const data& v)
// the above example, `c` initially corresponds to 1 mod g(x), and after processing 2 inputs of // the above example, `c` initially corresponds to 1 mod g(x), and after processing 2 inputs of
// v, it corresponds to x^2 + v0*x + v1 mod g(x). As 1 mod g(x) = 1, that is the starting value // v, it corresponds to x^2 + v0*x + v1 mod g(x). As 1 mod g(x) = 1, that is the starting value
// for `c`. // for `c`.
// The following Sage code constructs the generator used:
//
// B = GF(2) # Binary field
// BP.<b> = B[] # Polynomials over the binary field
// F_mod = b**5 + b**3 + 1
// F.<f> = GF(32, modulus=F_mod, repr='int') # GF(32) definition
// FP.<x> = F[] # Polynomials over GF(32)
// E_mod = x**2 + F.fetch_int(9)*x + F.fetch_int(23)
// E.<e> = F.extension(E_mod) # GF(1024) extension field definition
// for p in divisors(E.order() - 1): # Verify e has order 1023.
// assert((e**p == 1) == (p % 1023 == 0))
// G = lcm([(e**i).minpoly() for i in range(997,1000)])
// print(G) # Print out the generator
//
// It demonstrates that g(x) is the least common multiple of the minimal polynomials
// of 3 consecutive powers (997,998,999) of a primitive element (e) of GF(1024).
// That guarantees it is, in fact, the generator of a primitive BCH code with cycle
// length 1023 and distance 4. See https://en.wikipedia.org/wiki/BCH_code for more details.
uint32_t c = 1; uint32_t c = 1;
for (const auto v_i : v) { for (const auto v_i : v) {
// We want to update `c` to correspond to a polynomial with one extra term. If the initial // We want to update `c` to correspond to a polynomial with one extra term. If the initial
@ -79,12 +99,21 @@ uint32_t PolyMod(const data& v)
// Then compute c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i: // Then compute c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i:
c = ((c & 0x1ffffff) << 5) ^ v_i; c = ((c & 0x1ffffff) << 5) ^ v_i;
// Finally, for each set bit n in c0, conditionally add {2^n}k(x): // Finally, for each set bit n in c0, conditionally add {2^n}k(x). These constants can be
// computed using the following Sage code (continuing the code above):
//
// for i in [1,2,4,8,16]: # Print out {1,2,4,8,16}*(g(x) mod x^6), packed in hex integers.
// v = 0
// for coef in reversed((F.fetch_int(i)*(G % x**6)).coefficients(sparse=True)):
// v = v*32 + coef.integer_representation()
// print("0x%x" % v)
//
if (c0 & 1) c ^= 0x3b6a57b2; // k(x) = {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18} if (c0 & 1) c ^= 0x3b6a57b2; // k(x) = {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}
if (c0 & 2) c ^= 0x26508e6d; // {2}k(x) = {19}x^5 + {5}x^4 + x^3 + {3}x^2 + {19}x + {13} if (c0 & 2) c ^= 0x26508e6d; // {2}k(x) = {19}x^5 + {5}x^4 + x^3 + {3}x^2 + {19}x + {13}
if (c0 & 4) c ^= 0x1ea119fa; // {4}k(x) = {15}x^5 + {10}x^4 + {2}x^3 + {6}x^2 + {15}x + {26} if (c0 & 4) c ^= 0x1ea119fa; // {4}k(x) = {15}x^5 + {10}x^4 + {2}x^3 + {6}x^2 + {15}x + {26}
if (c0 & 8) c ^= 0x3d4233dd; // {8}k(x) = {30}x^5 + {20}x^4 + {4}x^3 + {12}x^2 + {30}x + {29} if (c0 & 8) c ^= 0x3d4233dd; // {8}k(x) = {30}x^5 + {20}x^4 + {4}x^3 + {12}x^2 + {30}x + {29}
if (c0 & 16) c ^= 0x2a1462b3; // {16}k(x) = {21}x^5 + x^4 + {8}x^3 + {24}x^2 + {21}x + {19} if (c0 & 16) c ^= 0x2a1462b3; // {16}k(x) = {21}x^5 + x^4 + {8}x^3 + {24}x^2 + {21}x + {19}
} }
return c; return c;
} }
@ -116,7 +145,8 @@ bool VerifyChecksum(const std::string& hrp, const data& values)
// PolyMod computes what value to xor into the final values to make the checksum 0. However, // PolyMod computes what value to xor into the final values to make the checksum 0. However,
// if we required that the checksum was 0, it would be the case that appending a 0 to a valid // if we required that the checksum was 0, it would be the case that appending a 0 to a valid
// list of values would result in a new valid list. For that reason, Bech32 requires the // list of values would result in a new valid list. For that reason, Bech32 requires the
// resulting checksum to be 1 instead. // resulting checksum to be 1 instead. See
// https://gist.github.com/sipa/14c248c288c3880a3b191f978a34508e for details.
return PolyMod(Cat(ExpandHRP(hrp), values)) == 1; return PolyMod(Cat(ExpandHRP(hrp), values)) == 1;
} }

View File

@ -1,7 +1,4 @@
# Suppress warnings triggered in dependencies # Suppress warnings triggered in dependencies
leak:libqminimal
leak:libQt5Core
leak:libQt5Gui
leak:libQt5Widgets leak:libQt5Widgets
# false-positive due to use of secure_allocator<> # false-positive due to use of secure_allocator<>