mirror of
https://github.com/dashpay/dash.git
synced 2024-12-26 12:32:48 +01:00
Merge #11562: bench: use std::chrono rather than gettimeofday
24a0bdd
bench: prefer a steady clock if the resolution is no worse (Cory Fields)c515d26
bench: switch to std::chrono for time measurements (Cory Fields) Pull request description: gettimeofday has portability issues, see for example #11558. Regardless of large-scale clock refactors in the future, I think it's fine for bench to just use std::chrono itself. Note that this may slightly improve bench accuracy and changes the display from tiny floats to nanosecond counts instead. Tree-SHA512: 122355456d01ec6cfcf6867991715cf3a95eabbf5a4f2adc26a059b50382ffb318b7639cdd575197fc4ee5be8b967c0404f1f920d6f5bd4ddd0bd63b5e5c5632
This commit is contained in:
commit
5776582b7f
@ -8,29 +8,22 @@
|
||||
#include <assert.h>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <sys/time.h>
|
||||
|
||||
benchmark::BenchRunner::BenchmarkMap &benchmark::BenchRunner::benchmarks() {
|
||||
static std::map<std::string, benchmark::BenchFunction> benchmarks_map;
|
||||
return benchmarks_map;
|
||||
}
|
||||
|
||||
static double gettimedouble(void) {
|
||||
struct timeval tv;
|
||||
gettimeofday(&tv, nullptr);
|
||||
return tv.tv_usec * 0.000001 + tv.tv_sec;
|
||||
}
|
||||
|
||||
benchmark::BenchRunner::BenchRunner(std::string name, benchmark::BenchFunction func)
|
||||
{
|
||||
benchmarks().insert(std::make_pair(name, func));
|
||||
}
|
||||
|
||||
void
|
||||
benchmark::BenchRunner::RunAll(double elapsedTimeForOne)
|
||||
benchmark::BenchRunner::RunAll(benchmark::duration elapsedTimeForOne)
|
||||
{
|
||||
perf_init();
|
||||
std::cout << "#Benchmark" << "," << "count" << "," << "min" << "," << "max" << "," << "average" << ","
|
||||
std::cout << "#Benchmark" << "," << "count" << "," << "min(ns)" << "," << "max(ns)" << "," << "average(ns)" << ","
|
||||
<< "min_cycles" << "," << "max_cycles" << "," << "average_cycles" << "\n";
|
||||
|
||||
for (const auto &p: benchmarks()) {
|
||||
@ -46,16 +39,17 @@ bool benchmark::State::KeepRunning()
|
||||
++count;
|
||||
return true;
|
||||
}
|
||||
double now;
|
||||
time_point now;
|
||||
|
||||
uint64_t nowCycles;
|
||||
if (count == 0) {
|
||||
lastTime = beginTime = now = gettimedouble();
|
||||
lastTime = beginTime = now = clock::now();
|
||||
lastCycles = beginCycles = nowCycles = perf_cpucycles();
|
||||
}
|
||||
else {
|
||||
now = gettimedouble();
|
||||
double elapsed = now - lastTime;
|
||||
double elapsedOne = elapsed / (countMask + 1);
|
||||
now = clock::now();
|
||||
auto elapsed = now - lastTime;
|
||||
auto elapsedOne = elapsed / (countMask + 1);
|
||||
if (elapsedOne < minTime) minTime = elapsedOne;
|
||||
if (elapsedOne > maxTime) maxTime = elapsedOne;
|
||||
|
||||
@ -70,8 +64,8 @@ bool benchmark::State::KeepRunning()
|
||||
// The restart avoids including the overhead of this code in the measurement.
|
||||
countMask = ((countMask<<3)|7) & ((1LL<<60)-1);
|
||||
count = 0;
|
||||
minTime = std::numeric_limits<double>::max();
|
||||
maxTime = std::numeric_limits<double>::min();
|
||||
minTime = duration::max();
|
||||
maxTime = duration::zero();
|
||||
minCycles = std::numeric_limits<uint64_t>::max();
|
||||
maxCycles = std::numeric_limits<uint64_t>::min();
|
||||
return true;
|
||||
@ -94,9 +88,13 @@ bool benchmark::State::KeepRunning()
|
||||
assert(count != 0 && "count == 0 => (now == 0 && beginTime == 0) => return above");
|
||||
|
||||
// Output results
|
||||
double average = (now-beginTime)/count;
|
||||
// Duration casts are only necessary here because hardware with sub-nanosecond clocks
|
||||
// will lose precision.
|
||||
int64_t min_elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(minTime).count();
|
||||
int64_t max_elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(maxTime).count();
|
||||
int64_t avg_elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>((now-beginTime)/count).count();
|
||||
int64_t averageCycles = (nowCycles-beginCycles)/count;
|
||||
std::cout << std::fixed << std::setprecision(15) << name << "," << count << "," << minTime << "," << maxTime << "," << average << ","
|
||||
std::cout << std::fixed << std::setprecision(15) << name << "," << count << "," << min_elapsed << "," << max_elapsed << "," << avg_elapsed << ","
|
||||
<< minCycles << "," << maxCycles << "," << averageCycles << "\n";
|
||||
std::cout.copyfmt(std::ios(nullptr));
|
||||
|
||||
|
@ -9,6 +9,7 @@
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <chrono>
|
||||
|
||||
#include <boost/preprocessor/cat.hpp>
|
||||
#include <boost/preprocessor/stringize.hpp>
|
||||
@ -36,12 +37,23 @@ BENCHMARK(CODE_TO_TIME);
|
||||
*/
|
||||
|
||||
namespace benchmark {
|
||||
// On many systems, the high_resolution_clock offers no better resolution than the steady_clock.
|
||||
// If that's the case, prefer the steady_clock.
|
||||
struct best_clock {
|
||||
using hi_res_clock = std::chrono::high_resolution_clock;
|
||||
using steady_clock = std::chrono::steady_clock;
|
||||
static constexpr bool steady_is_high_res = std::ratio_less_equal<steady_clock::period, hi_res_clock::period>::value;
|
||||
using type = std::conditional<steady_is_high_res, steady_clock, hi_res_clock>::type;
|
||||
};
|
||||
using clock = best_clock::type;
|
||||
using time_point = clock::time_point;
|
||||
using duration = clock::duration;
|
||||
|
||||
class State {
|
||||
std::string name;
|
||||
double maxElapsed;
|
||||
double beginTime;
|
||||
double lastTime, minTime, maxTime;
|
||||
duration maxElapsed;
|
||||
time_point beginTime, lastTime;
|
||||
duration minTime, maxTime;
|
||||
uint64_t count;
|
||||
uint64_t countMask;
|
||||
uint64_t beginCycles;
|
||||
@ -49,9 +61,9 @@ namespace benchmark {
|
||||
uint64_t minCycles;
|
||||
uint64_t maxCycles;
|
||||
public:
|
||||
State(std::string _name, double _maxElapsed) : name(_name), maxElapsed(_maxElapsed), count(0) {
|
||||
minTime = std::numeric_limits<double>::max();
|
||||
maxTime = std::numeric_limits<double>::min();
|
||||
State(std::string _name, duration _maxElapsed) : name(_name), maxElapsed(_maxElapsed), count(0) {
|
||||
minTime = duration::max();
|
||||
maxTime = duration::zero();
|
||||
minCycles = std::numeric_limits<uint64_t>::max();
|
||||
maxCycles = std::numeric_limits<uint64_t>::min();
|
||||
countMask = 1;
|
||||
@ -69,7 +81,7 @@ namespace benchmark {
|
||||
public:
|
||||
BenchRunner(std::string name, BenchFunction func);
|
||||
|
||||
static void RunAll(double elapsedTimeForOne=1.0);
|
||||
static void RunAll(duration elapsedTimeForOne = std::chrono::seconds(1));
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -6,7 +6,6 @@
|
||||
|
||||
#include "bench.h"
|
||||
#include "bloom.h"
|
||||
#include "utiltime.h"
|
||||
|
||||
static void RollingBloom(benchmark::State& state)
|
||||
{
|
||||
@ -23,10 +22,10 @@ static void RollingBloom(benchmark::State& state)
|
||||
data[2] = count >> 16;
|
||||
data[3] = count >> 24;
|
||||
if (countnow == nEntriesPerGeneration) {
|
||||
int64_t b = GetTimeMicros();
|
||||
auto b = benchmark::clock::now();
|
||||
filter.insert(data);
|
||||
int64_t e = GetTimeMicros();
|
||||
std::cout << "RollingBloom-refresh,1," << (e-b)*0.000001 << "," << (e-b)*0.000001 << "," << (e-b)*0.000001 << "\n";
|
||||
auto total = std::chrono::duration_cast<std::chrono::nanoseconds>(benchmark::clock::now() - b).count();
|
||||
std::cout << "RollingBloom-refresh,1," << total << "," << total << "," << total << "\n";
|
||||
countnow = 0;
|
||||
} else {
|
||||
filter.insert(data);
|
||||
|
Loading…
Reference in New Issue
Block a user