diff --git a/test/functional/feature_assumevalid.py b/test/functional/feature_assumevalid.py index 0936b71ab8..111a408239 100755 --- a/test/functional/feature_assumevalid.py +++ b/test/functional/feature_assumevalid.py @@ -32,7 +32,7 @@ Start three nodes: import time from test_framework.blocktools import (create_block, create_coinbase) -from test_framework.key import CECKey +from test_framework.key import ECKey from test_framework.messages import ( CBlockHeader, COutPoint, @@ -105,9 +105,9 @@ class AssumeValidTest(BitcoinTestFramework): self.blocks = [] # Get a pubkey for the coinbase TXO - coinbase_key = CECKey() - coinbase_key.set_secretbytes(b"horsebattery") - coinbase_pubkey = coinbase_key.get_pubkey() + coinbase_key = ECKey() + coinbase_key.generate() + coinbase_pubkey = coinbase_key.get_pubkey().get_bytes() # Create the first block with a coinbase output to our key height = 1 diff --git a/test/functional/feature_block.py b/test/functional/feature_block.py index 3122db3d9d..e6d1cf44b9 100755 --- a/test/functional/feature_block.py +++ b/test/functional/feature_block.py @@ -7,7 +7,7 @@ import copy import struct from test_framework.blocktools import create_block, create_coinbase, create_tx_with_script, get_legacy_sigopcount_block -from test_framework.key import CECKey +from test_framework.key import ECKey from test_framework.messages import ( CBlock, COIN, @@ -85,9 +85,9 @@ class FullBlockTest(BitcoinTestFramework): self.bootstrap_p2p() # Add one p2p connection to the node self.block_heights = {} - self.coinbase_key = CECKey() - self.coinbase_key.set_secretbytes(b"horsebattery") - self.coinbase_pubkey = self.coinbase_key.get_pubkey() + self.coinbase_key = ECKey() + self.coinbase_key.generate() + self.coinbase_pubkey = self.coinbase_key.get_pubkey().get_bytes() self.tip = None self.blocks = {} self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16) @@ -481,7 +481,7 @@ class FullBlockTest(BitcoinTestFramework): tx.vin.append(CTxIn(COutPoint(b39.vtx[i].sha256, 0), b'')) # Note: must pass the redeem_script (not p2sh_script) to the signature hash function (sighash, err) = SignatureHash(redeem_script, tx, 1, SIGHASH_ALL) - sig = self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL])) + sig = self.coinbase_key.sign_ecdsa(sighash) + bytes(bytearray([SIGHASH_ALL])) scriptSig = CScript([sig, redeem_script]) tx.vin[1].scriptSig = scriptSig @@ -1225,7 +1225,7 @@ class FullBlockTest(BitcoinTestFramework): tx.vin[0].scriptSig = CScript() return (sighash, err) = SignatureHash(spend_tx.vout[0].scriptPubKey, tx, 0, SIGHASH_ALL) - tx.vin[0].scriptSig = CScript([self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL]))]) + tx.vin[0].scriptSig = CScript([self.coinbase_key.sign_ecdsa(sighash) + bytes(bytearray([SIGHASH_ALL]))]) def create_and_sign_transaction(self, spend_tx, value, script=CScript([OP_TRUE])): tx = self.create_tx(spend_tx, 0, value, script) diff --git a/test/functional/test_framework/key.py b/test/functional/test_framework/key.py index ff66f74bb6..912c0ca978 100644 --- a/test/functional/test_framework/key.py +++ b/test/functional/test_framework/key.py @@ -1,216 +1,386 @@ -# Copyright (c) 2011 Sam Rushing -"""ECC secp256k1 OpenSSL wrapper. +# Copyright (c) 2019 Pieter Wuille +# Distributed under the MIT software license, see the accompanying +# file COPYING or http://www.opensource.org/licenses/mit-license.php. +"""Test-only secp256k1 elliptic curve implementation -WARNING: This module does not mlock() secrets; your private keys may end up on -disk in swap! Use with caution! +WARNING: This code is slow, uses bad randomness, does not properly protect +keys, and is trivially vulnerable to side channel attacks. Do not use for +anything but tests.""" +import random -This file is modified from python-bitcoinlib. -""" +def modinv(a, n): + """Compute the modular inverse of a modulo n -import ctypes -import ctypes.util -import hashlib + See https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers. + """ + t1, t2 = 0, 1 + r1, r2 = n, a + while r2 != 0: + q = r1 // r2 + t1, t2 = t2, t1 - q * t2 + r1, r2 = r2, r1 - q * r2 + if r1 > 1: + return None + if t1 < 0: + t1 += n + return t1 -ssl = ctypes.cdll.LoadLibrary(ctypes.util.find_library ('ssl') or 'libeay32') +def jacobi_symbol(n, k): + """Compute the Jacobi symbol of n modulo k -ssl.BN_new.restype = ctypes.c_void_p -ssl.BN_new.argtypes = [] + See http://en.wikipedia.org/wiki/Jacobi_symbol -ssl.BN_bin2bn.restype = ctypes.c_void_p -ssl.BN_bin2bn.argtypes = [ctypes.c_char_p, ctypes.c_int, ctypes.c_void_p] + For our application k is always prime, so this is the same as the Legendre symbol.""" + assert k > 0 and k & 1, "jacobi symbol is only defined for positive odd k" + n %= k + t = 0 + while n != 0: + while n & 1 == 0: + n >>= 1 + r = k & 7 + t ^= (r == 3 or r == 5) + n, k = k, n + t ^= (n & k & 3 == 3) + n = n % k + if k == 1: + return -1 if t else 1 + return 0 -ssl.BN_CTX_free.restype = None -ssl.BN_CTX_free.argtypes = [ctypes.c_void_p] +def modsqrt(a, p): + """Compute the square root of a modulo p when p % 4 = 3. -ssl.BN_CTX_new.restype = ctypes.c_void_p -ssl.BN_CTX_new.argtypes = [] + The Tonelli-Shanks algorithm can be used. See https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm -ssl.ECDH_compute_key.restype = ctypes.c_int -ssl.ECDH_compute_key.argtypes = [ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p] + Limiting this function to only work for p % 4 = 3 means we don't need to + iterate through the loop. The highest n such that p - 1 = 2^n Q with Q odd + is n = 1. Therefore Q = (p-1)/2 and sqrt = a^((Q+1)/2) = a^((p+1)/4) -ssl.ECDSA_sign.restype = ctypes.c_int -ssl.ECDSA_sign.argtypes = [ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] + secp256k1's is defined over field of size 2**256 - 2**32 - 977, which is 3 mod 4. + """ + if p % 4 != 3: + raise NotImplementedError("modsqrt only implemented for p % 4 = 3") + sqrt = pow(a, (p + 1)//4, p) + if pow(sqrt, 2, p) == a % p: + return sqrt + return None -ssl.ECDSA_verify.restype = ctypes.c_int -ssl.ECDSA_verify.argtypes = [ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p] +class EllipticCurve: + def __init__(self, p, a, b): + """Initialize elliptic curve y^2 = x^3 + a*x + b over GF(p).""" + self.p = p + self.a = a % p + self.b = b % p -ssl.EC_KEY_free.restype = None -ssl.EC_KEY_free.argtypes = [ctypes.c_void_p] + def affine(self, p1): + """Convert a Jacobian point tuple p1 to affine form, or None if at infinity. -ssl.EC_KEY_new_by_curve_name.restype = ctypes.c_void_p -ssl.EC_KEY_new_by_curve_name.argtypes = [ctypes.c_int] + An affine point is represented as the Jacobian (x, y, 1)""" + x1, y1, z1 = p1 + if z1 == 0: + return None + inv = modinv(z1, self.p) + inv_2 = (inv**2) % self.p + inv_3 = (inv_2 * inv) % self.p + return ((inv_2 * x1) % self.p, (inv_3 * y1) % self.p, 1) -ssl.EC_KEY_get0_group.restype = ctypes.c_void_p -ssl.EC_KEY_get0_group.argtypes = [ctypes.c_void_p] + def negate(self, p1): + """Negate a Jacobian point tuple p1.""" + x1, y1, z1 = p1 + return (x1, (self.p - y1) % self.p, z1) -ssl.EC_KEY_get0_public_key.restype = ctypes.c_void_p -ssl.EC_KEY_get0_public_key.argtypes = [ctypes.c_void_p] + def on_curve(self, p1): + """Determine whether a Jacobian tuple p is on the curve (and not infinity)""" + x1, y1, z1 = p1 + z2 = pow(z1, 2, self.p) + z4 = pow(z2, 2, self.p) + return z1 != 0 and (pow(x1, 3, self.p) + self.a * x1 * z4 + self.b * z2 * z4 - pow(y1, 2, self.p)) % self.p == 0 -ssl.EC_KEY_set_private_key.restype = ctypes.c_int -ssl.EC_KEY_set_private_key.argtypes = [ctypes.c_void_p, ctypes.c_void_p] + def is_x_coord(self, x): + """Test whether x is a valid X coordinate on the curve.""" + x_3 = pow(x, 3, self.p) + return jacobi_symbol(x_3 + self.a * x + self.b, self.p) != -1 -ssl.EC_KEY_set_conv_form.restype = None -ssl.EC_KEY_set_conv_form.argtypes = [ctypes.c_void_p, ctypes.c_int] + def lift_x(self, x): + """Given an X coordinate on the curve, return a corresponding affine point.""" + x_3 = pow(x, 3, self.p) + v = x_3 + self.a * x + self.b + y = modsqrt(v, self.p) + if y is None: + return None + return (x, y, 1) -ssl.EC_KEY_set_public_key.restype = ctypes.c_int -ssl.EC_KEY_set_public_key.argtypes = [ctypes.c_void_p, ctypes.c_void_p] + def double(self, p1): + """Double a Jacobian tuple p1 -ssl.i2o_ECPublicKey.restype = ctypes.c_void_p -ssl.i2o_ECPublicKey.argtypes = [ctypes.c_void_p, ctypes.c_void_p] + See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Doubling""" + x1, y1, z1 = p1 + if z1 == 0: + return (0, 1, 0) + y1_2 = (y1**2) % self.p + y1_4 = (y1_2**2) % self.p + x1_2 = (x1**2) % self.p + s = (4*x1*y1_2) % self.p + m = 3*x1_2 + if self.a: + m += self.a * pow(z1, 4, self.p) + m = m % self.p + x2 = (m**2 - 2*s) % self.p + y2 = (m*(s - x2) - 8*y1_4) % self.p + z2 = (2*y1*z1) % self.p + return (x2, y2, z2) -ssl.EC_POINT_new.restype = ctypes.c_void_p -ssl.EC_POINT_new.argtypes = [ctypes.c_void_p] + def add_mixed(self, p1, p2): + """Add a Jacobian tuple p1 and an affine tuple p2 -ssl.EC_POINT_free.restype = None -ssl.EC_POINT_free.argtypes = [ctypes.c_void_p] + See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Addition (with affine point)""" + x1, y1, z1 = p1 + x2, y2, z2 = p2 + assert(z2 == 1) + # Adding to the point at infinity is a no-op + if z1 == 0: + return p2 + z1_2 = (z1**2) % self.p + z1_3 = (z1_2 * z1) % self.p + u2 = (x2 * z1_2) % self.p + s2 = (y2 * z1_3) % self.p + if x1 == u2: + if (y1 != s2): + # p1 and p2 are inverses. Return the point at infinity. + return (0, 1, 0) + # p1 == p2. The formulas below fail when the two points are equal. + return self.double(p1) + h = u2 - x1 + r = s2 - y1 + h_2 = (h**2) % self.p + h_3 = (h_2 * h) % self.p + u1_h_2 = (x1 * h_2) % self.p + x3 = (r**2 - h_3 - 2*u1_h_2) % self.p + y3 = (r*(u1_h_2 - x3) - y1*h_3) % self.p + z3 = (h*z1) % self.p + return (x3, y3, z3) -ssl.EC_POINT_mul.restype = ctypes.c_int -ssl.EC_POINT_mul.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] + def add(self, p1, p2): + """Add two Jacobian tuples p1 and p2 -# this specifies the curve used with ECDSA. -NID_secp256k1 = 714 # from openssl/obj_mac.h + See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Addition""" + x1, y1, z1 = p1 + x2, y2, z2 = p2 + # Adding the point at infinity is a no-op + if z1 == 0: + return p2 + if z2 == 0: + return p1 + # Adding an Affine to a Jacobian is more efficient since we save field multiplications and squarings when z = 1 + if z1 == 1: + return self.add_mixed(p2, p1) + if z2 == 1: + return self.add_mixed(p1, p2) + z1_2 = (z1**2) % self.p + z1_3 = (z1_2 * z1) % self.p + z2_2 = (z2**2) % self.p + z2_3 = (z2_2 * z2) % self.p + u1 = (x1 * z2_2) % self.p + u2 = (x2 * z1_2) % self.p + s1 = (y1 * z2_3) % self.p + s2 = (y2 * z1_3) % self.p + if u1 == u2: + if (s1 != s2): + # p1 and p2 are inverses. Return the point at infinity. + return (0, 1, 0) + # p1 == p2. The formulas below fail when the two points are equal. + return self.double(p1) + h = u2 - u1 + r = s2 - s1 + h_2 = (h**2) % self.p + h_3 = (h_2 * h) % self.p + u1_h_2 = (u1 * h_2) % self.p + x3 = (r**2 - h_3 - 2*u1_h_2) % self.p + y3 = (r*(u1_h_2 - x3) - s1*h_3) % self.p + z3 = (h*z1*z2) % self.p + return (x3, y3, z3) + def mul(self, ps): + """Compute a (multi) point multiplication + + ps is a list of (Jacobian tuple, scalar) pairs. + """ + r = (0, 1, 0) + for i in range(255, -1, -1): + r = self.double(r) + for (p, n) in ps: + if ((n >> i) & 1): + r = self.add(r, p) + return r + +SECP256K1 = EllipticCurve(2**256 - 2**32 - 977, 0, 7) +SECP256K1_G = (0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8, 1) SECP256K1_ORDER = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 SECP256K1_ORDER_HALF = SECP256K1_ORDER // 2 -# Thx to Sam Devlin for the ctypes magic 64-bit fix. -def _check_result(val, func, args): - if val == 0: - raise ValueError - else: - return ctypes.c_void_p (val) - -ssl.EC_KEY_new_by_curve_name.restype = ctypes.c_void_p -ssl.EC_KEY_new_by_curve_name.errcheck = _check_result - -class CECKey(): - """Wrapper around OpenSSL's EC_KEY""" +class ECPubKey(): + """A secp256k1 public key""" def __init__(self): - self.k = ssl.EC_KEY_new_by_curve_name(NID_secp256k1) + """Construct an uninitialized public key""" + self.valid = False - def __del__(self): - if ssl: - ssl.EC_KEY_free(self.k) - self.k = None - - def set_secretbytes(self, secret): - priv_key = ssl.BN_bin2bn(secret, 32, ssl.BN_new()) - group = ssl.EC_KEY_get0_group(self.k) - pub_key = ssl.EC_POINT_new(group) - ctx = ssl.BN_CTX_new() - if not ssl.EC_POINT_mul(group, pub_key, priv_key, None, None, ctx): - raise ValueError("Could not derive public key from the supplied secret.") - ssl.EC_POINT_mul(group, pub_key, priv_key, None, None, ctx) - ssl.EC_KEY_set_private_key(self.k, priv_key) - ssl.EC_KEY_set_public_key(self.k, pub_key) - ssl.EC_POINT_free(pub_key) - ssl.BN_CTX_free(ctx) - return self.k - - def set_privkey(self, key): - self.mb = ctypes.create_string_buffer(key) - return ssl.d2i_ECPrivateKey(ctypes.byref(self.k), ctypes.byref(ctypes.pointer(self.mb)), len(key)) - - def set_pubkey(self, key): - self.mb = ctypes.create_string_buffer(key) - return ssl.o2i_ECPublicKey(ctypes.byref(self.k), ctypes.byref(ctypes.pointer(self.mb)), len(key)) - - def get_privkey(self): - size = ssl.i2d_ECPrivateKey(self.k, 0) - mb_pri = ctypes.create_string_buffer(size) - ssl.i2d_ECPrivateKey(self.k, ctypes.byref(ctypes.pointer(mb_pri))) - return mb_pri.raw - - def get_pubkey(self): - size = ssl.i2o_ECPublicKey(self.k, 0) - mb = ctypes.create_string_buffer(size) - ssl.i2o_ECPublicKey(self.k, ctypes.byref(ctypes.pointer(mb))) - return mb.raw - - def get_raw_ecdh_key(self, other_pubkey): - ecdh_keybuffer = ctypes.create_string_buffer(32) - r = ssl.ECDH_compute_key(ctypes.pointer(ecdh_keybuffer), 32, - ssl.EC_KEY_get0_public_key(other_pubkey.k), - self.k, 0) - if r != 32: - raise Exception('CKey.get_ecdh_key(): ECDH_compute_key() failed') - return ecdh_keybuffer.raw - - def get_ecdh_key(self, other_pubkey, kdf=lambda k: hashlib.sha256(k).digest()): - # FIXME: be warned it's not clear what the kdf should be as a default - r = self.get_raw_ecdh_key(other_pubkey) - return kdf(r) - - def sign(self, hash, low_s = True): - # FIXME: need unit tests for below cases - if not isinstance(hash, bytes): - raise TypeError('Hash must be bytes instance; got %r' % hash.__class__) - if len(hash) != 32: - raise ValueError('Hash must be exactly 32 bytes long') - - sig_size0 = ctypes.c_uint32() - sig_size0.value = ssl.ECDSA_size(self.k) - mb_sig = ctypes.create_string_buffer(sig_size0.value) - result = ssl.ECDSA_sign(0, hash, len(hash), mb_sig, ctypes.byref(sig_size0), self.k) - assert 1 == result - assert mb_sig.raw[0] == 0x30 - assert mb_sig.raw[1] == sig_size0.value - 2 - total_size = mb_sig.raw[1] - assert mb_sig.raw[2] == 2 - r_size = mb_sig.raw[3] - assert mb_sig.raw[4 + r_size] == 2 - s_size = mb_sig.raw[5 + r_size] - s_value = int.from_bytes(mb_sig.raw[6+r_size:6+r_size+s_size], byteorder='big') - if (not low_s) or s_value <= SECP256K1_ORDER_HALF: - return mb_sig.raw[:sig_size0.value] + def set(self, data): + """Construct a public key from a serialization in compressed or uncompressed format""" + if (len(data) == 65 and data[0] == 0x04): + p = (int.from_bytes(data[1:33], 'big'), int.from_bytes(data[33:65], 'big'), 1) + self.valid = SECP256K1.on_curve(p) + if self.valid: + self.p = p + self.compressed = False + elif (len(data) == 33 and (data[0] == 0x02 or data[0] == 0x03)): + x = int.from_bytes(data[1:33], 'big') + if SECP256K1.is_x_coord(x): + p = SECP256K1.lift_x(x) + # if the oddness of the y co-ord isn't correct, find the other + # valid y + if (p[1] & 1) != (data[0] & 1): + p = SECP256K1.negate(p) + self.p = p + self.valid = True + self.compressed = True + else: + self.valid = False else: - low_s_value = SECP256K1_ORDER - s_value - low_s_bytes = (low_s_value).to_bytes(33, byteorder='big') - while len(low_s_bytes) > 1 and low_s_bytes[0] == 0 and low_s_bytes[1] < 0x80: - low_s_bytes = low_s_bytes[1:] - new_s_size = len(low_s_bytes) - new_total_size_byte = (total_size + new_s_size - s_size).to_bytes(1,byteorder='big') - new_s_size_byte = (new_s_size).to_bytes(1,byteorder='big') - return b'\x30' + new_total_size_byte + mb_sig.raw[2:5+r_size] + new_s_size_byte + low_s_bytes - - def verify(self, hash, sig): - """Verify a DER signature""" - return ssl.ECDSA_verify(0, hash, len(hash), sig, len(sig), self.k) == 1 - - -class CPubKey(bytes): - """An encapsulated public key - - Attributes: - - is_valid - Corresponds to CPubKey.IsValid() - is_fullyvalid - Corresponds to CPubKey.IsFullyValid() - is_compressed - Corresponds to CPubKey.IsCompressed() - """ - - def __new__(cls, buf, _cec_key=None): - self = super(CPubKey, cls).__new__(cls, buf) - if _cec_key is None: - _cec_key = CECKey() - self._cec_key = _cec_key - self.is_fullyvalid = _cec_key.set_pubkey(self) != 0 - return self - - @property - def is_valid(self): - return len(self) > 0 + self.valid = False @property def is_compressed(self): - return len(self) == 33 + return self.compressed - def verify(self, hash, sig): - return self._cec_key.verify(hash, sig) + @property + def is_valid(self): + return self.valid - def __str__(self): - return repr(self) + def get_bytes(self): + assert(self.valid) + p = SECP256K1.affine(self.p) + if p is None: + return None + if self.compressed: + return bytes([0x02 + (p[1] & 1)]) + p[0].to_bytes(32, 'big') + else: + return bytes([0x04]) + p[0].to_bytes(32, 'big') + p[1].to_bytes(32, 'big') - def __repr__(self): - return '%s(%s)' % (self.__class__.__name__, super(CPubKey, self).__repr__()) + def verify_ecdsa(self, sig, msg, low_s=True): + """Verify a strictly DER-encoded ECDSA signature against this pubkey. + See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the + ECDSA verifier algorithm""" + assert(self.valid) + + # Extract r and s from the DER formatted signature. Return false for + # any DER encoding errors. + if (sig[1] + 2 != len(sig)): + return False + if (len(sig) < 4): + return False + if (sig[0] != 0x30): + return False + if (sig[2] != 0x02): + return False + rlen = sig[3] + if (len(sig) < 6 + rlen): + return False + if rlen < 1 or rlen > 33: + return False + if sig[4] >= 0x80: + return False + if (rlen > 1 and (sig[4] == 0) and not (sig[5] & 0x80)): + return False + r = int.from_bytes(sig[4:4+rlen], 'big') + if (sig[4+rlen] != 0x02): + return False + slen = sig[5+rlen] + if slen < 1 or slen > 33: + return False + if (len(sig) != 6 + rlen + slen): + return False + if sig[6+rlen] >= 0x80: + return False + if (slen > 1 and (sig[6+rlen] == 0) and not (sig[7+rlen] & 0x80)): + return False + s = int.from_bytes(sig[6+rlen:6+rlen+slen], 'big') + + # Verify that r and s are within the group order + if r < 1 or s < 1 or r >= SECP256K1_ORDER or s >= SECP256K1_ORDER: + return False + if low_s and s >= SECP256K1_ORDER_HALF: + return False + z = int.from_bytes(msg, 'big') + + # Run verifier algorithm on r, s + w = modinv(s, SECP256K1_ORDER) + u1 = z*w % SECP256K1_ORDER + u2 = r*w % SECP256K1_ORDER + R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, u1), (self.p, u2)])) + if R is None or R[0] != r: + return False + return True + +class ECKey(): + """A secp256k1 private key""" + + def __init__(self): + self.valid = False + + def set(self, secret, compressed): + """Construct a private key object with given 32-byte secret and compressed flag.""" + assert(len(secret) == 32) + secret = int.from_bytes(secret, 'big') + self.valid = (secret > 0 and secret < SECP256K1_ORDER) + if self.valid: + self.secret = secret + self.compressed = compressed + + def generate(self, compressed=True): + """Generate a random private key (compressed or uncompressed).""" + self.set(random.randrange(1, SECP256K1_ORDER).to_bytes(32, 'big'), compressed) + + def get_bytes(self): + """Retrieve the 32-byte representation of this key.""" + assert(self.valid) + return self.secret.to_bytes(32, 'big') + + @property + def is_valid(self): + return self.valid + + @property + def is_compressed(self): + return self.compressed + + def get_pubkey(self): + """Compute an ECPubKey object for this secret key.""" + assert(self.valid) + ret = ECPubKey() + p = SECP256K1.mul([(SECP256K1_G, self.secret)]) + ret.p = p + ret.valid = True + ret.compressed = self.compressed + return ret + + def sign_ecdsa(self, msg, low_s=True): + """Construct a DER-encoded ECDSA signature with this key. + + See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the + ECDSA signer algorithm.""" + assert(self.valid) + z = int.from_bytes(msg, 'big') + # Note: no RFC6979, but a simple random nonce (some tests rely on distinct transactions for the same operation) + k = random.randrange(1, SECP256K1_ORDER) + R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, k)])) + r = R[0] % SECP256K1_ORDER + s = (modinv(k, SECP256K1_ORDER) * (z + self.secret * r)) % SECP256K1_ORDER + if low_s and s > SECP256K1_ORDER_HALF: + s = SECP256K1_ORDER - s + # Represent in DER format. The byte representations of r and s have + # length rounded up (255 bits becomes 32 bytes and 256 bits becomes 33 + # bytes). + rb = r.to_bytes((r.bit_length() + 8) // 8, 'big') + sb = s.to_bytes((s.bit_length() + 8) // 8, 'big') + return b'\x30' + bytes([4 + len(rb) + len(sb), 2, len(rb)]) + rb + bytes([2, len(sb)]) + sb