mirror of
https://github.com/dashpay/dash.git
synced 2024-12-25 03:52:49 +01:00
Merge #6280: backport: merge bitcoin#26519, #25880, #26982, #26584, #27577, #28419, #28196, #28433, #28489, #28525 (BIP324 backports)
63b13aa519
merge bitcoin#28525: Drop v2 garbage authentication packet (Kittywhiskers Van Gogh)662394cd49
merge bitcoin#28489: fix incorrect assumption in v2transport_test (Kittywhiskers Van Gogh)98782c62df
merge bitcoin#28433: Follow-up to BIP324 connection support (Kittywhiskers Van Gogh)f9825168fb
merge bitcoin#28196: BIP324 connection support (Kittywhiskers Van Gogh)3087275039
merge bitcoin#28419: introduce and use `ConsumePrivateKey` helper (Kittywhiskers Van Gogh)dccd395a4e
merge bitcoin#27577: give seednodes time before falling back to fixed seeds (Kittywhiskers Van Gogh)eb4f01f931
merge bitcoin#26584: include local ("unreachable") peers in -netinfo table (Kittywhiskers Van Gogh)10dc874136
merge bitcoin#26982: bitcoin#25880 fixups (Kittywhiskers Van Gogh)a36f8f2a1a
merge bitcoin#25880: Make stalling timeout adaptive during IBD (Kittywhiskers Van Gogh)1d77f3ff55
merge bitcoin#26519: Add getpeerinfo test for missing version message (Kittywhiskers Van Gogh) Pull request description: ## Additional Information * When backporting [bitcoin#25880](https://github.com/bitcoin/bitcoin/pull/25880), changes needed to be made to `p2p_ibd_stalling.py` to help it pass. * DIP3 activation had to be delayed to a block beyond the range of the test. This is to prevent block rejection arising from a missing DIP3-compliant coinbase (done with `-dip3params=2000:2000`) * Mock time was disabled to ensure nodes in the test do not resort to direct fetching (with mock time enabled, nodes would be considered close apart in time, which would prevent the primary node from fetching in parallel, which is behavior this test relies on) (done with `self.disable_mocktime = True`) * The nodes connected do not report compressed headers support (the test relies on sending `headers` messages and reworking it to use compressed headers has little benefit) (done with `services = NODE_NETWORK | NODE_BLOOM`) * When backporting [bitcoin#28196](https://github.com/bitcoin/bitcoin/pull/28196), in the `v2transport_test` unit test, references to `4000000` were substituted with `MAX_PROTOCOL_MESSAGE_LENGTH` as Dash messages have a protocol limit of 3MiB ([source](d754799580/src/net.h (L79-L80)
)) while Bitcoin messages have a protocol limit of 4MB ([source](225718eda8/src/net.h (L62-L63)
)). * Additionally note that short message IDs as defined in the BIP324 spec ([source](22660ad307/bip-0324.mediawiki (v2-bitcoin-p2p-message-structure)
)) have not been changed to include Dash-specific messages, meaning, Dash-specific messages will always take 13 bytes. * As `FEEFILTER` is not supported by Dash, it has been replaced with a blank string in the short IDs table. It was not removed as doing so would disturb the table's arrangement as specified in spec and require readjustment of tests to account for the change in layout. ## Breaking Changes None expected. ## Checklist - [x] I have performed a self-review of my own code - [x] I have commented my code, particularly in hard-to-understand areas **(note: N/A)** - [x] I have added or updated relevant unit/integration/functional/e2e tests - [x] I have made corresponding changes to the documentation **(note: N/A)** - [x] I have assigned this pull request to a milestone _(for repository code-owners and collaborators only)_ ACKs for top commit: UdjinM6: utACK63b13aa519
knst: utACK63b13aa519
Tree-SHA512: c41d2c6b1f145be513e285c8f91d00ac31fff4e4d24f611a1fdab24c8740f453b0bb28912021cdf8be4f5ce93dcff8579864727ee14b8e45894b56df524ab48d
This commit is contained in:
commit
3b8f24431c
@ -22,13 +22,6 @@
|
||||
#include <iterator>
|
||||
#include <string>
|
||||
|
||||
BIP324Cipher::BIP324Cipher() noexcept
|
||||
{
|
||||
m_key.MakeNewKey(true);
|
||||
uint256 entropy = GetRandHash();
|
||||
m_our_pubkey = m_key.EllSwiftCreate(MakeByteSpan(entropy));
|
||||
}
|
||||
|
||||
BIP324Cipher::BIP324Cipher(const CKey& key, Span<const std::byte> ent32) noexcept :
|
||||
m_key(key)
|
||||
{
|
||||
|
@ -41,8 +41,8 @@ private:
|
||||
std::array<std::byte, GARBAGE_TERMINATOR_LEN> m_recv_garbage_terminator;
|
||||
|
||||
public:
|
||||
/** Initialize a BIP324 cipher with securely generated random keys. */
|
||||
BIP324Cipher() noexcept;
|
||||
/** No default constructor; keys must be provided to create a BIP324Cipher. */
|
||||
BIP324Cipher() = delete;
|
||||
|
||||
/** Initialize a BIP324 cipher with specified key and encoding entropy (testing only). */
|
||||
BIP324Cipher(const CKey& key, Span<const std::byte> ent32) noexcept;
|
||||
|
@ -52,7 +52,10 @@ static constexpr int DEFAULT_WAIT_CLIENT_TIMEOUT = 0;
|
||||
static const bool DEFAULT_NAMED=false;
|
||||
static const int CONTINUE_EXECUTION=-1;
|
||||
static constexpr int8_t UNKNOWN_NETWORK{-1};
|
||||
static constexpr std::array NETWORKS{"ipv4", "ipv6", "onion", "i2p", "cjdns"};
|
||||
// See GetNetworkName() in netbase.cpp
|
||||
static constexpr std::array NETWORKS{"not_publicly_routable", "ipv4", "ipv6", "onion", "i2p", "cjdns", "internal"};
|
||||
static constexpr std::array NETWORK_SHORT_NAMES{"npr", "ipv4", "ipv6", "onion", "i2p", "cjdns", "int"};
|
||||
static constexpr std::array UNREACHABLE_NETWORK_IDS{/*not_publicly_routable*/0, /*internal*/6};
|
||||
|
||||
/** Default number of blocks to generate for RPC generatetoaddress. */
|
||||
static const std::string DEFAULT_NBLOCKS = "1";
|
||||
@ -296,7 +299,7 @@ public:
|
||||
// Prepare result to return to user.
|
||||
UniValue result{UniValue::VOBJ}, addresses{UniValue::VOBJ};
|
||||
uint64_t total{0}; // Total address count
|
||||
for (size_t i = 0; i < NETWORKS.size(); ++i) {
|
||||
for (size_t i = 1; i < NETWORKS.size() - 1; ++i) {
|
||||
addresses.pushKV(NETWORKS[i], counts.at(i));
|
||||
total += counts.at(i);
|
||||
}
|
||||
@ -517,7 +520,7 @@ public:
|
||||
const bool is_addr_relay_enabled{peer["addr_relay_enabled"].isNull() ? false : peer["addr_relay_enabled"].get_bool()};
|
||||
const bool is_bip152_hb_from{peer["bip152_hb_from"].get_bool()};
|
||||
const bool is_bip152_hb_to{peer["bip152_hb_to"].get_bool()};
|
||||
m_peers.push_back({addr, sub_version, conn_type, network, age, min_ping, ping, addr_processed, addr_rate_limited, last_blck, last_recv, last_send, last_trxn, peer_id, mapped_as, version, is_addr_relay_enabled, is_bip152_hb_from, is_bip152_hb_to, is_block_relay, is_outbound});
|
||||
m_peers.push_back({addr, sub_version, conn_type, NETWORK_SHORT_NAMES[network_id], age, min_ping, ping, addr_processed, addr_rate_limited, last_blck, last_recv, last_send, last_trxn, peer_id, mapped_as, version, is_addr_relay_enabled, is_bip152_hb_from, is_bip152_hb_to, is_block_relay, is_outbound});
|
||||
m_max_addr_length = std::max(addr.length() + 1, m_max_addr_length);
|
||||
m_max_addr_processed_length = std::max(ToString(addr_processed).length(), m_max_addr_processed_length);
|
||||
m_max_addr_rate_limited_length = std::max(ToString(addr_rate_limited).length(), m_max_addr_rate_limited_length);
|
||||
@ -582,6 +585,13 @@ public:
|
||||
reachable_networks.push_back(network_id);
|
||||
}
|
||||
};
|
||||
|
||||
for (const size_t network_id : UNREACHABLE_NETWORK_IDS) {
|
||||
if (m_counts.at(2).at(network_id) == 0) continue;
|
||||
result += strprintf("%8s", NETWORK_SHORT_NAMES.at(network_id)); // column header
|
||||
reachable_networks.push_back(network_id);
|
||||
}
|
||||
|
||||
result += " total block";
|
||||
if (m_manual_peers_count) result += " manual";
|
||||
|
||||
@ -646,7 +656,7 @@ public:
|
||||
" \"manual\" - peer we manually added using RPC addnode or the -addnode/-connect config options\n"
|
||||
" \"feeler\" - short-lived connection for testing addresses\n"
|
||||
" \"addr\" - address fetch; short-lived connection for requesting addresses\n"
|
||||
" net Network the peer connected through (\"ipv4\", \"ipv6\", \"onion\", \"i2p\", or \"cjdns\")\n"
|
||||
" net Network the peer connected through (\"ipv4\", \"ipv6\", \"onion\", \"i2p\", \"cjdns\", or \"npr\" (not publicly routable))\n"
|
||||
" mping Minimum observed ping time, in milliseconds (ms)\n"
|
||||
" ping Last observed ping time, in milliseconds (ms)\n"
|
||||
" send Time since last message sent to the peer, in seconds\n"
|
||||
|
719
src/net.cpp
719
src/net.cpp
@ -959,20 +959,22 @@ bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
|
||||
return true;
|
||||
}
|
||||
|
||||
Transport::BytesToSend V1Transport::GetBytesToSend() const noexcept
|
||||
Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_send_mutex);
|
||||
LOCK(m_send_mutex);
|
||||
if (m_sending_header) {
|
||||
return {Span{m_header_to_send}.subspan(m_bytes_sent),
|
||||
// We have more to send after the header if the message has payload.
|
||||
!m_message_to_send.data.empty(),
|
||||
// We have more to send after the header if the message has payload, or if there
|
||||
// is a next message after that.
|
||||
have_next_message || !m_message_to_send.data.empty(),
|
||||
m_message_to_send.m_type
|
||||
};
|
||||
} else {
|
||||
return {Span{m_message_to_send.data}.subspan(m_bytes_sent),
|
||||
// We never have more to send after this message's payload.
|
||||
false,
|
||||
// We only have more to send after this message's payload if there is another
|
||||
// message.
|
||||
have_next_message,
|
||||
m_message_to_send.m_type
|
||||
};
|
||||
}
|
||||
@ -1003,16 +1005,671 @@ size_t V1Transport::GetSendMemoryUsage() const noexcept
|
||||
return m_message_to_send.GetMemoryUsage();
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
/** List of short messages as defined in BIP324, in order.
|
||||
*
|
||||
* Only message types that are actually implemented in this codebase need to be listed, as other
|
||||
* messages get ignored anyway - whether we know how to decode them or not.
|
||||
*/
|
||||
const std::array<std::string, 33> V2_MESSAGE_IDS = {
|
||||
"", // 12 bytes follow encoding the message type like in V1
|
||||
NetMsgType::ADDR,
|
||||
NetMsgType::BLOCK,
|
||||
NetMsgType::BLOCKTXN,
|
||||
NetMsgType::CMPCTBLOCK,
|
||||
"", /* FEEFILTER is not implemented in Dash */
|
||||
NetMsgType::FILTERADD,
|
||||
NetMsgType::FILTERCLEAR,
|
||||
NetMsgType::FILTERLOAD,
|
||||
NetMsgType::GETBLOCKS,
|
||||
NetMsgType::GETBLOCKTXN,
|
||||
NetMsgType::GETDATA,
|
||||
NetMsgType::GETHEADERS,
|
||||
NetMsgType::HEADERS,
|
||||
NetMsgType::INV,
|
||||
NetMsgType::MEMPOOL,
|
||||
NetMsgType::MERKLEBLOCK,
|
||||
NetMsgType::NOTFOUND,
|
||||
NetMsgType::PING,
|
||||
NetMsgType::PONG,
|
||||
NetMsgType::SENDCMPCT,
|
||||
NetMsgType::TX,
|
||||
NetMsgType::GETCFILTERS,
|
||||
NetMsgType::CFILTER,
|
||||
NetMsgType::GETCFHEADERS,
|
||||
NetMsgType::CFHEADERS,
|
||||
NetMsgType::GETCFCHECKPT,
|
||||
NetMsgType::CFCHECKPT,
|
||||
NetMsgType::ADDRV2,
|
||||
// Unimplemented message types that are assigned in BIP324:
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
""
|
||||
};
|
||||
|
||||
class V2MessageMap
|
||||
{
|
||||
std::unordered_map<std::string, uint8_t> m_map;
|
||||
|
||||
public:
|
||||
V2MessageMap() noexcept
|
||||
{
|
||||
for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
|
||||
m_map.emplace(V2_MESSAGE_IDS[i], i);
|
||||
}
|
||||
}
|
||||
|
||||
std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
|
||||
{
|
||||
auto it = m_map.find(message_name);
|
||||
if (it == m_map.end()) return std::nullopt;
|
||||
return it->second;
|
||||
}
|
||||
};
|
||||
|
||||
const V2MessageMap V2_MESSAGE_MAP;
|
||||
|
||||
CKey GenerateRandomKey() noexcept
|
||||
{
|
||||
CKey key;
|
||||
key.MakeNewKey(/*fCompressed=*/true);
|
||||
return key;
|
||||
}
|
||||
|
||||
std::vector<uint8_t> GenerateRandomGarbage() noexcept
|
||||
{
|
||||
std::vector<uint8_t> ret;
|
||||
FastRandomContext rng;
|
||||
ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
|
||||
rng.fillrand(MakeWritableByteSpan(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void V2Transport::StartSendingHandshake() noexcept
|
||||
{
|
||||
AssertLockHeld(m_send_mutex);
|
||||
Assume(m_send_state == SendState::AWAITING_KEY);
|
||||
Assume(m_send_buffer.empty());
|
||||
// Initialize the send buffer with ellswift pubkey + provided garbage.
|
||||
m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
|
||||
std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
|
||||
std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
|
||||
// We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
|
||||
}
|
||||
|
||||
V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept :
|
||||
m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
|
||||
m_v1_fallback{nodeid, type_in, version_in}, m_recv_type{type_in}, m_recv_version{version_in},
|
||||
m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
|
||||
m_send_garbage{std::move(garbage)},
|
||||
m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
|
||||
{
|
||||
Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
|
||||
// Start sending immediately if we're the initiator of the connection.
|
||||
if (initiating) {
|
||||
LOCK(m_send_mutex);
|
||||
StartSendingHandshake();
|
||||
}
|
||||
}
|
||||
|
||||
V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept :
|
||||
V2Transport{nodeid, initiating, type_in, version_in, GenerateRandomKey(),
|
||||
MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} { }
|
||||
|
||||
void V2Transport::SetReceiveState(RecvState recv_state) noexcept
|
||||
{
|
||||
AssertLockHeld(m_recv_mutex);
|
||||
// Enforce allowed state transitions.
|
||||
switch (m_recv_state) {
|
||||
case RecvState::KEY_MAYBE_V1:
|
||||
Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
|
||||
break;
|
||||
case RecvState::KEY:
|
||||
Assume(recv_state == RecvState::GARB_GARBTERM);
|
||||
break;
|
||||
case RecvState::GARB_GARBTERM:
|
||||
Assume(recv_state == RecvState::VERSION);
|
||||
break;
|
||||
case RecvState::VERSION:
|
||||
Assume(recv_state == RecvState::APP);
|
||||
break;
|
||||
case RecvState::APP:
|
||||
Assume(recv_state == RecvState::APP_READY);
|
||||
break;
|
||||
case RecvState::APP_READY:
|
||||
Assume(recv_state == RecvState::APP);
|
||||
break;
|
||||
case RecvState::V1:
|
||||
Assume(false); // V1 state cannot be left
|
||||
break;
|
||||
}
|
||||
// Change state.
|
||||
m_recv_state = recv_state;
|
||||
}
|
||||
|
||||
void V2Transport::SetSendState(SendState send_state) noexcept
|
||||
{
|
||||
AssertLockHeld(m_send_mutex);
|
||||
// Enforce allowed state transitions.
|
||||
switch (m_send_state) {
|
||||
case SendState::MAYBE_V1:
|
||||
Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
|
||||
break;
|
||||
case SendState::AWAITING_KEY:
|
||||
Assume(send_state == SendState::READY);
|
||||
break;
|
||||
case SendState::READY:
|
||||
case SendState::V1:
|
||||
Assume(false); // Final states
|
||||
break;
|
||||
}
|
||||
// Change state.
|
||||
m_send_state = send_state;
|
||||
}
|
||||
|
||||
bool V2Transport::ReceivedMessageComplete() const noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_recv_mutex);
|
||||
LOCK(m_recv_mutex);
|
||||
if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
|
||||
|
||||
return m_recv_state == RecvState::APP_READY;
|
||||
}
|
||||
|
||||
void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
|
||||
{
|
||||
AssertLockHeld(m_recv_mutex);
|
||||
AssertLockNotHeld(m_send_mutex);
|
||||
Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
|
||||
// We still have to determine if this is a v1 or v2 connection. The bytes being received could
|
||||
// be the beginning of either a v1 packet (network magic + "version\x00"), or of a v2 public
|
||||
// key. BIP324 specifies that a mismatch with this 12-byte string should trigger sending of the
|
||||
// key.
|
||||
std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0};
|
||||
std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
|
||||
Assume(m_recv_buffer.size() <= v1_prefix.size());
|
||||
if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
|
||||
// Mismatch with v1 prefix, so we can assume a v2 connection.
|
||||
SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
|
||||
// Transition the sender to AWAITING_KEY state and start sending.
|
||||
LOCK(m_send_mutex);
|
||||
SetSendState(SendState::AWAITING_KEY);
|
||||
StartSendingHandshake();
|
||||
} else if (m_recv_buffer.size() == v1_prefix.size()) {
|
||||
// Full match with the v1 prefix, so fall back to v1 behavior.
|
||||
LOCK(m_send_mutex);
|
||||
Span<const uint8_t> feedback{m_recv_buffer};
|
||||
// Feed already received bytes to v1 transport. It should always accept these, because it's
|
||||
// less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
|
||||
bool ret = m_v1_fallback.ReceivedBytes(feedback);
|
||||
Assume(feedback.empty());
|
||||
Assume(ret);
|
||||
SetReceiveState(RecvState::V1);
|
||||
SetSendState(SendState::V1);
|
||||
// Reset v2 transport buffers to save memory.
|
||||
m_recv_buffer = {};
|
||||
m_send_buffer = {};
|
||||
} else {
|
||||
// We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
|
||||
}
|
||||
}
|
||||
|
||||
bool V2Transport::ProcessReceivedKeyBytes() noexcept
|
||||
{
|
||||
AssertLockHeld(m_recv_mutex);
|
||||
AssertLockNotHeld(m_send_mutex);
|
||||
Assume(m_recv_state == RecvState::KEY);
|
||||
Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
|
||||
|
||||
// As a special exception, if bytes 4-16 of the key on a responder connection match the
|
||||
// corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
|
||||
// (if they did, we'd have switched to V1 state already), assume this is a peer from
|
||||
// another network, and disconnect them. They will almost certainly disconnect us too when
|
||||
// they receive our uniformly random key and garbage, but detecting this case specially
|
||||
// means we can log it.
|
||||
static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
|
||||
static constexpr size_t OFFSET = sizeof(CMessageHeader::MessageStartChars);
|
||||
if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
|
||||
if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
|
||||
LogPrint(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
|
||||
HexStr(Span(m_recv_buffer).first(OFFSET)));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
|
||||
// Other side's key has been fully received, and can now be Diffie-Hellman combined with
|
||||
// our key to initialize the encryption ciphers.
|
||||
|
||||
// Initialize the ciphers.
|
||||
EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
|
||||
LOCK(m_send_mutex);
|
||||
m_cipher.Initialize(ellswift, m_initiating);
|
||||
|
||||
// Switch receiver state to GARB_GARBTERM.
|
||||
SetReceiveState(RecvState::GARB_GARBTERM);
|
||||
m_recv_buffer.clear();
|
||||
|
||||
// Switch sender state to READY.
|
||||
SetSendState(SendState::READY);
|
||||
|
||||
// Append the garbage terminator to the send buffer.
|
||||
m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
|
||||
std::copy(m_cipher.GetSendGarbageTerminator().begin(),
|
||||
m_cipher.GetSendGarbageTerminator().end(),
|
||||
MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
|
||||
|
||||
// Construct version packet in the send buffer, with the sent garbage data as AAD.
|
||||
m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
|
||||
m_cipher.Encrypt(
|
||||
/*contents=*/VERSION_CONTENTS,
|
||||
/*aad=*/MakeByteSpan(m_send_garbage),
|
||||
/*ignore=*/false,
|
||||
/*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
|
||||
// We no longer need the garbage.
|
||||
m_send_garbage.clear();
|
||||
m_send_garbage.shrink_to_fit();
|
||||
} else {
|
||||
// We still have to receive more key bytes.
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool V2Transport::ProcessReceivedGarbageBytes() noexcept
|
||||
{
|
||||
AssertLockHeld(m_recv_mutex);
|
||||
Assume(m_recv_state == RecvState::GARB_GARBTERM);
|
||||
Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
|
||||
if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
|
||||
if (MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN) == m_cipher.GetReceiveGarbageTerminator()) {
|
||||
// Garbage terminator received. Store garbage to authenticate it as AAD later.
|
||||
m_recv_aad = std::move(m_recv_buffer);
|
||||
m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
|
||||
m_recv_buffer.clear();
|
||||
SetReceiveState(RecvState::VERSION);
|
||||
} else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
|
||||
// We've reached the maximum length for garbage + garbage terminator, and the
|
||||
// terminator still does not match. Abort.
|
||||
LogPrint(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
|
||||
return false;
|
||||
} else {
|
||||
// We still need to receive more garbage and/or garbage terminator bytes.
|
||||
}
|
||||
} else {
|
||||
// We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
|
||||
// more first.
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool V2Transport::ProcessReceivedPacketBytes() noexcept
|
||||
{
|
||||
AssertLockHeld(m_recv_mutex);
|
||||
Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
|
||||
|
||||
// The maximum permitted contents length for a packet, consisting of:
|
||||
// - 0x00 byte: indicating long message type encoding
|
||||
// - 12 bytes of message type
|
||||
// - payload
|
||||
static constexpr size_t MAX_CONTENTS_LEN =
|
||||
1 + CMessageHeader::COMMAND_SIZE +
|
||||
std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
|
||||
|
||||
if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
|
||||
// Length descriptor received.
|
||||
m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
|
||||
if (m_recv_len > MAX_CONTENTS_LEN) {
|
||||
LogPrint(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
|
||||
return false;
|
||||
}
|
||||
} else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
|
||||
// Ciphertext received, decrypt it into m_recv_decode_buffer.
|
||||
// Note that it is impossible to reach this branch without hitting the branch above first,
|
||||
// as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
|
||||
m_recv_decode_buffer.resize(m_recv_len);
|
||||
bool ignore{false};
|
||||
bool ret = m_cipher.Decrypt(
|
||||
/*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
|
||||
/*aad=*/MakeByteSpan(m_recv_aad),
|
||||
/*ignore=*/ignore,
|
||||
/*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
|
||||
if (!ret) {
|
||||
LogPrint(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
|
||||
return false;
|
||||
}
|
||||
// We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
|
||||
m_recv_aad.clear();
|
||||
m_recv_aad.shrink_to_fit();
|
||||
// Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
|
||||
RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
|
||||
|
||||
// At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
|
||||
// decoy, which we simply ignore, use the current state to decide what to do with it.
|
||||
if (!ignore) {
|
||||
switch (m_recv_state) {
|
||||
case RecvState::VERSION:
|
||||
// Version message received; transition to application phase. The contents is
|
||||
// ignored, but can be used for future extensions.
|
||||
SetReceiveState(RecvState::APP);
|
||||
break;
|
||||
case RecvState::APP:
|
||||
// Application message decrypted correctly. It can be extracted using GetMessage().
|
||||
SetReceiveState(RecvState::APP_READY);
|
||||
break;
|
||||
default:
|
||||
// Any other state is invalid (this function should not have been called).
|
||||
Assume(false);
|
||||
}
|
||||
}
|
||||
// Wipe the receive buffer where the next packet will be received into.
|
||||
m_recv_buffer = {};
|
||||
// In all but APP_READY state, we can wipe the decoded contents.
|
||||
if (m_recv_state != RecvState::APP_READY) m_recv_decode_buffer = {};
|
||||
} else {
|
||||
// We either have less than 3 bytes, so we don't know the packet's length yet, or more
|
||||
// than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
size_t V2Transport::GetMaxBytesToProcess() noexcept
|
||||
{
|
||||
AssertLockHeld(m_recv_mutex);
|
||||
switch (m_recv_state) {
|
||||
case RecvState::KEY_MAYBE_V1:
|
||||
// During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
|
||||
// receive buffer.
|
||||
Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
|
||||
// As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
|
||||
// is strictly necessary to distinguish the two (12 bytes). If we permitted more than
|
||||
// the v1 header size (24 bytes), we may not be able to feed the already-received bytes
|
||||
// back into the m_v1_fallback V1 transport.
|
||||
return V1_PREFIX_LEN - m_recv_buffer.size();
|
||||
case RecvState::KEY:
|
||||
// During the KEY state, we only allow the 64-byte key into the receive buffer.
|
||||
Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
|
||||
// As long as we have not received the other side's public key, don't receive more than
|
||||
// that (64 bytes), as garbage follows, and locating the garbage terminator requires the
|
||||
// key exchange first.
|
||||
return EllSwiftPubKey::size() - m_recv_buffer.size();
|
||||
case RecvState::GARB_GARBTERM:
|
||||
// Process garbage bytes one by one (because terminator may appear anywhere).
|
||||
return 1;
|
||||
case RecvState::VERSION:
|
||||
case RecvState::APP:
|
||||
// These three states all involve decoding a packet. Process the length descriptor first,
|
||||
// so that we know where the current packet ends (and we don't process bytes from the next
|
||||
// packet or decoy yet). Then, process the ciphertext bytes of the current packet.
|
||||
if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
|
||||
return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
|
||||
} else {
|
||||
// Note that BIP324Cipher::EXPANSION is the total difference between contents size
|
||||
// and encoded packet size, which includes the 3 bytes due to the packet length.
|
||||
// When transitioning from receiving the packet length to receiving its ciphertext,
|
||||
// the encrypted packet length is left in the receive buffer.
|
||||
return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
|
||||
}
|
||||
case RecvState::APP_READY:
|
||||
// No bytes can be processed until GetMessage() is called.
|
||||
return 0;
|
||||
case RecvState::V1:
|
||||
// Not allowed (must be dealt with by the caller).
|
||||
Assume(false);
|
||||
return 0;
|
||||
}
|
||||
Assume(false); // unreachable
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool V2Transport::ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_recv_mutex);
|
||||
/** How many bytes to allocate in the receive buffer at most above what is received so far. */
|
||||
static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
|
||||
|
||||
LOCK(m_recv_mutex);
|
||||
if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
|
||||
|
||||
// Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
|
||||
// bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
|
||||
// appended to m_recv_buffer. Then, depending on the receiver state, one of the
|
||||
// ProcessReceived*Bytes functions is called to process the bytes in that buffer.
|
||||
while (!msg_bytes.empty()) {
|
||||
// Decide how many bytes to copy from msg_bytes to m_recv_buffer.
|
||||
size_t max_read = GetMaxBytesToProcess();
|
||||
|
||||
// Reserve space in the buffer if there is not enough.
|
||||
if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
|
||||
switch (m_recv_state) {
|
||||
case RecvState::KEY_MAYBE_V1:
|
||||
case RecvState::KEY:
|
||||
case RecvState::GARB_GARBTERM:
|
||||
// During the initial states (key/garbage), allocate once to fit the maximum (4111
|
||||
// bytes).
|
||||
m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
|
||||
break;
|
||||
case RecvState::VERSION:
|
||||
case RecvState::APP: {
|
||||
// During states where a packet is being received, as much as is expected but never
|
||||
// more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
|
||||
// This means attackers that want to cause us to waste allocated memory are limited
|
||||
// to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
|
||||
// MAX_RESERVE_AHEAD more than they've actually sent us.
|
||||
size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
|
||||
m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
|
||||
break;
|
||||
}
|
||||
case RecvState::APP_READY:
|
||||
// The buffer is empty in this state.
|
||||
Assume(m_recv_buffer.empty());
|
||||
break;
|
||||
case RecvState::V1:
|
||||
// Should have bailed out above.
|
||||
Assume(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Can't read more than provided input.
|
||||
max_read = std::min(msg_bytes.size(), max_read);
|
||||
// Copy data to buffer.
|
||||
m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
|
||||
msg_bytes = msg_bytes.subspan(max_read);
|
||||
|
||||
// Process data in the buffer.
|
||||
switch (m_recv_state) {
|
||||
case RecvState::KEY_MAYBE_V1:
|
||||
ProcessReceivedMaybeV1Bytes();
|
||||
if (m_recv_state == RecvState::V1) return true;
|
||||
break;
|
||||
|
||||
case RecvState::KEY:
|
||||
if (!ProcessReceivedKeyBytes()) return false;
|
||||
break;
|
||||
|
||||
case RecvState::GARB_GARBTERM:
|
||||
if (!ProcessReceivedGarbageBytes()) return false;
|
||||
break;
|
||||
|
||||
case RecvState::VERSION:
|
||||
case RecvState::APP:
|
||||
if (!ProcessReceivedPacketBytes()) return false;
|
||||
break;
|
||||
|
||||
case RecvState::APP_READY:
|
||||
return true;
|
||||
|
||||
case RecvState::V1:
|
||||
// We should have bailed out before.
|
||||
Assume(false);
|
||||
break;
|
||||
}
|
||||
// Make sure we have made progress before continuing.
|
||||
Assume(max_read > 0);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::optional<std::string> V2Transport::GetMessageType(Span<const uint8_t>& contents) noexcept
|
||||
{
|
||||
if (contents.size() == 0) return std::nullopt; // Empty contents
|
||||
uint8_t first_byte = contents[0];
|
||||
contents = contents.subspan(1); // Strip first byte.
|
||||
|
||||
if (first_byte != 0) {
|
||||
// Short (1 byte) encoding.
|
||||
if (first_byte < std::size(V2_MESSAGE_IDS)) {
|
||||
// Valid short message id.
|
||||
return V2_MESSAGE_IDS[first_byte];
|
||||
} else {
|
||||
// Unknown short message id.
|
||||
return std::nullopt;
|
||||
}
|
||||
}
|
||||
|
||||
if (contents.size() < CMessageHeader::COMMAND_SIZE) {
|
||||
return std::nullopt; // Long encoding needs 12 message type bytes.
|
||||
}
|
||||
|
||||
size_t msg_type_len{0};
|
||||
while (msg_type_len < CMessageHeader::COMMAND_SIZE && contents[msg_type_len] != 0) {
|
||||
// Verify that message type bytes before the first 0x00 are in range.
|
||||
if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
|
||||
return {};
|
||||
}
|
||||
++msg_type_len;
|
||||
}
|
||||
std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
|
||||
while (msg_type_len < CMessageHeader::COMMAND_SIZE) {
|
||||
// Verify that message type bytes after the first 0x00 are also 0x00.
|
||||
if (contents[msg_type_len] != 0) return {};
|
||||
++msg_type_len;
|
||||
}
|
||||
// Strip message type bytes of contents.
|
||||
contents = contents.subspan(CMessageHeader::COMMAND_SIZE);
|
||||
return {std::move(ret)};
|
||||
}
|
||||
|
||||
CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_recv_mutex);
|
||||
LOCK(m_recv_mutex);
|
||||
if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
|
||||
|
||||
Assume(m_recv_state == RecvState::APP_READY);
|
||||
Span<const uint8_t> contents{m_recv_decode_buffer};
|
||||
auto msg_type = GetMessageType(contents);
|
||||
CDataStream ret(m_recv_type, m_recv_version);
|
||||
CNetMessage msg{std::move(ret)};
|
||||
// Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
|
||||
msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
|
||||
if (msg_type) {
|
||||
reject_message = false;
|
||||
msg.m_type = std::move(*msg_type);
|
||||
msg.m_time = time;
|
||||
msg.m_message_size = contents.size();
|
||||
msg.m_recv.resize(contents.size());
|
||||
std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
|
||||
} else {
|
||||
LogPrint(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
|
||||
reject_message = true;
|
||||
}
|
||||
m_recv_decode_buffer = {};
|
||||
SetReceiveState(RecvState::APP);
|
||||
|
||||
return msg;
|
||||
}
|
||||
|
||||
bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_send_mutex);
|
||||
LOCK(m_send_mutex);
|
||||
if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
|
||||
// We only allow adding a new message to be sent when in the READY state (so the packet cipher
|
||||
// is available) and the send buffer is empty. This limits the number of messages in the send
|
||||
// buffer to just one, and leaves the responsibility for queueing them up to the caller.
|
||||
if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
|
||||
// Construct contents (encoding message type + payload).
|
||||
std::vector<uint8_t> contents;
|
||||
auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
|
||||
if (short_message_id) {
|
||||
contents.resize(1 + msg.data.size());
|
||||
contents[0] = *short_message_id;
|
||||
std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
|
||||
} else {
|
||||
// Initialize with zeroes, and then write the message type string starting at offset 1.
|
||||
// This means contents[0] and the unused positions in contents[1..13] remain 0x00.
|
||||
contents.resize(1 + CMessageHeader::COMMAND_SIZE + msg.data.size(), 0);
|
||||
std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
|
||||
std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::COMMAND_SIZE);
|
||||
}
|
||||
// Construct ciphertext in send buffer.
|
||||
m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
|
||||
m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
|
||||
m_send_type = msg.m_type;
|
||||
// Release memory
|
||||
msg.data = {};
|
||||
return true;
|
||||
}
|
||||
|
||||
Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_send_mutex);
|
||||
LOCK(m_send_mutex);
|
||||
if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
|
||||
|
||||
if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
|
||||
Assume(m_send_pos <= m_send_buffer.size());
|
||||
return {
|
||||
Span{m_send_buffer}.subspan(m_send_pos),
|
||||
// We only have more to send after the current m_send_buffer if there is a (next)
|
||||
// message to be sent, and we're capable of sending packets. */
|
||||
have_next_message && m_send_state == SendState::READY,
|
||||
m_send_type
|
||||
};
|
||||
}
|
||||
|
||||
void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_send_mutex);
|
||||
LOCK(m_send_mutex);
|
||||
if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
|
||||
|
||||
m_send_pos += bytes_sent;
|
||||
Assume(m_send_pos <= m_send_buffer.size());
|
||||
// Wipe the buffer when everything is sent.
|
||||
if (m_send_pos == m_send_buffer.size()) {
|
||||
m_send_pos = 0;
|
||||
m_send_buffer = {};
|
||||
}
|
||||
}
|
||||
|
||||
size_t V2Transport::GetSendMemoryUsage() const noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_send_mutex);
|
||||
LOCK(m_send_mutex);
|
||||
if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
|
||||
|
||||
return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
|
||||
}
|
||||
|
||||
std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
|
||||
{
|
||||
auto it = node.vSendMsg.begin();
|
||||
size_t nSentSize = 0;
|
||||
bool data_left{false}; //!< second return value (whether unsent data remains)
|
||||
std::optional<bool> expected_more;
|
||||
|
||||
while (true) {
|
||||
if (it != node.vSendMsg.end()) {
|
||||
// If possible, move one message from the send queue to the transport. This fails when
|
||||
// there is an existing message still being sent.
|
||||
// there is an existing message still being sent, or (for v2 transports) when the
|
||||
// handshake has not yet completed.
|
||||
size_t memusage = it->GetMemoryUsage();
|
||||
if (node.m_transport->SetMessageToSend(*it)) {
|
||||
// Update memory usage of send buffer (as *it will be deleted).
|
||||
@ -1020,7 +1677,12 @@ std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
|
||||
++it;
|
||||
}
|
||||
}
|
||||
const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend();
|
||||
const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
|
||||
// We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
|
||||
// bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
|
||||
// verify that the previously returned 'more' was correct.
|
||||
if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
|
||||
expected_more = more;
|
||||
data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
|
||||
int nBytes = 0;
|
||||
if (!data.empty()) {
|
||||
@ -1033,9 +1695,7 @@ std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
|
||||
}
|
||||
int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
|
||||
#ifdef MSG_MORE
|
||||
// We have more to send if either the transport itself has more, or if we have more
|
||||
// messages to send.
|
||||
if (more || it != node.vSendMsg.end()) {
|
||||
if (more) {
|
||||
flags |= MSG_MORE;
|
||||
}
|
||||
#endif
|
||||
@ -1404,8 +2064,8 @@ void CConnman::DisconnectNodes()
|
||||
}
|
||||
if (GetTimeMillis() < pnode->nDisconnectLingerTime) {
|
||||
// everything flushed to the kernel?
|
||||
const auto& [to_send, _more, _msg_type] = pnode->m_transport->GetBytesToSend();
|
||||
const bool queue_is_empty{to_send.empty() && pnode->nSendMsgSize == 0};
|
||||
const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(pnode->nSendMsgSize != 0);
|
||||
const bool queue_is_empty{to_send.empty() && !more};
|
||||
if (!pnode->fSocketShutdown && queue_is_empty) {
|
||||
LOCK(pnode->m_sock_mutex);
|
||||
if (pnode->m_sock) {
|
||||
@ -1963,8 +2623,8 @@ void CConnman::SocketHandlerConnected(const std::set<SOCKET>& recv_set,
|
||||
// receiving data. This means properly utilizing TCP flow control signalling.
|
||||
// * Otherwise, if there is space left in the receive buffer (!fPauseRecv), try
|
||||
// receiving data (which should succeed as the socket signalled as receivable).
|
||||
const auto& [to_send, _more, _msg_type] = it->second->m_transport->GetBytesToSend();
|
||||
const bool queue_is_empty{to_send.empty() && it->second->nSendMsgSize == 0};
|
||||
const auto& [to_send, more, _msg_type] = it->second->m_transport->GetBytesToSend(it->second->nSendMsgSize != 0);
|
||||
const bool queue_is_empty{to_send.empty() && !more};
|
||||
if (!it->second->fPauseRecv && !it->second->fDisconnect && queue_is_empty) {
|
||||
it->second->AddRef();
|
||||
vReceivableNodes.emplace(it->second);
|
||||
@ -1979,8 +2639,8 @@ void CConnman::SocketHandlerConnected(const std::set<SOCKET>& recv_set,
|
||||
// but don't have any in this iteration
|
||||
LOCK(cs_mapNodesWithDataToSend);
|
||||
for (auto it = mapNodesWithDataToSend.begin(); it != mapNodesWithDataToSend.end(); ) {
|
||||
const auto& [to_send, _more, _msg_type] = it->second->m_transport->GetBytesToSend();
|
||||
if (to_send.empty() && it->second->nSendMsgSize == 0) {
|
||||
const auto& [to_send, more, _msg_type] = it->second->m_transport->GetBytesToSend(it->second->nSendMsgSize != 0);
|
||||
if (to_send.empty() && !more) {
|
||||
// See comment in PushMessage
|
||||
it->second->Release();
|
||||
it = mapNodesWithDataToSend.erase(it);
|
||||
@ -2402,6 +3062,7 @@ void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, CDe
|
||||
auto next_extra_block_relay = GetExponentialRand(start, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
|
||||
const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
|
||||
bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
|
||||
const bool use_seednodes{gArgs.IsArgSet("-seednode")};
|
||||
|
||||
if (!add_fixed_seeds) {
|
||||
LogPrintf("Fixed seeds are disabled\n");
|
||||
@ -2431,12 +3092,12 @@ void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, CDe
|
||||
LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
|
||||
}
|
||||
|
||||
// Checking !dnsseed is cheaper before locking 2 mutexes.
|
||||
if (!add_fixed_seeds_now && !dnsseed) {
|
||||
LOCK2(m_addr_fetches_mutex, m_added_nodes_mutex);
|
||||
if (m_addr_fetches.empty() && m_added_nodes.empty()) {
|
||||
// Perform cheap checks before locking a mutex.
|
||||
else if (!dnsseed && !use_seednodes) {
|
||||
LOCK(m_added_nodes_mutex);
|
||||
if (m_added_nodes.empty()) {
|
||||
add_fixed_seeds_now = true;
|
||||
LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet), -addnode is not provided and all -seednode(s) attempted\n");
|
||||
LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
|
||||
}
|
||||
}
|
||||
|
||||
@ -4145,7 +4806,10 @@ void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
|
||||
|
||||
{
|
||||
LOCK(pnode->cs_vSend);
|
||||
const auto& [to_send, _more, _msg_type] = pnode->m_transport->GetBytesToSend();
|
||||
// Check if the transport still has unsent bytes, and indicate to it that we're about to
|
||||
// give it a message to send.
|
||||
const auto& [to_send, more, _msg_type] =
|
||||
pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
|
||||
const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
|
||||
|
||||
// Update memory usage of send buffer.
|
||||
@ -4166,9 +4830,14 @@ void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
|
||||
}
|
||||
}
|
||||
|
||||
// Wake up select() call in case there was no pending data before (so it was not selecting
|
||||
// this socket for sending)
|
||||
if (queue_was_empty) {
|
||||
// If there was nothing to send before, and there is now (predicted by the "more" value
|
||||
// returned by the GetBytesToSend call above), attempt "optimistic write":
|
||||
// because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
|
||||
// doing a send, try sending from the calling thread if the queue was empty before.
|
||||
// With a V1Transport, more will always be true here, because adding a message always
|
||||
// results in sendable bytes there, but with V2Transport this is not the case (it may
|
||||
// still be in the handshake).
|
||||
if (queue_was_empty && more) {
|
||||
if (m_wakeup_pipe && m_wakeup_pipe->m_need_wakeup.load()) {
|
||||
m_wakeup_pipe->Write();
|
||||
}
|
||||
|
266
src/net.h
266
src/net.h
@ -7,6 +7,7 @@
|
||||
#define BITCOIN_NET_H
|
||||
|
||||
#include <addrman.h>
|
||||
#include <bip324.h>
|
||||
#include <bloom.h>
|
||||
#include <chainparams.h>
|
||||
#include <compat.h>
|
||||
@ -302,8 +303,6 @@ public:
|
||||
|
||||
/** Returns true if the current message is complete (so GetReceivedMessage can be called). */
|
||||
virtual bool ReceivedMessageComplete() const = 0;
|
||||
/** Set the deserialization context version for objects returned by GetReceivedMessage. */
|
||||
virtual void SetReceiveVersion(int version) = 0;
|
||||
|
||||
/** Feed wire bytes to the transport.
|
||||
*
|
||||
@ -336,7 +335,8 @@ public:
|
||||
* - Span<const uint8_t> to_send: span of bytes to be sent over the wire (possibly empty).
|
||||
* - bool more: whether there will be more bytes to be sent after the ones in to_send are
|
||||
* all sent (as signaled by MarkBytesSent()).
|
||||
* - const std::string& m_type: message type on behalf of which this is being sent.
|
||||
* - const std::string& m_type: message type on behalf of which this is being sent
|
||||
* ("" for bytes that are not on behalf of any message).
|
||||
*/
|
||||
using BytesToSend = std::tuple<
|
||||
Span<const uint8_t> /*to_send*/,
|
||||
@ -344,19 +344,42 @@ public:
|
||||
const std::string& /*m_type*/
|
||||
>;
|
||||
|
||||
/** Get bytes to send on the wire.
|
||||
/** Get bytes to send on the wire, if any, along with other information about it.
|
||||
*
|
||||
* As a const function, it does not modify the transport's observable state, and is thus safe
|
||||
* to be called multiple times.
|
||||
*
|
||||
* The bytes returned by this function act as a stream which can only be appended to. This
|
||||
* means that with the exception of MarkBytesSent, operations on the transport can only append
|
||||
* to what is being returned.
|
||||
* @param[in] have_next_message If true, the "more" return value reports whether more will
|
||||
* be sendable after a SetMessageToSend call. It is set by the caller when they know
|
||||
* they have another message ready to send, and only care about what happens
|
||||
* after that. The have_next_message argument only affects this "more" return value
|
||||
* and nothing else.
|
||||
*
|
||||
* Note that m_type and to_send refer to data that is internal to the transport, and calling
|
||||
* any non-const function on this object may invalidate them.
|
||||
* Effectively, there are three possible outcomes about whether there are more bytes
|
||||
* to send:
|
||||
* - Yes: the transport itself has more bytes to send later. For example, for
|
||||
* V1Transport this happens during the sending of the header of a
|
||||
* message, when there is a non-empty payload that follows.
|
||||
* - No: the transport itself has no more bytes to send, but will have bytes to
|
||||
* send if handed a message through SetMessageToSend. In V1Transport this
|
||||
* happens when sending the payload of a message.
|
||||
* - Blocked: the transport itself has no more bytes to send, and is also incapable
|
||||
* of sending anything more at all now, if it were handed another
|
||||
* message to send. This occurs in V2Transport before the handshake is
|
||||
* complete, as the encryption ciphers are not set up for sending
|
||||
* messages before that point.
|
||||
*
|
||||
* The boolean 'more' is true for Yes, false for Blocked, and have_next_message
|
||||
* controls what is returned for No.
|
||||
*
|
||||
* @return a BytesToSend object. The to_send member returned acts as a stream which is only
|
||||
* ever appended to. This means that with the exception of MarkBytesSent (which pops
|
||||
* bytes off the front of later to_sends), operations on the transport can only append
|
||||
* to what is being returned. Also note that m_type and to_send refer to data that is
|
||||
* internal to the transport, and calling any non-const function on this object may
|
||||
* invalidate them.
|
||||
*/
|
||||
virtual BytesToSend GetBytesToSend() const noexcept = 0;
|
||||
virtual BytesToSend GetBytesToSend(bool have_next_message) const noexcept = 0;
|
||||
|
||||
/** Report how many bytes returned by the last GetBytesToSend() have been sent.
|
||||
*
|
||||
@ -428,14 +451,6 @@ public:
|
||||
return WITH_LOCK(m_recv_mutex, return CompleteInternal());
|
||||
}
|
||||
|
||||
void SetReceiveVersion(int nVersionIn) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
|
||||
{
|
||||
AssertLockNotHeld(m_recv_mutex);
|
||||
LOCK(m_recv_mutex);
|
||||
hdrbuf.SetVersion(nVersionIn);
|
||||
vRecv.SetVersion(nVersionIn);
|
||||
}
|
||||
|
||||
bool ReceivedBytes(Span<const uint8_t>& msg_bytes) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
|
||||
{
|
||||
AssertLockNotHeld(m_recv_mutex);
|
||||
@ -452,7 +467,220 @@ public:
|
||||
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
|
||||
|
||||
bool SetMessageToSend(CSerializedNetMsg& msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
|
||||
BytesToSend GetBytesToSend() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
|
||||
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
|
||||
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
|
||||
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
|
||||
};
|
||||
|
||||
class V2Transport final : public Transport
|
||||
{
|
||||
private:
|
||||
/** Contents of the version packet to send. BIP324 stipulates that senders should leave this
|
||||
* empty, and receivers should ignore it. Future extensions can change what is sent as long as
|
||||
* an empty version packet contents is interpreted as no extensions supported. */
|
||||
static constexpr std::array<std::byte, 0> VERSION_CONTENTS = {};
|
||||
|
||||
/** The length of the V1 prefix to match bytes initially received by responders with to
|
||||
* determine if their peer is speaking V1 or V2. */
|
||||
static constexpr size_t V1_PREFIX_LEN = 12;
|
||||
|
||||
// The sender side and receiver side of V2Transport are state machines that are transitioned
|
||||
// through, based on what has been received. The receive state corresponds to the contents of,
|
||||
// and bytes received to, the receive buffer. The send state controls what can be appended to
|
||||
// the send buffer and what can be sent from it.
|
||||
|
||||
/** State type that defines the current contents of the receive buffer and/or how the next
|
||||
* received bytes added to it will be interpreted.
|
||||
*
|
||||
* Diagram:
|
||||
*
|
||||
* start(responder)
|
||||
* |
|
||||
* | start(initiator) /---------\
|
||||
* | | | |
|
||||
* v v v |
|
||||
* KEY_MAYBE_V1 -> KEY -> GARB_GARBTERM -> VERSION -> APP -> APP_READY
|
||||
* |
|
||||
* \-------> V1
|
||||
*/
|
||||
enum class RecvState : uint8_t {
|
||||
/** (Responder only) either v2 public key or v1 header.
|
||||
*
|
||||
* This is the initial state for responders, before data has been received to distinguish
|
||||
* v1 from v2 connections. When that happens, the state becomes either KEY (for v2) or V1
|
||||
* (for v1). */
|
||||
KEY_MAYBE_V1,
|
||||
|
||||
/** Public key.
|
||||
*
|
||||
* This is the initial state for initiators, during which the other side's public key is
|
||||
* received. When that information arrives, the ciphers get initialized and the state
|
||||
* becomes GARB_GARBTERM. */
|
||||
KEY,
|
||||
|
||||
/** Garbage and garbage terminator.
|
||||
*
|
||||
* Whenever a byte is received, the last 16 bytes are compared with the expected garbage
|
||||
* terminator. When that happens, the state becomes VERSION. If no matching terminator is
|
||||
* received in 4111 bytes (4095 for the maximum garbage length, and 16 bytes for the
|
||||
* terminator), the connection aborts. */
|
||||
GARB_GARBTERM,
|
||||
|
||||
/** Version packet.
|
||||
*
|
||||
* A packet is received, and decrypted/verified. If that fails, the connection aborts. The
|
||||
* first received packet in this state (whether it's a decoy or not) is expected to
|
||||
* authenticate the garbage received during the GARB_GARBTERM state as associated
|
||||
* authenticated data (AAD). The first non-decoy packet in this state is interpreted as
|
||||
* version negotiation (currently, that means ignoring the contents, but it can be used for
|
||||
* negotiating future extensions), and afterwards the state becomes APP. */
|
||||
VERSION,
|
||||
|
||||
/** Application packet.
|
||||
*
|
||||
* A packet is received, and decrypted/verified. If that succeeds, the state becomes
|
||||
* APP_READY and the decrypted contents is kept in m_recv_decode_buffer until it is
|
||||
* retrieved as a message by GetMessage(). */
|
||||
APP,
|
||||
|
||||
/** Nothing (an application packet is available for GetMessage()).
|
||||
*
|
||||
* Nothing can be received in this state. When the message is retrieved by GetMessage,
|
||||
* the state becomes APP again. */
|
||||
APP_READY,
|
||||
|
||||
/** Nothing (this transport is using v1 fallback).
|
||||
*
|
||||
* All receive operations are redirected to m_v1_fallback. */
|
||||
V1,
|
||||
};
|
||||
|
||||
/** State type that controls the sender side.
|
||||
*
|
||||
* Diagram:
|
||||
*
|
||||
* start(responder)
|
||||
* |
|
||||
* | start(initiator)
|
||||
* | |
|
||||
* v v
|
||||
* MAYBE_V1 -> AWAITING_KEY -> READY
|
||||
* |
|
||||
* \-----> V1
|
||||
*/
|
||||
enum class SendState : uint8_t {
|
||||
/** (Responder only) Not sending until v1 or v2 is detected.
|
||||
*
|
||||
* This is the initial state for responders. The send buffer is empty.
|
||||
* When the receiver determines whether this
|
||||
* is a V1 or V2 connection, the sender state becomes AWAITING_KEY (for v2) or V1 (for v1).
|
||||
*/
|
||||
MAYBE_V1,
|
||||
|
||||
/** Waiting for the other side's public key.
|
||||
*
|
||||
* This is the initial state for initiators. The public key and garbage is sent out. When
|
||||
* the receiver receives the other side's public key and transitions to GARB_GARBTERM, the
|
||||
* sender state becomes READY. */
|
||||
AWAITING_KEY,
|
||||
|
||||
/** Normal sending state.
|
||||
*
|
||||
* In this state, the ciphers are initialized, so packets can be sent. When this state is
|
||||
* entered, the garbage terminator and version packet are appended to the send buffer (in
|
||||
* addition to the key and garbage which may still be there). In this state a message can be
|
||||
* provided if the send buffer is empty. */
|
||||
READY,
|
||||
|
||||
/** This transport is using v1 fallback.
|
||||
*
|
||||
* All send operations are redirected to m_v1_fallback. */
|
||||
V1,
|
||||
};
|
||||
|
||||
/** Cipher state. */
|
||||
BIP324Cipher m_cipher;
|
||||
/** Whether we are the initiator side. */
|
||||
const bool m_initiating;
|
||||
/** NodeId (for debug logging). */
|
||||
const NodeId m_nodeid;
|
||||
/** Encapsulate a V1Transport to fall back to. */
|
||||
V1Transport m_v1_fallback;
|
||||
|
||||
/** Lock for receiver-side fields. */
|
||||
mutable Mutex m_recv_mutex ACQUIRED_BEFORE(m_send_mutex);
|
||||
/** In {VERSION, APP}, the decrypted packet length, if m_recv_buffer.size() >=
|
||||
* BIP324Cipher::LENGTH_LEN. Unspecified otherwise. */
|
||||
uint32_t m_recv_len GUARDED_BY(m_recv_mutex) {0};
|
||||
/** Receive buffer; meaning is determined by m_recv_state. */
|
||||
std::vector<uint8_t> m_recv_buffer GUARDED_BY(m_recv_mutex);
|
||||
/** AAD expected in next received packet (currently used only for garbage). */
|
||||
std::vector<uint8_t> m_recv_aad GUARDED_BY(m_recv_mutex);
|
||||
/** Buffer to put decrypted contents in, for converting to CNetMessage. */
|
||||
std::vector<uint8_t> m_recv_decode_buffer GUARDED_BY(m_recv_mutex);
|
||||
/** Deserialization type. */
|
||||
const int m_recv_type;
|
||||
/** Deserialization version number. */
|
||||
const int m_recv_version;
|
||||
/** Current receiver state. */
|
||||
RecvState m_recv_state GUARDED_BY(m_recv_mutex);
|
||||
|
||||
/** Lock for sending-side fields. If both sending and receiving fields are accessed,
|
||||
* m_recv_mutex must be acquired before m_send_mutex. */
|
||||
mutable Mutex m_send_mutex ACQUIRED_AFTER(m_recv_mutex);
|
||||
/** The send buffer; meaning is determined by m_send_state. */
|
||||
std::vector<uint8_t> m_send_buffer GUARDED_BY(m_send_mutex);
|
||||
/** How many bytes from the send buffer have been sent so far. */
|
||||
uint32_t m_send_pos GUARDED_BY(m_send_mutex) {0};
|
||||
/** The garbage sent, or to be sent (MAYBE_V1 and AWAITING_KEY state only). */
|
||||
std::vector<uint8_t> m_send_garbage GUARDED_BY(m_send_mutex);
|
||||
/** Type of the message being sent. */
|
||||
std::string m_send_type GUARDED_BY(m_send_mutex);
|
||||
/** Current sender state. */
|
||||
SendState m_send_state GUARDED_BY(m_send_mutex);
|
||||
|
||||
/** Change the receive state. */
|
||||
void SetReceiveState(RecvState recv_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
|
||||
/** Change the send state. */
|
||||
void SetSendState(SendState send_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex);
|
||||
/** Given a packet's contents, find the message type (if valid), and strip it from contents. */
|
||||
static std::optional<std::string> GetMessageType(Span<const uint8_t>& contents) noexcept;
|
||||
/** Determine how many received bytes can be processed in one go (not allowed in V1 state). */
|
||||
size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
|
||||
/** Put our public key + garbage in the send buffer. */
|
||||
void StartSendingHandshake() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex);
|
||||
/** Process bytes in m_recv_buffer, while in KEY_MAYBE_V1 state. */
|
||||
void ProcessReceivedMaybeV1Bytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex, !m_send_mutex);
|
||||
/** Process bytes in m_recv_buffer, while in KEY state. */
|
||||
bool ProcessReceivedKeyBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex, !m_send_mutex);
|
||||
/** Process bytes in m_recv_buffer, while in GARB_GARBTERM state. */
|
||||
bool ProcessReceivedGarbageBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
|
||||
/** Process bytes in m_recv_buffer, while in VERSION/APP state. */
|
||||
bool ProcessReceivedPacketBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
|
||||
|
||||
public:
|
||||
static constexpr uint32_t MAX_GARBAGE_LEN = 4095;
|
||||
|
||||
/** Construct a V2 transport with securely generated random keys.
|
||||
*
|
||||
* @param[in] nodeid the node's NodeId (only for debug log output).
|
||||
* @param[in] initiating whether we are the initiator side.
|
||||
* @param[in] type_in the serialization type of returned CNetMessages.
|
||||
* @param[in] version_in the serialization version of returned CNetMessages.
|
||||
*/
|
||||
V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept;
|
||||
|
||||
/** Construct a V2 transport with specified keys and garbage (test use only). */
|
||||
V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept;
|
||||
|
||||
// Receive side functions.
|
||||
bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
|
||||
bool ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex, !m_send_mutex);
|
||||
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
|
||||
|
||||
// Send side functions.
|
||||
bool SetMessageToSend(CSerializedNetMsg& msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
|
||||
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
|
||||
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
|
||||
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
|
||||
};
|
||||
|
@ -124,8 +124,11 @@ static constexpr std::chrono::minutes PING_INTERVAL{2};
|
||||
static const unsigned int MAX_LOCATOR_SZ = 101;
|
||||
/** Number of blocks that can be requested at any given time from a single peer. */
|
||||
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
|
||||
/** Time during which a peer must stall block download progress before being disconnected. */
|
||||
static constexpr auto BLOCK_STALLING_TIMEOUT = 2s;
|
||||
/** Default time during which a peer must stall block download progress before being disconnected.
|
||||
* the actual timeout is increased temporarily if peers are disconnected for hitting the timeout */
|
||||
static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
|
||||
/** Maximum timeout for stalling block download. */
|
||||
static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
|
||||
/** Maximum depth of blocks we're willing to serve as compact blocks to peers
|
||||
* when requested. For older blocks, a regular BLOCK response will be sent. */
|
||||
static const int MAX_CMPCTBLOCK_DEPTH = 5;
|
||||
@ -835,6 +838,9 @@ private:
|
||||
/** Number of preferable block download peers. */
|
||||
int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
|
||||
|
||||
/** Stalling timeout for blocks in IBD */
|
||||
std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
|
||||
|
||||
bool AlreadyHave(const CInv& inv)
|
||||
EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_recent_confirmed_transactions_mutex);
|
||||
|
||||
@ -1905,8 +1911,9 @@ void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
|
||||
}
|
||||
|
||||
/**
|
||||
* Evict orphan txn pool entries (EraseOrphanTx) based on a newly connected
|
||||
* block. Also save the time of the last tip update.
|
||||
* Evict orphan txn pool entries based on a newly connected
|
||||
* block. Also save the time of the last tip update and
|
||||
* possibly reduce dynamic block stalling timeout.
|
||||
*/
|
||||
void PeerManagerImpl::BlockConnected(const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindex)
|
||||
{
|
||||
@ -1927,6 +1934,16 @@ void PeerManagerImpl::BlockConnected(const std::shared_ptr<const CBlock>& pblock
|
||||
m_recent_confirmed_transactions.insert(ptx->GetHash());
|
||||
}
|
||||
}
|
||||
|
||||
// In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
|
||||
auto stalling_timeout = m_block_stalling_timeout.load();
|
||||
Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
|
||||
if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
|
||||
const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
|
||||
if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
|
||||
LogPrint(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
|
||||
@ -5865,12 +5882,19 @@ bool PeerManagerImpl::SendMessages(CNode* pto)
|
||||
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv));
|
||||
|
||||
// Detect whether we're stalling
|
||||
if (state.m_stalling_since.count() && state.m_stalling_since < current_time - BLOCK_STALLING_TIMEOUT) {
|
||||
auto stalling_timeout = m_block_stalling_timeout.load();
|
||||
if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
|
||||
// Stalling only triggers when the block download window cannot move. During normal steady state,
|
||||
// the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
|
||||
// should only happen during initial block download.
|
||||
LogPrintf("Peer=%d is stalling block download, disconnecting\n", pto->GetId());
|
||||
pto->fDisconnect = true;
|
||||
// Increase timeout for the next peer so that we don't disconnect multiple peers if our own
|
||||
// bandwidth is insufficient.
|
||||
const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
|
||||
if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
|
||||
LogPrint(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
// In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
|
||||
|
@ -258,6 +258,12 @@ bool CPubKey::Derive(CPubKey& pubkeyChild, ChainCode &ccChild, unsigned int nChi
|
||||
return true;
|
||||
}
|
||||
|
||||
EllSwiftPubKey::EllSwiftPubKey(Span<const std::byte> ellswift) noexcept
|
||||
{
|
||||
assert(ellswift.size() == SIZE);
|
||||
std::copy(ellswift.begin(), ellswift.end(), m_pubkey.begin());
|
||||
}
|
||||
|
||||
CPubKey EllSwiftPubKey::Decode() const
|
||||
{
|
||||
secp256k1_pubkey pubkey;
|
||||
|
@ -217,8 +217,7 @@ public:
|
||||
EllSwiftPubKey() noexcept = default;
|
||||
|
||||
/** Construct a new ellswift public key from a given serialization. */
|
||||
EllSwiftPubKey(const std::array<std::byte, SIZE>& ellswift) :
|
||||
m_pubkey(ellswift) {}
|
||||
EllSwiftPubKey(Span<const std::byte> ellswift) noexcept;
|
||||
|
||||
/** Decode to normal compressed CPubKey (for debugging purposes). */
|
||||
CPubKey Decode() const;
|
||||
|
@ -37,14 +37,8 @@ void TestBIP324PacketVector(
|
||||
{
|
||||
// Convert input from hex to char/byte vectors/arrays.
|
||||
const auto in_priv_ours = ParseHex(in_priv_ours_hex);
|
||||
const auto in_ellswift_ours_vec = ParseHex<std::byte>(in_ellswift_ours_hex);
|
||||
assert(in_ellswift_ours_vec.size() == 64);
|
||||
std::array<std::byte, 64> in_ellswift_ours;
|
||||
std::copy(in_ellswift_ours_vec.begin(), in_ellswift_ours_vec.end(), in_ellswift_ours.begin());
|
||||
const auto in_ellswift_theirs_vec = ParseHex<std::byte>(in_ellswift_theirs_hex);
|
||||
assert(in_ellswift_theirs_vec.size() == 64);
|
||||
std::array<std::byte, 64> in_ellswift_theirs;
|
||||
std::copy(in_ellswift_theirs_vec.begin(), in_ellswift_theirs_vec.end(), in_ellswift_theirs.begin());
|
||||
const auto in_ellswift_ours = ParseHex<std::byte>(in_ellswift_ours_hex);
|
||||
const auto in_ellswift_theirs = ParseHex<std::byte>(in_ellswift_theirs_hex);
|
||||
const auto in_contents = ParseHex<std::byte>(in_contents_hex);
|
||||
const auto in_aad = ParseHex<std::byte>(in_aad_hex);
|
||||
const auto mid_send_garbage = ParseHex<std::byte>(mid_send_garbage_hex);
|
||||
|
@ -26,19 +26,13 @@ FUZZ_TARGET_INIT(bip324_cipher_roundtrip, initialize_bip324)
|
||||
// Load keys from fuzzer.
|
||||
FuzzedDataProvider provider(buffer.data(), buffer.size());
|
||||
// Initiator key
|
||||
auto init_key_data = provider.ConsumeBytes<unsigned char>(32);
|
||||
init_key_data.resize(32);
|
||||
CKey init_key;
|
||||
init_key.Set(init_key_data.begin(), init_key_data.end(), true);
|
||||
CKey init_key = ConsumePrivateKey(provider, /*compressed=*/true);
|
||||
if (!init_key.IsValid()) return;
|
||||
// Initiator entropy
|
||||
auto init_ent = provider.ConsumeBytes<std::byte>(32);
|
||||
init_ent.resize(32);
|
||||
// Responder key
|
||||
auto resp_key_data = provider.ConsumeBytes<unsigned char>(32);
|
||||
resp_key_data.resize(32);
|
||||
CKey resp_key;
|
||||
resp_key.Set(resp_key_data.begin(), resp_key_data.end(), true);
|
||||
CKey resp_key = ConsumePrivateKey(provider, /*compressed=*/true);
|
||||
if (!resp_key.IsValid()) return;
|
||||
// Responder entropy
|
||||
auto resp_ent = provider.ConsumeBytes<std::byte>(32);
|
||||
|
@ -15,6 +15,7 @@
|
||||
#include <streams.h>
|
||||
#include <test/fuzz/FuzzedDataProvider.h>
|
||||
#include <test/fuzz/fuzz.h>
|
||||
#include <test/fuzz/util.h>
|
||||
#include <util/strencodings.h>
|
||||
|
||||
#include <array>
|
||||
@ -264,10 +265,7 @@ FUZZ_TARGET_INIT(ellswift_roundtrip, initialize_key)
|
||||
{
|
||||
FuzzedDataProvider fdp{buffer.data(), buffer.size()};
|
||||
|
||||
auto key_bytes = fdp.ConsumeBytes<uint8_t>(32);
|
||||
key_bytes.resize(32);
|
||||
CKey key;
|
||||
key.Set(key_bytes.begin(), key_bytes.end(), true);
|
||||
CKey key = ConsumePrivateKey(fdp, /*compressed=*/true);
|
||||
if (!key.IsValid()) return;
|
||||
|
||||
auto ent32 = fdp.ConsumeBytes<std::byte>(32);
|
||||
@ -284,17 +282,11 @@ FUZZ_TARGET_INIT(bip324_ecdh, initialize_key)
|
||||
FuzzedDataProvider fdp{buffer.data(), buffer.size()};
|
||||
|
||||
// We generate private key, k1.
|
||||
auto rnd32 = fdp.ConsumeBytes<uint8_t>(32);
|
||||
rnd32.resize(32);
|
||||
CKey k1;
|
||||
k1.Set(rnd32.begin(), rnd32.end(), true);
|
||||
CKey k1 = ConsumePrivateKey(fdp, /*compressed=*/true);
|
||||
if (!k1.IsValid()) return;
|
||||
|
||||
// They generate private key, k2.
|
||||
rnd32 = fdp.ConsumeBytes<uint8_t>(32);
|
||||
rnd32.resize(32);
|
||||
CKey k2;
|
||||
k2.Set(rnd32.begin(), rnd32.end(), true);
|
||||
CKey k2 = ConsumePrivateKey(fdp, /*compressed=*/true);
|
||||
if (!k2.IsValid()) return;
|
||||
|
||||
// We construct an ellswift encoding for our key, k1_ellswift.
|
||||
|
@ -27,9 +27,7 @@ FUZZ_TARGET_INIT(message, initialize_message)
|
||||
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
|
||||
const std::string random_message = fuzzed_data_provider.ConsumeRandomLengthString(1024);
|
||||
{
|
||||
const std::vector<uint8_t> random_bytes = ConsumeRandomLengthByteVector(fuzzed_data_provider);
|
||||
CKey private_key;
|
||||
private_key.Set(random_bytes.begin(), random_bytes.end(), fuzzed_data_provider.ConsumeBool());
|
||||
CKey private_key = ConsumePrivateKey(fuzzed_data_provider);
|
||||
std::string signature;
|
||||
const bool message_signed = MessageSign(private_key, random_message, signature);
|
||||
if (private_key.IsValid()) {
|
||||
|
@ -22,6 +22,7 @@ std::vector<std::string> g_all_messages;
|
||||
|
||||
void initialize_p2p_transport_serialization()
|
||||
{
|
||||
ECC_Start();
|
||||
SelectParams(CBaseChainParams::REGTEST);
|
||||
g_all_messages = getAllNetMessageTypes();
|
||||
std::sort(g_all_messages.begin(), g_all_messages.end());
|
||||
@ -87,7 +88,7 @@ FUZZ_TARGET_INIT(p2p_transport_serialization, initialize_p2p_transport_serializa
|
||||
assert(queued);
|
||||
std::optional<bool> known_more;
|
||||
while (true) {
|
||||
const auto& [to_send, more, _msg_type] = send_transport.GetBytesToSend();
|
||||
const auto& [to_send, more, _msg_type] = send_transport.GetBytesToSend(false);
|
||||
if (known_more) assert(!to_send.empty() == *known_more);
|
||||
if (to_send.empty()) break;
|
||||
send_transport.MarkBytesSent(to_send.size());
|
||||
@ -119,11 +120,13 @@ void SimulationTest(Transport& initiator, Transport& responder, R& rng, FuzzedDa
|
||||
// Vectors with bytes last returned by GetBytesToSend() on transport[i].
|
||||
std::array<std::vector<uint8_t>, 2> to_send;
|
||||
|
||||
// Last returned 'more' values (if still relevant) by transport[i]->GetBytesToSend().
|
||||
std::array<std::optional<bool>, 2> last_more;
|
||||
// Last returned 'more' values (if still relevant) by transport[i]->GetBytesToSend(), for
|
||||
// both have_next_message false and true.
|
||||
std::array<std::optional<bool>, 2> last_more, last_more_next;
|
||||
|
||||
// Whether more bytes to be sent are expected on transport[i].
|
||||
std::array<std::optional<bool>, 2> expect_more;
|
||||
// Whether more bytes to be sent are expected on transport[i], before and after
|
||||
// SetMessageToSend().
|
||||
std::array<std::optional<bool>, 2> expect_more, expect_more_next;
|
||||
|
||||
// Function to consume a message type.
|
||||
auto msg_type_fn = [&]() {
|
||||
@ -172,18 +175,27 @@ void SimulationTest(Transport& initiator, Transport& responder, R& rng, FuzzedDa
|
||||
|
||||
// Wrapper around transport[i]->GetBytesToSend() that performs sanity checks.
|
||||
auto bytes_to_send_fn = [&](int side) -> Transport::BytesToSend {
|
||||
const auto& [bytes, more, msg_type] = transports[side]->GetBytesToSend();
|
||||
// Invoke GetBytesToSend twice (for have_next_message = {false, true}). This function does
|
||||
// not modify state (it's const), and only the "more" return value should differ between
|
||||
// the calls.
|
||||
const auto& [bytes, more_nonext, msg_type] = transports[side]->GetBytesToSend(false);
|
||||
const auto& [bytes_next, more_next, msg_type_next] = transports[side]->GetBytesToSend(true);
|
||||
// Compare with expected more.
|
||||
if (expect_more[side].has_value()) assert(!bytes.empty() == *expect_more[side]);
|
||||
// Verify consistency between the two results.
|
||||
assert(bytes == bytes_next);
|
||||
assert(msg_type == msg_type_next);
|
||||
if (more_nonext) assert(more_next);
|
||||
// Compare with previously reported output.
|
||||
assert(to_send[side].size() <= bytes.size());
|
||||
assert(to_send[side] == Span{bytes}.first(to_send[side].size()));
|
||||
to_send[side].resize(bytes.size());
|
||||
std::copy(bytes.begin(), bytes.end(), to_send[side].begin());
|
||||
// Remember 'more' result.
|
||||
last_more[side] = {more};
|
||||
// Remember 'more' results.
|
||||
last_more[side] = {more_nonext};
|
||||
last_more_next[side] = {more_next};
|
||||
// Return.
|
||||
return {bytes, more, msg_type};
|
||||
return {bytes, more_nonext, msg_type};
|
||||
};
|
||||
|
||||
// Function to make side send a new message.
|
||||
@ -194,7 +206,8 @@ void SimulationTest(Transport& initiator, Transport& responder, R& rng, FuzzedDa
|
||||
CSerializedNetMsg msg = next_msg[side].Copy();
|
||||
bool queued = transports[side]->SetMessageToSend(msg);
|
||||
// Update expected more data.
|
||||
expect_more[side] = std::nullopt;
|
||||
expect_more[side] = expect_more_next[side];
|
||||
expect_more_next[side] = std::nullopt;
|
||||
// Verify consistency of GetBytesToSend after SetMessageToSend
|
||||
bytes_to_send_fn(/*side=*/side);
|
||||
if (queued) {
|
||||
@ -218,6 +231,7 @@ void SimulationTest(Transport& initiator, Transport& responder, R& rng, FuzzedDa
|
||||
// If all to-be-sent bytes were sent, move last_more data to expect_more data.
|
||||
if (send_now == bytes.size()) {
|
||||
expect_more[side] = last_more[side];
|
||||
expect_more_next[side] = last_more_next[side];
|
||||
}
|
||||
// Remove the bytes from the last reported to-be-sent vector.
|
||||
assert(to_send[side].size() >= send_now);
|
||||
@ -246,6 +260,7 @@ void SimulationTest(Transport& initiator, Transport& responder, R& rng, FuzzedDa
|
||||
// Clear cached expected 'more' information: if certainly no more data was to be sent
|
||||
// before, receiving bytes makes this uncertain.
|
||||
if (expect_more[!side] == false) expect_more[!side] = std::nullopt;
|
||||
if (expect_more_next[!side] == false) expect_more_next[!side] = std::nullopt;
|
||||
// Verify consistency of GetBytesToSend after ReceivedBytes
|
||||
bytes_to_send_fn(/*side=*/!side);
|
||||
bool progress = to_recv.size() < old_len;
|
||||
@ -315,6 +330,40 @@ std::unique_ptr<Transport> MakeV1Transport(NodeId nodeid) noexcept
|
||||
return std::make_unique<V1Transport>(nodeid, SER_NETWORK, INIT_PROTO_VERSION);
|
||||
}
|
||||
|
||||
template<typename RNG>
|
||||
std::unique_ptr<Transport> MakeV2Transport(NodeId nodeid, bool initiator, RNG& rng, FuzzedDataProvider& provider)
|
||||
{
|
||||
// Retrieve key
|
||||
auto key = ConsumePrivateKey(provider);
|
||||
if (!key.IsValid()) return {};
|
||||
// Construct garbage
|
||||
size_t garb_len = provider.ConsumeIntegralInRange<size_t>(0, V2Transport::MAX_GARBAGE_LEN);
|
||||
std::vector<uint8_t> garb;
|
||||
if (garb_len <= 64) {
|
||||
// When the garbage length is up to 64 bytes, read it directly from the fuzzer input.
|
||||
garb = provider.ConsumeBytes<uint8_t>(garb_len);
|
||||
garb.resize(garb_len);
|
||||
} else {
|
||||
// If it's longer, generate it from the RNG. This avoids having large amounts of
|
||||
// (hopefully) irrelevant data needing to be stored in the fuzzer data.
|
||||
for (auto& v : garb) v = uint8_t(rng());
|
||||
}
|
||||
// Retrieve entropy
|
||||
auto ent = provider.ConsumeBytes<std::byte>(32);
|
||||
ent.resize(32);
|
||||
// Use as entropy SHA256(ent || garbage). This prevents a situation where the fuzzer manages to
|
||||
// include the garbage terminator (which is a function of both ellswift keys) in the garbage.
|
||||
// This is extremely unlikely (~2^-116) with random keys/garbage, but the fuzzer can choose
|
||||
// both non-randomly and dependently. Since the entropy is hashed anyway inside the ellswift
|
||||
// computation, no coverage should be lost by using a hash as entropy, and it removes the
|
||||
// possibility of garbage that happens to contain what is effectively a hash of the keys.
|
||||
CSHA256().Write(UCharCast(ent.data()), ent.size())
|
||||
.Write(garb.data(), garb.size())
|
||||
.Finalize(UCharCast(ent.data()));
|
||||
|
||||
return std::make_unique<V2Transport>(nodeid, initiator, SER_NETWORK, INIT_PROTO_VERSION, key, ent, std::move(garb));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
FUZZ_TARGET_INIT(p2p_transport_bidirectional, initialize_p2p_transport_serialization)
|
||||
@ -327,3 +376,25 @@ FUZZ_TARGET_INIT(p2p_transport_bidirectional, initialize_p2p_transport_serializa
|
||||
if (!t1 || !t2) return;
|
||||
SimulationTest(*t1, *t2, rng, provider);
|
||||
}
|
||||
|
||||
FUZZ_TARGET_INIT(p2p_transport_bidirectional_v2, initialize_p2p_transport_serialization)
|
||||
{
|
||||
// Test with two V2 transports talking to each other.
|
||||
FuzzedDataProvider provider{buffer.data(), buffer.size()};
|
||||
XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>());
|
||||
auto t1 = MakeV2Transport(NodeId{0}, true, rng, provider);
|
||||
auto t2 = MakeV2Transport(NodeId{1}, false, rng, provider);
|
||||
if (!t1 || !t2) return;
|
||||
SimulationTest(*t1, *t2, rng, provider);
|
||||
}
|
||||
|
||||
FUZZ_TARGET_INIT(p2p_transport_bidirectional_v1v2, initialize_p2p_transport_serialization)
|
||||
{
|
||||
// Test with a V1 initiator talking to a V2 responder.
|
||||
FuzzedDataProvider provider{buffer.data(), buffer.size()};
|
||||
XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>());
|
||||
auto t1 = MakeV1Transport(NodeId{0});
|
||||
auto t2 = MakeV2Transport(NodeId{1}, false, rng, provider);
|
||||
if (!t1 || !t2) return;
|
||||
SimulationTest(*t1, *t2, rng, provider);
|
||||
}
|
||||
|
@ -274,9 +274,7 @@ std::string ConsumeScalarRPCArgument(FuzzedDataProvider& fuzzed_data_provider)
|
||||
},
|
||||
[&] {
|
||||
// base58 encoded key
|
||||
const std::vector<uint8_t> random_bytes = fuzzed_data_provider.ConsumeBytes<uint8_t>(32);
|
||||
CKey key;
|
||||
key.Set(random_bytes.begin(), random_bytes.end(), fuzzed_data_provider.ConsumeBool());
|
||||
CKey key = ConsumePrivateKey(fuzzed_data_provider);
|
||||
if (!key.IsValid()) {
|
||||
return;
|
||||
}
|
||||
@ -284,9 +282,7 @@ std::string ConsumeScalarRPCArgument(FuzzedDataProvider& fuzzed_data_provider)
|
||||
},
|
||||
[&] {
|
||||
// hex encoded pubkey
|
||||
const std::vector<uint8_t> random_bytes = fuzzed_data_provider.ConsumeBytes<uint8_t>(32);
|
||||
CKey key;
|
||||
key.Set(random_bytes.begin(), random_bytes.end(), fuzzed_data_provider.ConsumeBool());
|
||||
CKey key = ConsumePrivateKey(fuzzed_data_provider);
|
||||
if (!key.IsValid()) {
|
||||
return;
|
||||
}
|
||||
|
@ -78,9 +78,7 @@ FUZZ_TARGET_INIT(script_sign, initialize_script_sign)
|
||||
}
|
||||
|
||||
FillableSigningProvider provider;
|
||||
CKey k;
|
||||
const std::vector<uint8_t> key_data = ConsumeRandomLengthByteVector(fuzzed_data_provider);
|
||||
k.Set(key_data.begin(), key_data.end(), fuzzed_data_provider.ConsumeBool());
|
||||
CKey k = ConsumePrivateKey(fuzzed_data_provider);
|
||||
if (k.IsValid()) {
|
||||
provider.AddKey(k);
|
||||
}
|
||||
|
@ -351,3 +351,13 @@ uint32_t ConsumeSequence(FuzzedDataProvider& fuzzed_data_provider) noexcept
|
||||
}) :
|
||||
fuzzed_data_provider.ConsumeIntegral<uint32_t>();
|
||||
}
|
||||
|
||||
CKey ConsumePrivateKey(FuzzedDataProvider& fuzzed_data_provider, std::optional<bool> compressed) noexcept
|
||||
{
|
||||
auto key_data = fuzzed_data_provider.ConsumeBytes<uint8_t>(32);
|
||||
key_data.resize(32);
|
||||
CKey key;
|
||||
bool compressed_value = compressed ? *compressed : fuzzed_data_provider.ConsumeBool();
|
||||
key.Set(key_data.begin(), key_data.end(), compressed_value);
|
||||
return key;
|
||||
}
|
||||
|
@ -12,6 +12,7 @@
|
||||
#include <coins.h>
|
||||
#include <compat.h>
|
||||
#include <consensus/consensus.h>
|
||||
#include <key.h>
|
||||
#include <merkleblock.h>
|
||||
#include <net.h>
|
||||
#include <netaddress.h>
|
||||
@ -250,6 +251,8 @@ template <typename WeakEnumType, size_t size>
|
||||
return tx_destination;
|
||||
}
|
||||
|
||||
[[nodiscard]] CKey ConsumePrivateKey(FuzzedDataProvider& fuzzed_data_provider, std::optional<bool> compressed = std::nullopt) noexcept;
|
||||
|
||||
template <typename T>
|
||||
[[nodiscard]] bool MultiplicationOverflow(const T i, const T j) noexcept
|
||||
{
|
||||
|
@ -1013,4 +1013,543 @@ BOOST_AUTO_TEST_CASE(advertise_local_address)
|
||||
RemoveLocal(addr_cjdns);
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
CKey GenerateRandomTestKey() noexcept
|
||||
{
|
||||
CKey key;
|
||||
uint256 key_data = InsecureRand256();
|
||||
key.Set(key_data.begin(), key_data.end(), true);
|
||||
return key;
|
||||
}
|
||||
|
||||
/** A class for scenario-based tests of V2Transport
|
||||
*
|
||||
* Each V2TransportTester encapsulates a V2Transport (the one being tested), and can be told to
|
||||
* interact with it. To do so, it also encapsulates a BIP324Cipher to act as the other side. A
|
||||
* second V2Transport is not used, as doing so would not permit scenarios that involve sending
|
||||
* invalid data, or ones using BIP324 features that are not implemented on the sending
|
||||
* side (like decoy packets).
|
||||
*/
|
||||
class V2TransportTester
|
||||
{
|
||||
V2Transport m_transport; //!< V2Transport being tested
|
||||
BIP324Cipher m_cipher; //!< Cipher to help with the other side
|
||||
bool m_test_initiator; //!< Whether m_transport is the initiator (true) or responder (false)
|
||||
|
||||
std::vector<uint8_t> m_sent_garbage; //!< The garbage we've sent to m_transport.
|
||||
std::vector<uint8_t> m_recv_garbage; //!< The garbage we've received from m_transport.
|
||||
std::vector<uint8_t> m_to_send; //!< Bytes we have queued up to send to m_transport.
|
||||
std::vector<uint8_t> m_received; //!< Bytes we have received from m_transport.
|
||||
std::deque<CSerializedNetMsg> m_msg_to_send; //!< Messages to be sent *by* m_transport to us.
|
||||
bool m_sent_aad{false};
|
||||
|
||||
public:
|
||||
/** Construct a tester object. test_initiator: whether the tested transport is initiator. */
|
||||
V2TransportTester(bool test_initiator) :
|
||||
m_transport(0, test_initiator, SER_NETWORK, INIT_PROTO_VERSION),
|
||||
m_cipher{GenerateRandomTestKey(), MakeByteSpan(InsecureRand256())},
|
||||
m_test_initiator(test_initiator) {}
|
||||
|
||||
/** Data type returned by Interact:
|
||||
*
|
||||
* - std::nullopt: transport error occurred
|
||||
* - otherwise: a vector of
|
||||
* - std::nullopt: invalid message received
|
||||
* - otherwise: a CNetMessage retrieved
|
||||
*/
|
||||
using InteractResult = std::optional<std::vector<std::optional<CNetMessage>>>;
|
||||
|
||||
/** Send/receive scheduled/available bytes and messages.
|
||||
*
|
||||
* This is the only function that interacts with the transport being tested; everything else is
|
||||
* scheduling things done by Interact(), or processing things learned by it.
|
||||
*/
|
||||
InteractResult Interact()
|
||||
{
|
||||
std::vector<std::optional<CNetMessage>> ret;
|
||||
while (true) {
|
||||
bool progress{false};
|
||||
// Send bytes from m_to_send to the transport.
|
||||
if (!m_to_send.empty()) {
|
||||
Span<const uint8_t> to_send = Span{m_to_send}.first(1 + InsecureRandRange(m_to_send.size()));
|
||||
size_t old_len = to_send.size();
|
||||
if (!m_transport.ReceivedBytes(to_send)) {
|
||||
return std::nullopt; // transport error occurred
|
||||
}
|
||||
if (old_len != to_send.size()) {
|
||||
progress = true;
|
||||
m_to_send.erase(m_to_send.begin(), m_to_send.begin() + (old_len - to_send.size()));
|
||||
}
|
||||
}
|
||||
// Retrieve messages received by the transport.
|
||||
if (m_transport.ReceivedMessageComplete() && (!progress || InsecureRandBool())) {
|
||||
bool reject{false};
|
||||
auto msg = m_transport.GetReceivedMessage({}, reject);
|
||||
if (reject) {
|
||||
ret.push_back(std::nullopt);
|
||||
} else {
|
||||
ret.push_back(std::move(msg));
|
||||
}
|
||||
progress = true;
|
||||
}
|
||||
// Enqueue a message to be sent by the transport to us.
|
||||
if (!m_msg_to_send.empty() && (!progress || InsecureRandBool())) {
|
||||
if (m_transport.SetMessageToSend(m_msg_to_send.front())) {
|
||||
m_msg_to_send.pop_front();
|
||||
progress = true;
|
||||
}
|
||||
}
|
||||
// Receive bytes from the transport.
|
||||
const auto& [recv_bytes, _more, _msg_type] = m_transport.GetBytesToSend(!m_msg_to_send.empty());
|
||||
if (!recv_bytes.empty() && (!progress || InsecureRandBool())) {
|
||||
size_t to_receive = 1 + InsecureRandRange(recv_bytes.size());
|
||||
m_received.insert(m_received.end(), recv_bytes.begin(), recv_bytes.begin() + to_receive);
|
||||
progress = true;
|
||||
m_transport.MarkBytesSent(to_receive);
|
||||
}
|
||||
if (!progress) break;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/** Expose the cipher. */
|
||||
BIP324Cipher& GetCipher() { return m_cipher; }
|
||||
|
||||
/** Schedule bytes to be sent to the transport. */
|
||||
void Send(Span<const uint8_t> data)
|
||||
{
|
||||
m_to_send.insert(m_to_send.end(), data.begin(), data.end());
|
||||
}
|
||||
|
||||
/** Send V1 version message header to the transport. */
|
||||
void SendV1Version(const CMessageHeader::MessageStartChars& magic)
|
||||
{
|
||||
CMessageHeader hdr(magic, "version", 126 + InsecureRandRange(11));
|
||||
CDataStream ser(SER_NETWORK, CLIENT_VERSION);
|
||||
ser << hdr;
|
||||
m_to_send.insert(m_to_send.end(), UCharCast(ser.data()), UCharCast(ser.data() + ser.size()));
|
||||
}
|
||||
|
||||
/** Schedule bytes to be sent to the transport. */
|
||||
void Send(Span<const std::byte> data) { Send(MakeUCharSpan(data)); }
|
||||
|
||||
/** Schedule our ellswift key to be sent to the transport. */
|
||||
void SendKey() { Send(m_cipher.GetOurPubKey()); }
|
||||
|
||||
/** Schedule specified garbage to be sent to the transport. */
|
||||
void SendGarbage(Span<const uint8_t> garbage)
|
||||
{
|
||||
// Remember the specified garbage (so we can use it as AAD).
|
||||
m_sent_garbage.assign(garbage.begin(), garbage.end());
|
||||
// Schedule it for sending.
|
||||
Send(m_sent_garbage);
|
||||
}
|
||||
|
||||
/** Schedule garbage (of specified length) to be sent to the transport. */
|
||||
void SendGarbage(size_t garbage_len)
|
||||
{
|
||||
// Generate random garbage and send it.
|
||||
SendGarbage(g_insecure_rand_ctx.randbytes<uint8_t>(garbage_len));
|
||||
}
|
||||
|
||||
/** Schedule garbage (with valid random length) to be sent to the transport. */
|
||||
void SendGarbage()
|
||||
{
|
||||
SendGarbage(InsecureRandRange(V2Transport::MAX_GARBAGE_LEN + 1));
|
||||
}
|
||||
|
||||
/** Schedule a message to be sent to us by the transport. */
|
||||
void AddMessage(std::string m_type, std::vector<uint8_t> payload)
|
||||
{
|
||||
CSerializedNetMsg msg;
|
||||
msg.m_type = std::move(m_type);
|
||||
msg.data = std::move(payload);
|
||||
m_msg_to_send.push_back(std::move(msg));
|
||||
}
|
||||
|
||||
/** Expect ellswift key to have been received from transport and process it.
|
||||
*
|
||||
* Many other V2TransportTester functions cannot be called until after ReceiveKey() has been
|
||||
* called, as no encryption keys are set up before that point.
|
||||
*/
|
||||
void ReceiveKey()
|
||||
{
|
||||
// When processing a key, enough bytes need to have been received already.
|
||||
BOOST_REQUIRE(m_received.size() >= EllSwiftPubKey::size());
|
||||
// Initialize the cipher using it (acting as the opposite side of the tested transport).
|
||||
m_cipher.Initialize(MakeByteSpan(m_received).first(EllSwiftPubKey::size()), !m_test_initiator);
|
||||
// Strip the processed bytes off the front of the receive buffer.
|
||||
m_received.erase(m_received.begin(), m_received.begin() + EllSwiftPubKey::size());
|
||||
}
|
||||
|
||||
/** Schedule an encrypted packet with specified content/aad/ignore to be sent to transport
|
||||
* (only after ReceiveKey). */
|
||||
void SendPacket(Span<const uint8_t> content, Span<const uint8_t> aad = {}, bool ignore = false)
|
||||
{
|
||||
// Use cipher to construct ciphertext.
|
||||
std::vector<std::byte> ciphertext;
|
||||
ciphertext.resize(content.size() + BIP324Cipher::EXPANSION);
|
||||
m_cipher.Encrypt(
|
||||
/*contents=*/MakeByteSpan(content),
|
||||
/*aad=*/MakeByteSpan(aad),
|
||||
/*ignore=*/ignore,
|
||||
/*output=*/ciphertext);
|
||||
// Schedule it for sending.
|
||||
Send(ciphertext);
|
||||
}
|
||||
|
||||
/** Schedule garbage terminator to be sent to the transport (only after ReceiveKey). */
|
||||
void SendGarbageTerm()
|
||||
{
|
||||
// Schedule the garbage terminator to be sent.
|
||||
Send(m_cipher.GetSendGarbageTerminator());
|
||||
}
|
||||
|
||||
/** Schedule version packet to be sent to the transport (only after ReceiveKey). */
|
||||
void SendVersion(Span<const uint8_t> version_data = {}, bool vers_ignore = false)
|
||||
{
|
||||
Span<const std::uint8_t> aad;
|
||||
// Set AAD to garbage only for first packet.
|
||||
if (!m_sent_aad) aad = m_sent_garbage;
|
||||
SendPacket(/*content=*/version_data, /*aad=*/aad, /*ignore=*/vers_ignore);
|
||||
m_sent_aad = true;
|
||||
}
|
||||
|
||||
/** Expect a packet to have been received from transport, process it, and return its contents
|
||||
* (only after ReceiveKey). Decoys are skipped. Optional associated authenticated data (AAD) is
|
||||
* expected in the first received packet, no matter if that is a decoy or not. */
|
||||
std::vector<uint8_t> ReceivePacket(Span<const std::byte> aad = {})
|
||||
{
|
||||
std::vector<uint8_t> contents;
|
||||
// Loop as long as there are ignored packets that are to be skipped.
|
||||
while (true) {
|
||||
// When processing a packet, at least enough bytes for its length descriptor must be received.
|
||||
BOOST_REQUIRE(m_received.size() >= BIP324Cipher::LENGTH_LEN);
|
||||
// Decrypt the content length.
|
||||
size_t size = m_cipher.DecryptLength(MakeByteSpan(Span{m_received}.first(BIP324Cipher::LENGTH_LEN)));
|
||||
// Check that the full packet is in the receive buffer.
|
||||
BOOST_REQUIRE(m_received.size() >= size + BIP324Cipher::EXPANSION);
|
||||
// Decrypt the packet contents.
|
||||
contents.resize(size);
|
||||
bool ignore{false};
|
||||
bool ret = m_cipher.Decrypt(
|
||||
/*input=*/MakeByteSpan(
|
||||
Span{m_received}.first(size + BIP324Cipher::EXPANSION).subspan(BIP324Cipher::LENGTH_LEN)),
|
||||
/*aad=*/aad,
|
||||
/*ignore=*/ignore,
|
||||
/*contents=*/MakeWritableByteSpan(contents));
|
||||
BOOST_CHECK(ret);
|
||||
// Don't expect AAD in further packets.
|
||||
aad = {};
|
||||
// Strip the processed packet's bytes off the front of the receive buffer.
|
||||
m_received.erase(m_received.begin(), m_received.begin() + size + BIP324Cipher::EXPANSION);
|
||||
// Stop if the ignore bit is not set on this packet.
|
||||
if (!ignore) break;
|
||||
}
|
||||
return contents;
|
||||
}
|
||||
|
||||
/** Expect garbage and garbage terminator to have been received, and process them (only after
|
||||
* ReceiveKey). */
|
||||
void ReceiveGarbage()
|
||||
{
|
||||
// Figure out the garbage length.
|
||||
size_t garblen;
|
||||
for (garblen = 0; garblen <= V2Transport::MAX_GARBAGE_LEN; ++garblen) {
|
||||
BOOST_REQUIRE(m_received.size() >= garblen + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
|
||||
auto term_span = MakeByteSpan(Span{m_received}.subspan(garblen, BIP324Cipher::GARBAGE_TERMINATOR_LEN));
|
||||
if (term_span == m_cipher.GetReceiveGarbageTerminator()) break;
|
||||
}
|
||||
// Copy the garbage to a buffer.
|
||||
m_recv_garbage.assign(m_received.begin(), m_received.begin() + garblen);
|
||||
// Strip garbage + garbage terminator off the front of the receive buffer.
|
||||
m_received.erase(m_received.begin(), m_received.begin() + garblen + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
|
||||
}
|
||||
|
||||
/** Expect version packet to have been received, and process it (only after ReceiveKey). */
|
||||
void ReceiveVersion()
|
||||
{
|
||||
auto contents = ReceivePacket(/*aad=*/MakeByteSpan(m_recv_garbage));
|
||||
// Version packets from real BIP324 peers are expected to be empty, despite the fact that
|
||||
// this class supports *sending* non-empty version packets (to test that BIP324 peers
|
||||
// correctly ignore version packet contents).
|
||||
BOOST_CHECK(contents.empty());
|
||||
}
|
||||
|
||||
/** Expect application packet to have been received, with specified short id and payload.
|
||||
* (only after ReceiveKey). */
|
||||
void ReceiveMessage(uint8_t short_id, Span<const uint8_t> payload)
|
||||
{
|
||||
auto ret = ReceivePacket();
|
||||
BOOST_CHECK(ret.size() == payload.size() + 1);
|
||||
BOOST_CHECK(ret[0] == short_id);
|
||||
BOOST_CHECK(Span{ret}.subspan(1) == payload);
|
||||
}
|
||||
|
||||
/** Expect application packet to have been received, with specified 12-char message type and
|
||||
* payload (only after ReceiveKey). */
|
||||
void ReceiveMessage(const std::string& m_type, Span<const uint8_t> payload)
|
||||
{
|
||||
auto ret = ReceivePacket();
|
||||
BOOST_REQUIRE(ret.size() == payload.size() + 1 + CMessageHeader::COMMAND_SIZE);
|
||||
BOOST_CHECK(ret[0] == 0);
|
||||
for (unsigned i = 0; i < 12; ++i) {
|
||||
if (i < m_type.size()) {
|
||||
BOOST_CHECK(ret[1 + i] == m_type[i]);
|
||||
} else {
|
||||
BOOST_CHECK(ret[1 + i] == 0);
|
||||
}
|
||||
}
|
||||
BOOST_CHECK(Span{ret}.subspan(1 + CMessageHeader::COMMAND_SIZE) == payload);
|
||||
}
|
||||
|
||||
/** Schedule an encrypted packet with specified message type and payload to be sent to
|
||||
* transport (only after ReceiveKey). */
|
||||
void SendMessage(std::string mtype, Span<const uint8_t> payload)
|
||||
{
|
||||
// Construct contents consisting of 0x00 + 12-byte message type + payload.
|
||||
std::vector<uint8_t> contents(1 + CMessageHeader::COMMAND_SIZE + payload.size());
|
||||
std::copy(mtype.begin(), mtype.end(), reinterpret_cast<char*>(contents.data() + 1));
|
||||
std::copy(payload.begin(), payload.end(), contents.begin() + 1 + CMessageHeader::COMMAND_SIZE);
|
||||
// Send a packet with that as contents.
|
||||
SendPacket(contents);
|
||||
}
|
||||
|
||||
/** Schedule an encrypted packet with specified short message id and payload to be sent to
|
||||
* transport (only after ReceiveKey). */
|
||||
void SendMessage(uint8_t short_id, Span<const uint8_t> payload)
|
||||
{
|
||||
// Construct contents consisting of short_id + payload.
|
||||
std::vector<uint8_t> contents(1 + payload.size());
|
||||
contents[0] = short_id;
|
||||
std::copy(payload.begin(), payload.end(), contents.begin() + 1);
|
||||
// Send a packet with that as contents.
|
||||
SendPacket(contents);
|
||||
}
|
||||
|
||||
/** Introduce a bit error in the data scheduled to be sent. */
|
||||
void Damage()
|
||||
{
|
||||
m_to_send[InsecureRandRange(m_to_send.size())] ^= (uint8_t{1} << InsecureRandRange(8));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
BOOST_AUTO_TEST_CASE(v2transport_test)
|
||||
{
|
||||
// A mostly normal scenario, testing a transport in initiator mode.
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
V2TransportTester tester(true);
|
||||
auto ret = tester.Interact();
|
||||
BOOST_REQUIRE(ret && ret->empty());
|
||||
tester.SendKey();
|
||||
tester.SendGarbage();
|
||||
tester.ReceiveKey();
|
||||
tester.SendGarbageTerm();
|
||||
tester.SendVersion();
|
||||
ret = tester.Interact();
|
||||
BOOST_REQUIRE(ret && ret->empty());
|
||||
tester.ReceiveGarbage();
|
||||
tester.ReceiveVersion();
|
||||
auto msg_data_1 = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(100000));
|
||||
auto msg_data_2 = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(1000));
|
||||
tester.SendMessage(uint8_t(4), msg_data_1); // cmpctblock short id
|
||||
tester.SendMessage(0, {}); // Invalidly encoded message
|
||||
tester.SendMessage("tx", msg_data_2); // 12-character encoded message type
|
||||
ret = tester.Interact();
|
||||
BOOST_REQUIRE(ret && ret->size() == 3);
|
||||
BOOST_CHECK((*ret)[0] && (*ret)[0]->m_type == "cmpctblock" && Span{(*ret)[0]->m_recv} == MakeByteSpan(msg_data_1));
|
||||
BOOST_CHECK(!(*ret)[1]);
|
||||
BOOST_CHECK((*ret)[2] && (*ret)[2]->m_type == "tx" && Span{(*ret)[2]->m_recv} == MakeByteSpan(msg_data_2));
|
||||
|
||||
// Then send a message with a bit error, expecting failure. It's possible this failure does
|
||||
// not occur immediately (when the length descriptor was modified), but it should come
|
||||
// eventually, and no messages can be delivered anymore.
|
||||
tester.SendMessage("bad", msg_data_1);
|
||||
tester.Damage();
|
||||
while (true) {
|
||||
ret = tester.Interact();
|
||||
if (!ret) break; // failure
|
||||
BOOST_CHECK(ret->size() == 0); // no message can be delivered
|
||||
// Send another message.
|
||||
auto msg_data_3 = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(10000));
|
||||
tester.SendMessage(uint8_t(12), msg_data_3); // getheaders short id
|
||||
}
|
||||
}
|
||||
|
||||
// Normal scenario, with a transport in responder node.
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
V2TransportTester tester(false);
|
||||
tester.SendKey();
|
||||
tester.SendGarbage();
|
||||
auto ret = tester.Interact();
|
||||
BOOST_REQUIRE(ret && ret->empty());
|
||||
tester.ReceiveKey();
|
||||
tester.SendGarbageTerm();
|
||||
tester.SendVersion();
|
||||
ret = tester.Interact();
|
||||
BOOST_REQUIRE(ret && ret->empty());
|
||||
tester.ReceiveGarbage();
|
||||
tester.ReceiveVersion();
|
||||
auto msg_data_1 = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(100000));
|
||||
auto msg_data_2 = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(1000));
|
||||
tester.SendMessage(uint8_t(14), msg_data_1); // inv short id
|
||||
tester.SendMessage(uint8_t(19), msg_data_2); // pong short id
|
||||
ret = tester.Interact();
|
||||
BOOST_REQUIRE(ret && ret->size() == 2);
|
||||
BOOST_CHECK((*ret)[0] && (*ret)[0]->m_type == "inv" && Span{(*ret)[0]->m_recv} == MakeByteSpan(msg_data_1));
|
||||
BOOST_CHECK((*ret)[1] && (*ret)[1]->m_type == "pong" && Span{(*ret)[1]->m_recv} == MakeByteSpan(msg_data_2));
|
||||
|
||||
// Then send a too-large message.
|
||||
auto msg_data_3 = g_insecure_rand_ctx.randbytes<uint8_t>(4005000);
|
||||
tester.SendMessage(uint8_t(11), msg_data_3); // getdata short id
|
||||
ret = tester.Interact();
|
||||
BOOST_CHECK(!ret);
|
||||
}
|
||||
|
||||
// Various valid but unusual scenarios.
|
||||
for (int i = 0; i < 50; ++i) {
|
||||
/** Whether an initiator or responder is being tested. */
|
||||
bool initiator = InsecureRandBool();
|
||||
/** Use either 0 bytes or the maximum possible (4095 bytes) garbage length. */
|
||||
size_t garb_len = InsecureRandBool() ? 0 : V2Transport::MAX_GARBAGE_LEN;
|
||||
/** How many decoy packets to send before the version packet. */
|
||||
unsigned num_ignore_version = InsecureRandRange(10);
|
||||
/** What data to send in the version packet (ignored by BIP324 peers, but reserved for future extensions). */
|
||||
auto ver_data = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandBool() ? 0 : InsecureRandRange(1000));
|
||||
/** Whether to immediately send key and garbage out (required for responders, optional otherwise). */
|
||||
bool send_immediately = !initiator || InsecureRandBool();
|
||||
/** How many decoy packets to send before the first and second real message. */
|
||||
unsigned num_decoys_1 = InsecureRandRange(1000), num_decoys_2 = InsecureRandRange(1000);
|
||||
V2TransportTester tester(initiator);
|
||||
if (send_immediately) {
|
||||
tester.SendKey();
|
||||
tester.SendGarbage(garb_len);
|
||||
}
|
||||
auto ret = tester.Interact();
|
||||
BOOST_REQUIRE(ret && ret->empty());
|
||||
if (!send_immediately) {
|
||||
tester.SendKey();
|
||||
tester.SendGarbage(garb_len);
|
||||
}
|
||||
tester.ReceiveKey();
|
||||
tester.SendGarbageTerm();
|
||||
for (unsigned v = 0; v < num_ignore_version; ++v) {
|
||||
size_t ver_ign_data_len = InsecureRandBool() ? 0 : InsecureRandRange(1000);
|
||||
auto ver_ign_data = g_insecure_rand_ctx.randbytes<uint8_t>(ver_ign_data_len);
|
||||
tester.SendVersion(ver_ign_data, true);
|
||||
}
|
||||
tester.SendVersion(ver_data, false);
|
||||
ret = tester.Interact();
|
||||
BOOST_REQUIRE(ret && ret->empty());
|
||||
tester.ReceiveGarbage();
|
||||
tester.ReceiveVersion();
|
||||
for (unsigned d = 0; d < num_decoys_1; ++d) {
|
||||
auto decoy_data = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(1000));
|
||||
tester.SendPacket(/*content=*/decoy_data, /*aad=*/{}, /*ignore=*/true);
|
||||
}
|
||||
auto msg_data_1 = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(MAX_PROTOCOL_MESSAGE_LENGTH));
|
||||
tester.SendMessage(uint8_t(28), msg_data_1);
|
||||
for (unsigned d = 0; d < num_decoys_2; ++d) {
|
||||
auto decoy_data = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(1000));
|
||||
tester.SendPacket(/*content=*/decoy_data, /*aad=*/{}, /*ignore=*/true);
|
||||
}
|
||||
auto msg_data_2 = g_insecure_rand_ctx.randbytes<uint8_t>(InsecureRandRange(1000));
|
||||
tester.SendMessage(uint8_t(13), msg_data_2); // headers short id
|
||||
// Send invalidly-encoded message
|
||||
tester.SendMessage(std::string("blocktxn\x00\x00\x00a", CMessageHeader::COMMAND_SIZE), {});
|
||||
tester.SendMessage("foobar", {}); // test receiving unknown message type
|
||||
tester.AddMessage("barfoo", {}); // test sending unknown message type
|
||||
ret = tester.Interact();
|
||||
BOOST_REQUIRE(ret && ret->size() == 4);
|
||||
BOOST_CHECK((*ret)[0] && (*ret)[0]->m_type == "addrv2" && Span{(*ret)[0]->m_recv} == MakeByteSpan(msg_data_1));
|
||||
BOOST_CHECK((*ret)[1] && (*ret)[1]->m_type == "headers" && Span{(*ret)[1]->m_recv} == MakeByteSpan(msg_data_2));
|
||||
BOOST_CHECK(!(*ret)[2]);
|
||||
BOOST_CHECK((*ret)[3] && (*ret)[3]->m_type == "foobar" && (*ret)[3]->m_recv.empty());
|
||||
tester.ReceiveMessage("barfoo", {});
|
||||
}
|
||||
|
||||
// Too long garbage (initiator).
|
||||
{
|
||||
V2TransportTester tester(true);
|
||||
auto ret = tester.Interact();
|
||||
BOOST_REQUIRE(ret && ret->empty());
|
||||
tester.SendKey();
|
||||
tester.SendGarbage(V2Transport::MAX_GARBAGE_LEN + 1);
|
||||
tester.ReceiveKey();
|
||||
tester.SendGarbageTerm();
|
||||
ret = tester.Interact();
|
||||
BOOST_CHECK(!ret);
|
||||
}
|
||||
|
||||
// Too long garbage (responder).
|
||||
{
|
||||
V2TransportTester tester(false);
|
||||
tester.SendKey();
|
||||
tester.SendGarbage(V2Transport::MAX_GARBAGE_LEN + 1);
|
||||
auto ret = tester.Interact();
|
||||
BOOST_REQUIRE(ret && ret->empty());
|
||||
tester.ReceiveKey();
|
||||
tester.SendGarbageTerm();
|
||||
ret = tester.Interact();
|
||||
BOOST_CHECK(!ret);
|
||||
}
|
||||
|
||||
// Send garbage that includes the first 15 garbage terminator bytes somewhere.
|
||||
{
|
||||
V2TransportTester tester(true);
|
||||
auto ret = tester.Interact();
|
||||
BOOST_REQUIRE(ret && ret->empty());
|
||||
tester.SendKey();
|
||||
tester.ReceiveKey();
|
||||
/** The number of random garbage bytes before the included first 15 bytes of terminator. */
|
||||
size_t len_before = InsecureRandRange(V2Transport::MAX_GARBAGE_LEN - 16 + 1);
|
||||
/** The number of random garbage bytes after it. */
|
||||
size_t len_after = InsecureRandRange(V2Transport::MAX_GARBAGE_LEN - 16 - len_before + 1);
|
||||
// Construct len_before + 16 + len_after random bytes.
|
||||
auto garbage = g_insecure_rand_ctx.randbytes<uint8_t>(len_before + 16 + len_after);
|
||||
// Replace the designed 16 bytes in the middle with the to-be-sent garbage terminator.
|
||||
auto garb_term = MakeUCharSpan(tester.GetCipher().GetSendGarbageTerminator());
|
||||
std::copy(garb_term.begin(), garb_term.begin() + 16, garbage.begin() + len_before);
|
||||
// Introduce a bit error in the last byte of that copied garbage terminator, making only
|
||||
// the first 15 of them match.
|
||||
garbage[len_before + 15] ^= (uint8_t(1) << InsecureRandRange(8));
|
||||
tester.SendGarbage(garbage);
|
||||
tester.SendGarbageTerm();
|
||||
tester.SendVersion();
|
||||
ret = tester.Interact();
|
||||
BOOST_REQUIRE(ret && ret->empty());
|
||||
tester.ReceiveGarbage();
|
||||
tester.ReceiveVersion();
|
||||
auto msg_data_1 = g_insecure_rand_ctx.randbytes<uint8_t>(MAX_PROTOCOL_MESSAGE_LENGTH); // test that receiving max size payload works
|
||||
auto msg_data_2 = g_insecure_rand_ctx.randbytes<uint8_t>(MAX_PROTOCOL_MESSAGE_LENGTH); // test that sending max size payload works
|
||||
tester.SendMessage(uint8_t(InsecureRandRange(223) + 33), {}); // unknown short id
|
||||
tester.SendMessage(uint8_t(2), msg_data_1); // "block" short id
|
||||
tester.AddMessage("blocktxn", msg_data_2); // schedule blocktxn to be sent to us
|
||||
ret = tester.Interact();
|
||||
BOOST_REQUIRE(ret && ret->size() == 2);
|
||||
BOOST_CHECK(!(*ret)[0]);
|
||||
BOOST_CHECK((*ret)[1] && (*ret)[1]->m_type == "block" && Span{(*ret)[1]->m_recv} == MakeByteSpan(msg_data_1));
|
||||
tester.ReceiveMessage(uint8_t(3), msg_data_2); // "blocktxn" short id
|
||||
}
|
||||
|
||||
// Send correct network's V1 header
|
||||
{
|
||||
V2TransportTester tester(false);
|
||||
tester.SendV1Version(Params().MessageStart());
|
||||
auto ret = tester.Interact();
|
||||
BOOST_CHECK(ret);
|
||||
}
|
||||
|
||||
// Send wrong network's V1 header
|
||||
{
|
||||
V2TransportTester tester(false);
|
||||
tester.SendV1Version(CreateChainParams(*m_node.args, CBaseChainParams::MAIN)->MessageStart());
|
||||
auto ret = tester.Interact();
|
||||
BOOST_CHECK(!ret);
|
||||
}
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
||||
|
@ -78,7 +78,7 @@ void ConnmanTestMsg::FlushSendBuffer(CNode& node) const
|
||||
node.vSendMsg.clear();
|
||||
node.m_send_memusage = 0;
|
||||
while (true) {
|
||||
const auto& [to_send, _more, _msg_type] = node.m_transport->GetBytesToSend();
|
||||
const auto& [to_send, _more, _msg_type] = node.m_transport->GetBytesToSend(false);
|
||||
if (to_send.empty()) break;
|
||||
node.m_transport->MarkBytesSent(to_send.size());
|
||||
}
|
||||
@ -90,7 +90,7 @@ bool ConnmanTestMsg::ReceiveMsgFrom(CNode& node, CSerializedNetMsg&& ser_msg) co
|
||||
assert(queued);
|
||||
bool complete{false};
|
||||
while (true) {
|
||||
const auto& [to_send, _more, _msg_type] = node.m_transport->GetBytesToSend();
|
||||
const auto& [to_send, _more, _msg_type] = node.m_transport->GetBytesToSend(false);
|
||||
if (to_send.empty()) break;
|
||||
NodeReceiveMsgBytes(node, to_send, complete);
|
||||
node.m_transport->MarkBytesSent(to_send.size());
|
||||
|
@ -181,7 +181,7 @@ class ConfArgsTest(BitcoinTestFramework):
|
||||
with self.nodes[0].assert_debug_log(expected_msgs=[
|
||||
"Loaded 0 addresses from peers.dat",
|
||||
"DNS seeding disabled",
|
||||
"Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet), -addnode is not provided and all -seednode(s) attempted\n",
|
||||
"Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n",
|
||||
]):
|
||||
self.start_node(0, extra_args=['-dnsseed=0', '-fixedseeds=1'])
|
||||
assert time.time() - start < 60
|
||||
|
167
test/functional/p2p_ibd_stalling.py
Executable file
167
test/functional/p2p_ibd_stalling.py
Executable file
@ -0,0 +1,167 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2022- The Bitcoin Core developers
|
||||
# Distributed under the MIT software license, see the accompanying
|
||||
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
"""
|
||||
Test stalling logic during IBD
|
||||
"""
|
||||
|
||||
import time
|
||||
|
||||
from test_framework.blocktools import (
|
||||
create_block,
|
||||
create_coinbase
|
||||
)
|
||||
from test_framework.messages import (
|
||||
MSG_BLOCK,
|
||||
MSG_TYPE_MASK,
|
||||
NODE_NETWORK,
|
||||
NODE_BLOOM,
|
||||
)
|
||||
from test_framework.p2p import (
|
||||
CBlockHeader,
|
||||
msg_block,
|
||||
msg_headers,
|
||||
P2PDataStore,
|
||||
)
|
||||
from test_framework.test_framework import BitcoinTestFramework
|
||||
from test_framework.util import (
|
||||
assert_equal,
|
||||
)
|
||||
|
||||
|
||||
class P2PStaller(P2PDataStore):
|
||||
def __init__(self, stall_block):
|
||||
self.stall_block = stall_block
|
||||
super().__init__()
|
||||
|
||||
def on_getdata(self, message):
|
||||
for inv in message.inv:
|
||||
self.getdata_requests.append(inv.hash)
|
||||
if (inv.type & MSG_TYPE_MASK) == MSG_BLOCK:
|
||||
if (inv.hash != self.stall_block):
|
||||
self.send_message(msg_block(self.block_store[inv.hash]))
|
||||
|
||||
def on_getheaders(self, message):
|
||||
pass
|
||||
|
||||
class P2PIBDStallingTest(BitcoinTestFramework):
|
||||
def set_test_params(self):
|
||||
self.disable_mocktime = True
|
||||
self.extra_args = [["-dip3params=2000:2000"]]
|
||||
self.setup_clean_chain = True
|
||||
self.num_nodes = 1
|
||||
|
||||
def run_test(self):
|
||||
NUM_BLOCKS = 1025
|
||||
NUM_PEERS = 4
|
||||
node = self.nodes[0]
|
||||
tip = int(node.getbestblockhash(), 16)
|
||||
blocks = []
|
||||
height = 1
|
||||
block_time = node.getblock(node.getbestblockhash())['time'] + 1
|
||||
self.log.info("Prepare blocks without sending them to the node")
|
||||
block_dict = {}
|
||||
for _ in range(NUM_BLOCKS):
|
||||
blocks.append(create_block(tip, create_coinbase(height), block_time))
|
||||
blocks[-1].solve()
|
||||
tip = blocks[-1].sha256
|
||||
block_time += 1
|
||||
height += 1
|
||||
block_dict[blocks[-1].sha256] = blocks[-1]
|
||||
stall_block = blocks[0].sha256
|
||||
|
||||
headers_message = msg_headers()
|
||||
headers_message.headers = [CBlockHeader(b) for b in blocks[:NUM_BLOCKS-1]]
|
||||
peers = []
|
||||
|
||||
self.log.info("Check that a staller does not get disconnected if the 1024 block lookahead buffer is filled")
|
||||
for id in range(NUM_PEERS):
|
||||
peers.append(node.add_outbound_p2p_connection(P2PStaller(stall_block), services = NODE_NETWORK | NODE_BLOOM, p2p_idx=id, connection_type="outbound-full-relay"))
|
||||
peers[-1].block_store = block_dict
|
||||
peers[-1].send_message(headers_message)
|
||||
|
||||
# Need to wait until 1023 blocks are received - the magic total bytes number is a workaround in lack of an rpc
|
||||
# returning the number of downloaded (but not connected) blocks.
|
||||
self.wait_until(lambda: self.total_bytes_recv_for_blocks() == 172761)
|
||||
|
||||
self.all_sync_send_with_ping(peers)
|
||||
# If there was a peer marked for stalling, it would get disconnected
|
||||
self.mocktime = int(time.time()) + 3
|
||||
node.setmocktime(self.mocktime)
|
||||
self.all_sync_send_with_ping(peers)
|
||||
assert_equal(node.num_test_p2p_connections(), NUM_PEERS)
|
||||
|
||||
self.log.info("Check that increasing the window beyond 1024 blocks triggers stalling logic")
|
||||
headers_message.headers = [CBlockHeader(b) for b in blocks]
|
||||
with node.assert_debug_log(expected_msgs=['Stall started']):
|
||||
for p in peers:
|
||||
p.send_message(headers_message)
|
||||
self.all_sync_send_with_ping(peers)
|
||||
|
||||
self.log.info("Check that the stalling peer is disconnected after 2 seconds")
|
||||
self.mocktime += 3
|
||||
node.setmocktime(self.mocktime)
|
||||
peers[0].wait_for_disconnect()
|
||||
assert_equal(node.num_test_p2p_connections(), NUM_PEERS - 1)
|
||||
self.wait_until(lambda: self.is_block_requested(peers, stall_block))
|
||||
# Make sure that SendMessages() is invoked, which assigns the missing block
|
||||
# to another peer and starts the stalling logic for them
|
||||
self.all_sync_send_with_ping(peers)
|
||||
|
||||
self.log.info("Check that the stalling timeout gets doubled to 4 seconds for the next staller")
|
||||
# No disconnect after just 3 seconds
|
||||
self.mocktime += 3
|
||||
node.setmocktime(self.mocktime)
|
||||
self.all_sync_send_with_ping(peers)
|
||||
assert_equal(node.num_test_p2p_connections(), NUM_PEERS - 1)
|
||||
|
||||
self.mocktime += 2
|
||||
node.setmocktime(self.mocktime)
|
||||
self.wait_until(lambda: sum(x.is_connected for x in node.p2ps) == NUM_PEERS - 2)
|
||||
self.wait_until(lambda: self.is_block_requested(peers, stall_block))
|
||||
self.all_sync_send_with_ping(peers)
|
||||
|
||||
self.log.info("Check that the stalling timeout gets doubled to 8 seconds for the next staller")
|
||||
# No disconnect after just 7 seconds
|
||||
self.mocktime += 7
|
||||
node.setmocktime(self.mocktime)
|
||||
self.all_sync_send_with_ping(peers)
|
||||
assert_equal(node.num_test_p2p_connections(), NUM_PEERS - 2)
|
||||
|
||||
self.mocktime += 2
|
||||
node.setmocktime(self.mocktime)
|
||||
self.wait_until(lambda: sum(x.is_connected for x in node.p2ps) == NUM_PEERS - 3)
|
||||
self.wait_until(lambda: self.is_block_requested(peers, stall_block))
|
||||
self.all_sync_send_with_ping(peers)
|
||||
|
||||
self.log.info("Provide the withheld block and check that stalling timeout gets reduced back to 2 seconds")
|
||||
with node.assert_debug_log(expected_msgs=['Decreased stalling timeout to 2 seconds']):
|
||||
for p in peers:
|
||||
if p.is_connected and (stall_block in p.getdata_requests):
|
||||
p.send_message(msg_block(block_dict[stall_block]))
|
||||
|
||||
self.log.info("Check that all outstanding blocks get connected")
|
||||
self.wait_until(lambda: node.getblockcount() == NUM_BLOCKS)
|
||||
|
||||
def total_bytes_recv_for_blocks(self):
|
||||
total = 0
|
||||
for info in self.nodes[0].getpeerinfo():
|
||||
if ("block" in info["bytesrecv_per_msg"].keys()):
|
||||
total += info["bytesrecv_per_msg"]["block"]
|
||||
return total
|
||||
|
||||
def all_sync_send_with_ping(self, peers):
|
||||
for p in peers:
|
||||
if p.is_connected:
|
||||
p.sync_send_with_ping()
|
||||
|
||||
def is_block_requested(self, peers, hash):
|
||||
for p in peers:
|
||||
if p.is_connected and (hash in p.getdata_requests):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
P2PIBDStallingTest().main()
|
@ -109,6 +109,51 @@ class NetTest(DashTestFramework):
|
||||
assert_equal(peer_info[2][0]['connection_type'], 'manual')
|
||||
|
||||
|
||||
self.log.info("Check getpeerinfo output before a version message was sent")
|
||||
no_version_peer_id = 3
|
||||
no_version_peer_conntime = self.mocktime
|
||||
with self.nodes[0].assert_debug_log([f"Added connection peer={no_version_peer_id}"]):
|
||||
self.nodes[0].add_p2p_connection(P2PInterface(), send_version=False, wait_for_verack=False)
|
||||
peer_info = self.nodes[0].getpeerinfo()[no_version_peer_id]
|
||||
peer_info.pop("addr")
|
||||
peer_info.pop("addrbind")
|
||||
assert_equal(
|
||||
peer_info,
|
||||
{
|
||||
"addr_processed": 0,
|
||||
"addr_rate_limited": 0,
|
||||
"addr_relay_enabled": False,
|
||||
"bip152_hb_from": False,
|
||||
"bip152_hb_to": False,
|
||||
"bytesrecv": 0,
|
||||
"bytesrecv_per_msg": {},
|
||||
"bytessent": 0,
|
||||
"bytessent_per_msg": {},
|
||||
"connection_type": "inbound",
|
||||
"conntime": no_version_peer_conntime,
|
||||
"id": no_version_peer_id,
|
||||
"inbound": True,
|
||||
"inflight": [],
|
||||
"last_block": 0,
|
||||
"last_transaction": 0,
|
||||
"lastrecv": 0,
|
||||
"lastsend": 0,
|
||||
"masternode": False,
|
||||
"network": "not_publicly_routable",
|
||||
"permissions": [],
|
||||
"relaytxes": False,
|
||||
"services": "0000000000000000",
|
||||
"servicesnames": [],
|
||||
"startingheight": -1,
|
||||
"subver": "",
|
||||
"synced_blocks": -1,
|
||||
"synced_headers": -1,
|
||||
"timeoffset": 0,
|
||||
"version": 0,
|
||||
},
|
||||
)
|
||||
self.nodes[0].disconnect_p2ps()
|
||||
|
||||
def test_getnettotals(self):
|
||||
self.log.info("Test getnettotals")
|
||||
# Test getnettotals and getpeerinfo by doing a ping. The bytes
|
||||
|
@ -254,6 +254,7 @@ BASE_SCRIPTS = [
|
||||
'wallet_importprunedfunds.py --descriptors',
|
||||
'p2p_leak_tx.py',
|
||||
'p2p_eviction.py',
|
||||
'p2p_ibd_stalling.py',
|
||||
'rpc_signmessage.py',
|
||||
'rpc_generateblock.py',
|
||||
'rpc_generate.py',
|
||||
|
Loading…
Reference in New Issue
Block a user