mirror of
https://github.com/dashpay/dash.git
synced 2024-12-24 19:42:46 +01:00
Merge bitcoin/bitcoin#24115: ARMv8 SHA2 Intrinsics
aaa1d03d3acebeb44fdd40a302f086aad3d329ce Add optimized sha256d64_arm_shani::Transform_2way (Pieter Wuille) fe0629852aaf3a26f291bfa535e7e455fe7bea06 Implement sha256_arm_shani::Transform (Pavol Rusnak) 48a72fa81f80c8a3c7c6de8339b5feb361dece1c Add sha256_arm_shani to build system (Pavol Rusnak) c2b79342506e24e9b7100fb7a6025dc870375ef6 Rename SHANI to X86_SHANI to allow future implementation of ARM_SHANI (Pavol Rusnak) Pull request description: This PR adds support for ARMv8 SHA2 Intrinsics. Fixes https://github.com/bitcoin/bitcoin/issues/13401 and https://github.com/bitcoin/bitcoin/issues/17414 * Integration part was done by me. * The original SHA2 NI code comes from https://github.com/noloader/SHA-Intrinsics/blob/master/sha256-arm.c * Minor optimizations from https://github.com/rollmeister/bitcoin-armv8/blob/master/src/crypto/sha256.cpp are applied too. * The 2-way transform added by @sipa ACKs for top commit: laanwj: Code review and lightly tested ACK aaa1d03d3acebeb44fdd40a302f086aad3d329ce Tree-SHA512: 9689d6390c004269cb1ee79ed05430d7d35a6efef2554a2b6732f7258a11e7e959b3306c04b4e8637a9623fb4c12d1c1b3592da0ff0dc6d737932db302509669 # Conflicts: # configure.ac # src/Makefile.am # src/crypto/sha256.cpp
This commit is contained in:
parent
15aceb9ec4
commit
a7a3a93489
43
configure.ac
43
configure.ac
@ -462,7 +462,7 @@ AX_CHECK_COMPILE_FLAG([-fno-extended-identifiers],[[CXXFLAGS="$CXXFLAGS -fno-ext
|
||||
enable_sse42=no
|
||||
enable_sse41=no
|
||||
enable_avx2=no
|
||||
enable_shani=no
|
||||
enable_x86_shani=no
|
||||
|
||||
if test "x$use_asm" = "xyes"; then
|
||||
|
||||
@ -471,10 +471,10 @@ dnl be compiled with them, rather that specific objects/libs may use them after
|
||||
dnl compatibility.
|
||||
|
||||
dnl x86
|
||||
AX_CHECK_COMPILE_FLAG([-msse4.2],[[SSE42_CXXFLAGS="-msse4.2"]],,[[$CXXFLAG_WERROR]])
|
||||
AX_CHECK_COMPILE_FLAG([-msse4.1],[[SSE41_CXXFLAGS="-msse4.1"]],,[[$CXXFLAG_WERROR]])
|
||||
AX_CHECK_COMPILE_FLAG([-mavx -mavx2],[[AVX2_CXXFLAGS="-mavx -mavx2"]],,[[$CXXFLAG_WERROR]])
|
||||
AX_CHECK_COMPILE_FLAG([-msse4 -msha],[[SHANI_CXXFLAGS="-msse4 -msha"]],,[[$CXXFLAG_WERROR]])
|
||||
AX_CHECK_COMPILE_FLAG([-msse4.2], [SSE42_CXXFLAGS="-msse4.2"], [$CXXFLAG_WERROR])
|
||||
AX_CHECK_COMPILE_FLAG([-msse4.1], [SSE41_CXXFLAGS="-msse4.1"], [$CXXFLAG_WERROR])
|
||||
AX_CHECK_COMPILE_FLAG([-mavx -mavx2], [AVX2_CXXFLAGS="-mavx -mavx2"], [$CXXFLAG_WERROR])
|
||||
AX_CHECK_COMPILE_FLAG([-msse4 -msha], [X86_SHANI_CXXFLAGS="-msse4 -msha"], [$CXXFLAG_WERROR])
|
||||
|
||||
TEMP_CXXFLAGS="$CXXFLAGS"
|
||||
CXXFLAGS="$CXXFLAGS $SSE42_CXXFLAGS"
|
||||
@ -529,8 +529,8 @@ AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
|
||||
CXXFLAGS="$TEMP_CXXFLAGS"
|
||||
|
||||
TEMP_CXXFLAGS="$CXXFLAGS"
|
||||
CXXFLAGS="$CXXFLAGS $SHANI_CXXFLAGS"
|
||||
AC_MSG_CHECKING(for SHA-NI intrinsics)
|
||||
CXXFLAGS="$CXXFLAGS $X86_SHANI_CXXFLAGS"
|
||||
AC_MSG_CHECKING(for x86 SHA-NI intrinsics)
|
||||
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
|
||||
#include <stdint.h>
|
||||
#include <immintrin.h>
|
||||
@ -540,17 +540,18 @@ AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
|
||||
__m128i k = _mm_set1_epi32(2);
|
||||
return _mm_extract_epi32(_mm_sha256rnds2_epu32(i, i, k), 0);
|
||||
]])],
|
||||
[ AC_MSG_RESULT(yes); enable_shani=yes; AC_DEFINE(ENABLE_SHANI, 1, [Define this symbol to build code that uses SHA-NI intrinsics]) ],
|
||||
[ AC_MSG_RESULT(yes); enable_x86_shani=yes; AC_DEFINE(ENABLE_X86_SHANI, 1, [Define this symbol to build code that uses x86 SHA-NI intrinsics]) ],
|
||||
[ AC_MSG_RESULT(no)]
|
||||
)
|
||||
CXXFLAGS="$TEMP_CXXFLAGS"
|
||||
|
||||
# ARM
|
||||
AX_CHECK_COMPILE_FLAG([-march=armv8-a+crc+crypto],[[ARM_CRC_CXXFLAGS="-march=armv8-a+crc+crypto"]],,[[$CXXFLAG_WERROR]])
|
||||
AX_CHECK_COMPILE_FLAG([-march=armv8-a+crc+crypto], [ARM_SHANI_CXXFLAGS="-march=armv8-a+crc+crypto"], [], [$CXXFLAG_WERROR])
|
||||
|
||||
TEMP_CXXFLAGS="$CXXFLAGS"
|
||||
CXXFLAGS="$CXXFLAGS $ARM_CRC_CXXFLAGS"
|
||||
AC_MSG_CHECKING(for AArch64 CRC32 intrinsics)
|
||||
AC_MSG_CHECKING(for ARMv8 CRC32 intrinsics)
|
||||
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
|
||||
#include <arm_acle.h>
|
||||
#include <arm_neon.h>
|
||||
@ -567,6 +568,24 @@ AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
|
||||
)
|
||||
CXXFLAGS="$TEMP_CXXFLAGS"
|
||||
|
||||
TEMP_CXXFLAGS="$CXXFLAGS"
|
||||
CXXFLAGS="$CXXFLAGS $ARM_SHANI_CXXFLAGS"
|
||||
AC_MSG_CHECKING([for ARMv8 SHA-NI intrinsics])
|
||||
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
|
||||
#include <arm_acle.h>
|
||||
#include <arm_neon.h>
|
||||
]],[[
|
||||
uint32x4_t a, b, c;
|
||||
vsha256h2q_u32(a, b, c);
|
||||
vsha256hq_u32(a, b, c);
|
||||
vsha256su0q_u32(a, b);
|
||||
vsha256su1q_u32(a, b, c);
|
||||
]])],
|
||||
[ AC_MSG_RESULT([yes]); enable_arm_shani=yes; AC_DEFINE([ENABLE_ARM_SHANI], [1], [Define this symbol to build code that uses ARMv8 SHA-NI intrinsics]) ],
|
||||
[ AC_MSG_RESULT([no])]
|
||||
)
|
||||
CXXFLAGS="$TEMP_CXXFLAGS"
|
||||
|
||||
fi
|
||||
|
||||
CPPFLAGS="$CPPFLAGS -DHAVE_BUILD_INFO -D__STDC_FORMAT_MACROS"
|
||||
@ -1790,8 +1809,9 @@ AM_CONDITIONAL([HARDEN],[test x$use_hardening = xyes])
|
||||
AM_CONDITIONAL([ENABLE_SSE42],[test x$enable_sse42 = xyes])
|
||||
AM_CONDITIONAL([ENABLE_SSE41],[test x$enable_sse41 = xyes])
|
||||
AM_CONDITIONAL([ENABLE_AVX2],[test x$enable_avx2 = xyes])
|
||||
AM_CONDITIONAL([ENABLE_SHANI],[test x$enable_shani = xyes])
|
||||
AM_CONDITIONAL([ENABLE_X86_SHANI],[test $enable_x86_shani = xyes])
|
||||
AM_CONDITIONAL([ENABLE_ARM_CRC],[test x$enable_arm_crc = xyes])
|
||||
AM_CONDITIONAL([ENABLE_ARM_SHANI], [test "$enable_arm_shani" = "yes"])
|
||||
AM_CONDITIONAL([USE_ASM],[test x$use_asm = xyes])
|
||||
AM_CONDITIONAL([WORDS_BIGENDIAN],[test x$ac_cv_c_bigendian = xyes])
|
||||
|
||||
@ -1838,8 +1858,9 @@ AC_SUBST(SANITIZER_LDFLAGS)
|
||||
AC_SUBST(SSE42_CXXFLAGS)
|
||||
AC_SUBST(SSE41_CXXFLAGS)
|
||||
AC_SUBST(AVX2_CXXFLAGS)
|
||||
AC_SUBST(SHANI_CXXFLAGS)
|
||||
AC_SUBST(X86_SHANI_CXXFLAGS)
|
||||
AC_SUBST(ARM_CRC_CXXFLAGS)
|
||||
AC_SUBST(ARM_SHANI_CXXFLAGS)
|
||||
AC_SUBST(LIBTOOL_APP_LDFLAGS)
|
||||
AC_SUBST(USE_UPNP)
|
||||
AC_SUBST(USE_QRCODE)
|
||||
|
@ -76,9 +76,13 @@ if ENABLE_AVX2
|
||||
LIBBITCOIN_CRYPTO_AVX2 = crypto/libdash_crypto_avx2.a
|
||||
LIBBITCOIN_CRYPTO += $(LIBBITCOIN_CRYPTO_AVX2)
|
||||
endif
|
||||
if ENABLE_SHANI
|
||||
LIBBITCOIN_CRYPTO_SHANI = crypto/libdash_crypto_shani.a
|
||||
LIBBITCOIN_CRYPTO += $(LIBBITCOIN_CRYPTO_SHANI)
|
||||
if ENABLE_X86_SHANI
|
||||
LIBBITCOIN_CRYPTO_X86_SHANI = crypto/libdash_crypto_x86_shani.a
|
||||
LIBBITCOIN_CRYPTO += $(LIBBITCOIN_CRYPTO_X86_SHANI)
|
||||
endif
|
||||
if ENABLE_ARM_SHANI
|
||||
LIBBITCOIN_CRYPTO_ARM_SHANI = crypto/libdash_crypto_arm_shani.a
|
||||
LIBBITCOIN_CRYPTO += $(LIBBITCOIN_CRYPTO_ARM_SHANI)
|
||||
endif
|
||||
|
||||
$(LIBSECP256K1): $(wildcard secp256k1/src/*.h) $(wildcard secp256k1/src/*.c) $(wildcard secp256k1/include/*)
|
||||
@ -575,11 +579,17 @@ crypto_libdash_crypto_base_a_SOURCES += \
|
||||
crypto/sph_skein.h \
|
||||
crypto/sph_types.h
|
||||
|
||||
crypto_libdash_crypto_shani_a_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)
|
||||
crypto_libdash_crypto_shani_a_CPPFLAGS = $(AM_CPPFLAGS)
|
||||
crypto_libdash_crypto_shani_a_CXXFLAGS += $(SHANI_CXXFLAGS)
|
||||
crypto_libdash_crypto_shani_a_CPPFLAGS += -DENABLE_SHANI
|
||||
crypto_libdash_crypto_shani_a_SOURCES = crypto/sha256_shani.cpp
|
||||
crypto_libdash_crypto_x86_shani_a_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)
|
||||
crypto_libdash_crypto_x86_shani_a_CPPFLAGS = $(AM_CPPFLAGS)
|
||||
crypto_libdash_crypto_x86_shani_a_CXXFLAGS += $(X86_SHANI_CXXFLAGS)
|
||||
crypto_libdash_crypto_x86_shani_a_CPPFLAGS += -DENABLE_X86_SHANI
|
||||
crypto_libdash_crypto_x86_shani_a_SOURCES = crypto/sha256_x86_shani.cpp
|
||||
|
||||
crypto_libdash_crypto_arm_shani_a_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)
|
||||
crypto_libdash_crypto_arm_shani_a_CPPFLAGS = $(AM_CPPFLAGS)
|
||||
crypto_libdash_crypto_arm_shani_a_CXXFLAGS += $(ARM_SHANI_CXXFLAGS)
|
||||
crypto_libdash_crypto_arm_shani_a_CPPFLAGS += -DENABLE_ARM_SHANI
|
||||
crypto_libdash_crypto_arm_shani_a_SOURCES = crypto/sha256_arm_shani.cpp
|
||||
|
||||
# consensus: shared between all executables that validate any consensus rules.
|
||||
libdash_consensus_a_CPPFLAGS = $(AM_CPPFLAGS) $(BITCOIN_INCLUDES)
|
||||
|
@ -8,6 +8,16 @@
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
#if defined(__linux__) && defined(ENABLE_ARM_SHANI) && !defined(BUILD_BITCOIN_INTERNAL)
|
||||
#include <sys/auxv.h>
|
||||
#include <asm/hwcap.h>
|
||||
#endif
|
||||
|
||||
#if defined(MAC_OSX) && defined(ENABLE_ARM_SHANI) && !defined(BUILD_BITCOIN_INTERNAL)
|
||||
#include <sys/types.h>
|
||||
#include <sys/sysctl.h>
|
||||
#endif
|
||||
|
||||
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
|
||||
#if defined(USE_ASM)
|
||||
#include <cpuid.h>
|
||||
@ -28,16 +38,26 @@ namespace sha256d64_avx2
|
||||
void Transform_8way(unsigned char* out, const unsigned char* in);
|
||||
}
|
||||
|
||||
namespace sha256d64_shani
|
||||
namespace sha256d64_x86_shani
|
||||
{
|
||||
void Transform_2way(unsigned char* out, const unsigned char* in);
|
||||
}
|
||||
|
||||
namespace sha256_shani
|
||||
namespace sha256_x86_shani
|
||||
{
|
||||
void Transform(uint32_t* s, const unsigned char* chunk, size_t blocks);
|
||||
}
|
||||
|
||||
namespace sha256_arm_shani
|
||||
{
|
||||
void Transform(uint32_t* s, const unsigned char* chunk, size_t blocks);
|
||||
}
|
||||
|
||||
namespace sha256d64_arm_shani
|
||||
{
|
||||
void Transform_2way(unsigned char* out, const unsigned char* in);
|
||||
}
|
||||
|
||||
// Internal implementation code.
|
||||
namespace
|
||||
{
|
||||
@ -577,7 +597,7 @@ std::string SHA256AutoDetect()
|
||||
bool have_xsave = false;
|
||||
bool have_avx = false;
|
||||
bool have_avx2 = false;
|
||||
bool have_shani = false;
|
||||
bool have_x86_shani = false;
|
||||
bool enabled_avx = false;
|
||||
|
||||
(void)AVXEnabled;
|
||||
@ -585,7 +605,7 @@ std::string SHA256AutoDetect()
|
||||
(void)have_avx;
|
||||
(void)have_xsave;
|
||||
(void)have_avx2;
|
||||
(void)have_shani;
|
||||
(void)have_x86_shani;
|
||||
(void)enabled_avx;
|
||||
|
||||
uint32_t eax, ebx, ecx, edx;
|
||||
@ -599,15 +619,15 @@ std::string SHA256AutoDetect()
|
||||
if (have_sse4) {
|
||||
cpuid(7, 0, eax, ebx, ecx, edx);
|
||||
have_avx2 = (ebx >> 5) & 1;
|
||||
have_shani = (ebx >> 29) & 1;
|
||||
have_x86_shani = (ebx >> 29) & 1;
|
||||
}
|
||||
|
||||
#if defined(ENABLE_SHANI) && !defined(BUILD_BITCOIN_INTERNAL)
|
||||
if (have_shani) {
|
||||
Transform = sha256_shani::Transform;
|
||||
TransformD64 = TransformD64Wrapper<sha256_shani::Transform>;
|
||||
TransformD64_2way = sha256d64_shani::Transform_2way;
|
||||
ret = "shani(1way,2way)";
|
||||
#if defined(ENABLE_X86_SHANI) && !defined(BUILD_BITCOIN_INTERNAL)
|
||||
if (have_x86_shani) {
|
||||
Transform = sha256_x86_shani::Transform;
|
||||
TransformD64 = TransformD64Wrapper<sha256_x86_shani::Transform>;
|
||||
TransformD64_2way = sha256d64_x86_shani::Transform_2way;
|
||||
ret = "x86_shani(1way,2way)";
|
||||
have_sse4 = false; // Disable SSE4/AVX2;
|
||||
have_avx2 = false;
|
||||
}
|
||||
@ -633,6 +653,38 @@ std::string SHA256AutoDetect()
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(ENABLE_ARM_SHANI) && !defined(BUILD_BITCOIN_INTERNAL)
|
||||
bool have_arm_shani = false;
|
||||
|
||||
#if defined(__linux__)
|
||||
#if defined(__arm__) // 32-bit
|
||||
if (getauxval(AT_HWCAP2) & HWCAP2_SHA2) {
|
||||
have_arm_shani = true;
|
||||
}
|
||||
#endif
|
||||
#if defined(__aarch64__) // 64-bit
|
||||
if (getauxval(AT_HWCAP) & HWCAP_SHA2) {
|
||||
have_arm_shani = true;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(MAC_OSX)
|
||||
int val = 0;
|
||||
size_t len = sizeof(val);
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_SHA256", &val, &len, nullptr, 0) == 0) {
|
||||
have_arm_shani = val != 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (have_arm_shani) {
|
||||
Transform = sha256_arm_shani::Transform;
|
||||
TransformD64 = TransformD64Wrapper<sha256_arm_shani::Transform>;
|
||||
TransformD64_2way = sha256d64_arm_shani::Transform_2way;
|
||||
ret = "arm_shani(1way,2way)";
|
||||
}
|
||||
#endif
|
||||
|
||||
assert(SelfTest());
|
||||
return ret;
|
||||
}
|
||||
|
899
src/crypto/sha256_arm_shani.cpp
Normal file
899
src/crypto/sha256_arm_shani.cpp
Normal file
@ -0,0 +1,899 @@
|
||||
// Copyright (c) 2022 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
//
|
||||
// Based on https://github.com/noloader/SHA-Intrinsics/blob/master/sha256-arm.c,
|
||||
// Written and placed in public domain by Jeffrey Walton.
|
||||
// Based on code from ARM, and by Johannes Schneiders, Skip Hovsmith and
|
||||
// Barry O'Rourke for the mbedTLS project.
|
||||
// Variant specialized for 64-byte inputs added by Pieter Wuille.
|
||||
|
||||
#ifdef ENABLE_ARM_SHANI
|
||||
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <cstddef>
|
||||
#include <arm_acle.h>
|
||||
#include <arm_neon.h>
|
||||
|
||||
namespace {
|
||||
alignas(uint32x4_t) static constexpr std::array<uint32_t, 64> K =
|
||||
{
|
||||
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
|
||||
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
|
||||
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
|
||||
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
|
||||
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
|
||||
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
|
||||
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
|
||||
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
|
||||
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
|
||||
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
|
||||
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
|
||||
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
|
||||
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
|
||||
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
|
||||
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
|
||||
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
|
||||
};
|
||||
}
|
||||
|
||||
namespace sha256_arm_shani {
|
||||
void Transform(uint32_t* s, const unsigned char* chunk, size_t blocks)
|
||||
{
|
||||
uint32x4_t STATE0, STATE1, ABEF_SAVE, CDGH_SAVE;
|
||||
uint32x4_t MSG0, MSG1, MSG2, MSG3;
|
||||
uint32x4_t TMP0, TMP2;
|
||||
|
||||
// Load state
|
||||
STATE0 = vld1q_u32(&s[0]);
|
||||
STATE1 = vld1q_u32(&s[4]);
|
||||
|
||||
while (blocks--)
|
||||
{
|
||||
// Save state
|
||||
ABEF_SAVE = STATE0;
|
||||
CDGH_SAVE = STATE1;
|
||||
|
||||
// Load and convert input chunk to Big Endian
|
||||
MSG0 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(chunk + 0)));
|
||||
MSG1 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(chunk + 16)));
|
||||
MSG2 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(chunk + 32)));
|
||||
MSG3 = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(chunk + 48)));
|
||||
chunk += 64;
|
||||
|
||||
// Original implemenation preloaded message and constant addition which was 1-3% slower.
|
||||
// Now included as first step in quad round code saving one Q Neon register
|
||||
// "TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[0]));"
|
||||
|
||||
// Rounds 1-4
|
||||
TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[0]));
|
||||
TMP2 = STATE0;
|
||||
MSG0 = vsha256su0q_u32(MSG0, MSG1);
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);
|
||||
|
||||
// Rounds 5-8
|
||||
TMP0 = vaddq_u32(MSG1, vld1q_u32(&K[4]));
|
||||
TMP2 = STATE0;
|
||||
MSG1 = vsha256su0q_u32(MSG1, MSG2);
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);
|
||||
|
||||
// Rounds 9-12
|
||||
TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[8]));
|
||||
TMP2 = STATE0;
|
||||
MSG2 = vsha256su0q_u32(MSG2, MSG3);
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);
|
||||
|
||||
// Rounds 13-16
|
||||
TMP0 = vaddq_u32(MSG3, vld1q_u32(&K[12]));
|
||||
TMP2 = STATE0;
|
||||
MSG3 = vsha256su0q_u32(MSG3, MSG0);
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);
|
||||
|
||||
// Rounds 17-20
|
||||
TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[16]));
|
||||
TMP2 = STATE0;
|
||||
MSG0 = vsha256su0q_u32(MSG0, MSG1);
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);
|
||||
|
||||
// Rounds 21-24
|
||||
TMP0 = vaddq_u32(MSG1, vld1q_u32(&K[20]));
|
||||
TMP2 = STATE0;
|
||||
MSG1 = vsha256su0q_u32(MSG1, MSG2);
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);
|
||||
|
||||
// Rounds 25-28
|
||||
TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[24]));
|
||||
TMP2 = STATE0;
|
||||
MSG2 = vsha256su0q_u32(MSG2, MSG3);
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);
|
||||
|
||||
// Rounds 29-32
|
||||
TMP0 = vaddq_u32(MSG3, vld1q_u32(&K[28]));
|
||||
TMP2 = STATE0;
|
||||
MSG3 = vsha256su0q_u32(MSG3, MSG0);
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);
|
||||
|
||||
// Rounds 33-36
|
||||
TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[32]));
|
||||
TMP2 = STATE0;
|
||||
MSG0 = vsha256su0q_u32(MSG0, MSG1);
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);
|
||||
|
||||
// Rounds 37-40
|
||||
TMP0 = vaddq_u32(MSG1, vld1q_u32(&K[36]));
|
||||
TMP2 = STATE0;
|
||||
MSG1 = vsha256su0q_u32(MSG1, MSG2);
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);
|
||||
|
||||
// Rounds 41-44
|
||||
TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[40]));
|
||||
TMP2 = STATE0;
|
||||
MSG2 = vsha256su0q_u32(MSG2, MSG3);
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);
|
||||
|
||||
// Rounds 45-48
|
||||
TMP0 = vaddq_u32(MSG3, vld1q_u32(&K[44]));
|
||||
TMP2 = STATE0;
|
||||
MSG3 = vsha256su0q_u32(MSG3, MSG0);
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);
|
||||
|
||||
// Rounds 49-52
|
||||
TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[48]));
|
||||
TMP2 = STATE0;
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
|
||||
// Rounds 53-56
|
||||
TMP0 = vaddq_u32(MSG1, vld1q_u32(&K[52]));
|
||||
TMP2 = STATE0;
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
|
||||
// Rounds 57-60
|
||||
TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[56]));
|
||||
TMP2 = STATE0;
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
|
||||
// Rounds 61-64
|
||||
TMP0 = vaddq_u32(MSG3, vld1q_u32(&K[60]));
|
||||
TMP2 = STATE0;
|
||||
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
|
||||
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
|
||||
|
||||
// Update state
|
||||
STATE0 = vaddq_u32(STATE0, ABEF_SAVE);
|
||||
STATE1 = vaddq_u32(STATE1, CDGH_SAVE);
|
||||
}
|
||||
|
||||
// Save final state
|
||||
vst1q_u32(&s[0], STATE0);
|
||||
vst1q_u32(&s[4], STATE1);
|
||||
}
|
||||
}
|
||||
|
||||
namespace sha256d64_arm_shani {
|
||||
void Transform_2way(unsigned char* output, const unsigned char* input)
|
||||
{
|
||||
/* Initial state. */
|
||||
alignas(uint32x4_t) static constexpr std::array<uint32_t, 8> INIT = {
|
||||
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
|
||||
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
|
||||
};
|
||||
|
||||
/* Precomputed message schedule for the 2nd transform. */
|
||||
alignas(uint32x4_t) static constexpr std::array<uint32_t, 64> MIDS = {
|
||||
0xc28a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
||||
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
||||
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
||||
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf374,
|
||||
0x649b69c1, 0xf0fe4786, 0x0fe1edc6, 0x240cf254,
|
||||
0x4fe9346f, 0x6cc984be, 0x61b9411e, 0x16f988fa,
|
||||
0xf2c65152, 0xa88e5a6d, 0xb019fc65, 0xb9d99ec7,
|
||||
0x9a1231c3, 0xe70eeaa0, 0xfdb1232b, 0xc7353eb0,
|
||||
0x3069bad5, 0xcb976d5f, 0x5a0f118f, 0xdc1eeefd,
|
||||
0x0a35b689, 0xde0b7a04, 0x58f4ca9d, 0xe15d5b16,
|
||||
0x007f3e86, 0x37088980, 0xa507ea32, 0x6fab9537,
|
||||
0x17406110, 0x0d8cd6f1, 0xcdaa3b6d, 0xc0bbbe37,
|
||||
0x83613bda, 0xdb48a363, 0x0b02e931, 0x6fd15ca7,
|
||||
0x521afaca, 0x31338431, 0x6ed41a95, 0x6d437890,
|
||||
0xc39c91f2, 0x9eccabbd, 0xb5c9a0e6, 0x532fb63c,
|
||||
0xd2c741c6, 0x07237ea3, 0xa4954b68, 0x4c191d76
|
||||
};
|
||||
|
||||
/* A few precomputed message schedule values for the 3rd transform. */
|
||||
alignas(uint32x4_t) static constexpr std::array<uint32_t, 12> FINS = {
|
||||
0x5807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
||||
0x80000000, 0x00000000, 0x00000000, 0x00000000,
|
||||
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf274
|
||||
};
|
||||
|
||||
/* Padding processed in the 3rd transform (byteswapped). */
|
||||
alignas(uint32x4_t) static constexpr std::array<uint32_t, 8> FINAL = {0x80000000, 0, 0, 0, 0, 0, 0, 0x100};
|
||||
|
||||
uint32x4_t STATE0A, STATE0B, STATE1A, STATE1B, ABEF_SAVEA, ABEF_SAVEB, CDGH_SAVEA, CDGH_SAVEB;
|
||||
uint32x4_t MSG0A, MSG0B, MSG1A, MSG1B, MSG2A, MSG2B, MSG3A, MSG3B;
|
||||
uint32x4_t TMP0A, TMP0B, TMP2A, TMP2B, TMP;
|
||||
|
||||
// Transform 1: Load state
|
||||
STATE0A = vld1q_u32(&INIT[0]);
|
||||
STATE0B = STATE0A;
|
||||
STATE1A = vld1q_u32(&INIT[4]);
|
||||
STATE1B = STATE1A;
|
||||
|
||||
// Transform 1: Load and convert input chunk to Big Endian
|
||||
MSG0A = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 0)));
|
||||
MSG1A = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 16)));
|
||||
MSG2A = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 32)));
|
||||
MSG3A = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 48)));
|
||||
MSG0B = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 64)));
|
||||
MSG1B = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 80)));
|
||||
MSG2B = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 96)));
|
||||
MSG3B = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(input + 112)));
|
||||
|
||||
// Transform 1: Rounds 1-4
|
||||
TMP = vld1q_u32(&K[0]);
|
||||
TMP0A = vaddq_u32(MSG0A, TMP);
|
||||
TMP0B = vaddq_u32(MSG0B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG0A = vsha256su0q_u32(MSG0A, MSG1A);
|
||||
MSG0B = vsha256su0q_u32(MSG0B, MSG1B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG0A = vsha256su1q_u32(MSG0A, MSG2A, MSG3A);
|
||||
MSG0B = vsha256su1q_u32(MSG0B, MSG2B, MSG3B);
|
||||
|
||||
// Transform 1: Rounds 5-8
|
||||
TMP = vld1q_u32(&K[4]);
|
||||
TMP0A = vaddq_u32(MSG1A, TMP);
|
||||
TMP0B = vaddq_u32(MSG1B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG1A = vsha256su0q_u32(MSG1A, MSG2A);
|
||||
MSG1B = vsha256su0q_u32(MSG1B, MSG2B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG1A = vsha256su1q_u32(MSG1A, MSG3A, MSG0A);
|
||||
MSG1B = vsha256su1q_u32(MSG1B, MSG3B, MSG0B);
|
||||
|
||||
// Transform 1: Rounds 9-12
|
||||
TMP = vld1q_u32(&K[8]);
|
||||
TMP0A = vaddq_u32(MSG2A, TMP);
|
||||
TMP0B = vaddq_u32(MSG2B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG2A = vsha256su0q_u32(MSG2A, MSG3A);
|
||||
MSG2B = vsha256su0q_u32(MSG2B, MSG3B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG2A = vsha256su1q_u32(MSG2A, MSG0A, MSG1A);
|
||||
MSG2B = vsha256su1q_u32(MSG2B, MSG0B, MSG1B);
|
||||
|
||||
// Transform 1: Rounds 13-16
|
||||
TMP = vld1q_u32(&K[12]);
|
||||
TMP0A = vaddq_u32(MSG3A, TMP);
|
||||
TMP0B = vaddq_u32(MSG3B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG3A = vsha256su0q_u32(MSG3A, MSG0A);
|
||||
MSG3B = vsha256su0q_u32(MSG3B, MSG0B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG3A = vsha256su1q_u32(MSG3A, MSG1A, MSG2A);
|
||||
MSG3B = vsha256su1q_u32(MSG3B, MSG1B, MSG2B);
|
||||
|
||||
// Transform 1: Rounds 17-20
|
||||
TMP = vld1q_u32(&K[16]);
|
||||
TMP0A = vaddq_u32(MSG0A, TMP);
|
||||
TMP0B = vaddq_u32(MSG0B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG0A = vsha256su0q_u32(MSG0A, MSG1A);
|
||||
MSG0B = vsha256su0q_u32(MSG0B, MSG1B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG0A = vsha256su1q_u32(MSG0A, MSG2A, MSG3A);
|
||||
MSG0B = vsha256su1q_u32(MSG0B, MSG2B, MSG3B);
|
||||
|
||||
// Transform 1: Rounds 21-24
|
||||
TMP = vld1q_u32(&K[20]);
|
||||
TMP0A = vaddq_u32(MSG1A, TMP);
|
||||
TMP0B = vaddq_u32(MSG1B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG1A = vsha256su0q_u32(MSG1A, MSG2A);
|
||||
MSG1B = vsha256su0q_u32(MSG1B, MSG2B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG1A = vsha256su1q_u32(MSG1A, MSG3A, MSG0A);
|
||||
MSG1B = vsha256su1q_u32(MSG1B, MSG3B, MSG0B);
|
||||
|
||||
// Transform 1: Rounds 25-28
|
||||
TMP = vld1q_u32(&K[24]);
|
||||
TMP0A = vaddq_u32(MSG2A, TMP);
|
||||
TMP0B = vaddq_u32(MSG2B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG2A = vsha256su0q_u32(MSG2A, MSG3A);
|
||||
MSG2B = vsha256su0q_u32(MSG2B, MSG3B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG2A = vsha256su1q_u32(MSG2A, MSG0A, MSG1A);
|
||||
MSG2B = vsha256su1q_u32(MSG2B, MSG0B, MSG1B);
|
||||
|
||||
// Transform 1: Rounds 29-32
|
||||
TMP = vld1q_u32(&K[28]);
|
||||
TMP0A = vaddq_u32(MSG3A, TMP);
|
||||
TMP0B = vaddq_u32(MSG3B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG3A = vsha256su0q_u32(MSG3A, MSG0A);
|
||||
MSG3B = vsha256su0q_u32(MSG3B, MSG0B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG3A = vsha256su1q_u32(MSG3A, MSG1A, MSG2A);
|
||||
MSG3B = vsha256su1q_u32(MSG3B, MSG1B, MSG2B);
|
||||
|
||||
// Transform 1: Rounds 33-36
|
||||
TMP = vld1q_u32(&K[32]);
|
||||
TMP0A = vaddq_u32(MSG0A, TMP);
|
||||
TMP0B = vaddq_u32(MSG0B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG0A = vsha256su0q_u32(MSG0A, MSG1A);
|
||||
MSG0B = vsha256su0q_u32(MSG0B, MSG1B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG0A = vsha256su1q_u32(MSG0A, MSG2A, MSG3A);
|
||||
MSG0B = vsha256su1q_u32(MSG0B, MSG2B, MSG3B);
|
||||
|
||||
// Transform 1: Rounds 37-40
|
||||
TMP = vld1q_u32(&K[36]);
|
||||
TMP0A = vaddq_u32(MSG1A, TMP);
|
||||
TMP0B = vaddq_u32(MSG1B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG1A = vsha256su0q_u32(MSG1A, MSG2A);
|
||||
MSG1B = vsha256su0q_u32(MSG1B, MSG2B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG1A = vsha256su1q_u32(MSG1A, MSG3A, MSG0A);
|
||||
MSG1B = vsha256su1q_u32(MSG1B, MSG3B, MSG0B);
|
||||
|
||||
// Transform 1: Rounds 41-44
|
||||
TMP = vld1q_u32(&K[40]);
|
||||
TMP0A = vaddq_u32(MSG2A, TMP);
|
||||
TMP0B = vaddq_u32(MSG2B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG2A = vsha256su0q_u32(MSG2A, MSG3A);
|
||||
MSG2B = vsha256su0q_u32(MSG2B, MSG3B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG2A = vsha256su1q_u32(MSG2A, MSG0A, MSG1A);
|
||||
MSG2B = vsha256su1q_u32(MSG2B, MSG0B, MSG1B);
|
||||
|
||||
// Transform 1: Rounds 45-48
|
||||
TMP = vld1q_u32(&K[44]);
|
||||
TMP0A = vaddq_u32(MSG3A, TMP);
|
||||
TMP0B = vaddq_u32(MSG3B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG3A = vsha256su0q_u32(MSG3A, MSG0A);
|
||||
MSG3B = vsha256su0q_u32(MSG3B, MSG0B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG3A = vsha256su1q_u32(MSG3A, MSG1A, MSG2A);
|
||||
MSG3B = vsha256su1q_u32(MSG3B, MSG1B, MSG2B);
|
||||
|
||||
// Transform 1: Rounds 49-52
|
||||
TMP = vld1q_u32(&K[48]);
|
||||
TMP0A = vaddq_u32(MSG0A, TMP);
|
||||
TMP0B = vaddq_u32(MSG0B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
|
||||
// Transform 1: Rounds 53-56
|
||||
TMP = vld1q_u32(&K[52]);
|
||||
TMP0A = vaddq_u32(MSG1A, TMP);
|
||||
TMP0B = vaddq_u32(MSG1B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
|
||||
// Transform 1: Rounds 57-60
|
||||
TMP = vld1q_u32(&K[56]);
|
||||
TMP0A = vaddq_u32(MSG2A, TMP);
|
||||
TMP0B = vaddq_u32(MSG2B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
|
||||
// Transform 1: Rounds 61-64
|
||||
TMP = vld1q_u32(&K[60]);
|
||||
TMP0A = vaddq_u32(MSG3A, TMP);
|
||||
TMP0B = vaddq_u32(MSG3B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
|
||||
// Transform 1: Update state
|
||||
TMP = vld1q_u32(&INIT[0]);
|
||||
STATE0A = vaddq_u32(STATE0A, TMP);
|
||||
STATE0B = vaddq_u32(STATE0B, TMP);
|
||||
TMP = vld1q_u32(&INIT[4]);
|
||||
STATE1A = vaddq_u32(STATE1A, TMP);
|
||||
STATE1B = vaddq_u32(STATE1B, TMP);
|
||||
|
||||
// Transform 2: Save state
|
||||
ABEF_SAVEA = STATE0A;
|
||||
ABEF_SAVEB = STATE0B;
|
||||
CDGH_SAVEA = STATE1A;
|
||||
CDGH_SAVEB = STATE1B;
|
||||
|
||||
// Transform 2: Rounds 1-4
|
||||
TMP = vld1q_u32(&MIDS[0]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 5-8
|
||||
TMP = vld1q_u32(&MIDS[4]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 9-12
|
||||
TMP = vld1q_u32(&MIDS[8]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 13-16
|
||||
TMP = vld1q_u32(&MIDS[12]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 17-20
|
||||
TMP = vld1q_u32(&MIDS[16]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 21-24
|
||||
TMP = vld1q_u32(&MIDS[20]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 25-28
|
||||
TMP = vld1q_u32(&MIDS[24]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 29-32
|
||||
TMP = vld1q_u32(&MIDS[28]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 33-36
|
||||
TMP = vld1q_u32(&MIDS[32]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 37-40
|
||||
TMP = vld1q_u32(&MIDS[36]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 41-44
|
||||
TMP = vld1q_u32(&MIDS[40]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 45-48
|
||||
TMP = vld1q_u32(&MIDS[44]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 49-52
|
||||
TMP = vld1q_u32(&MIDS[48]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 53-56
|
||||
TMP = vld1q_u32(&MIDS[52]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 57-60
|
||||
TMP = vld1q_u32(&MIDS[56]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Rounds 61-64
|
||||
TMP = vld1q_u32(&MIDS[60]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
|
||||
// Transform 2: Update state
|
||||
STATE0A = vaddq_u32(STATE0A, ABEF_SAVEA);
|
||||
STATE0B = vaddq_u32(STATE0B, ABEF_SAVEB);
|
||||
STATE1A = vaddq_u32(STATE1A, CDGH_SAVEA);
|
||||
STATE1B = vaddq_u32(STATE1B, CDGH_SAVEB);
|
||||
|
||||
// Transform 3: Pad previous output
|
||||
MSG0A = STATE0A;
|
||||
MSG0B = STATE0B;
|
||||
MSG1A = STATE1A;
|
||||
MSG1B = STATE1B;
|
||||
MSG2A = vld1q_u32(&FINAL[0]);
|
||||
MSG2B = MSG2A;
|
||||
MSG3A = vld1q_u32(&FINAL[4]);
|
||||
MSG3B = MSG3A;
|
||||
|
||||
// Transform 3: Load state
|
||||
STATE0A = vld1q_u32(&INIT[0]);
|
||||
STATE0B = STATE0A;
|
||||
STATE1A = vld1q_u32(&INIT[4]);
|
||||
STATE1B = STATE1A;
|
||||
|
||||
// Transform 3: Rounds 1-4
|
||||
TMP = vld1q_u32(&K[0]);
|
||||
TMP0A = vaddq_u32(MSG0A, TMP);
|
||||
TMP0B = vaddq_u32(MSG0B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG0A = vsha256su0q_u32(MSG0A, MSG1A);
|
||||
MSG0B = vsha256su0q_u32(MSG0B, MSG1B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG0A = vsha256su1q_u32(MSG0A, MSG2A, MSG3A);
|
||||
MSG0B = vsha256su1q_u32(MSG0B, MSG2B, MSG3B);
|
||||
|
||||
// Transform 3: Rounds 5-8
|
||||
TMP = vld1q_u32(&K[4]);
|
||||
TMP0A = vaddq_u32(MSG1A, TMP);
|
||||
TMP0B = vaddq_u32(MSG1B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG1A = vsha256su0q_u32(MSG1A, MSG2A);
|
||||
MSG1B = vsha256su0q_u32(MSG1B, MSG2B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG1A = vsha256su1q_u32(MSG1A, MSG3A, MSG0A);
|
||||
MSG1B = vsha256su1q_u32(MSG1B, MSG3B, MSG0B);
|
||||
|
||||
// Transform 3: Rounds 9-12
|
||||
TMP = vld1q_u32(&FINS[0]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG2A = vld1q_u32(&FINS[4]);
|
||||
MSG2B = MSG2A;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
MSG2A = vsha256su1q_u32(MSG2A, MSG0A, MSG1A);
|
||||
MSG2B = vsha256su1q_u32(MSG2B, MSG0B, MSG1B);
|
||||
|
||||
// Transform 3: Rounds 13-16
|
||||
TMP = vld1q_u32(&FINS[8]);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG3A = vsha256su0q_u32(MSG3A, MSG0A);
|
||||
MSG3B = vsha256su0q_u32(MSG3B, MSG0B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP);
|
||||
MSG3A = vsha256su1q_u32(MSG3A, MSG1A, MSG2A);
|
||||
MSG3B = vsha256su1q_u32(MSG3B, MSG1B, MSG2B);
|
||||
|
||||
// Transform 3: Rounds 17-20
|
||||
TMP = vld1q_u32(&K[16]);
|
||||
TMP0A = vaddq_u32(MSG0A, TMP);
|
||||
TMP0B = vaddq_u32(MSG0B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG0A = vsha256su0q_u32(MSG0A, MSG1A);
|
||||
MSG0B = vsha256su0q_u32(MSG0B, MSG1B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG0A = vsha256su1q_u32(MSG0A, MSG2A, MSG3A);
|
||||
MSG0B = vsha256su1q_u32(MSG0B, MSG2B, MSG3B);
|
||||
|
||||
// Transform 3: Rounds 21-24
|
||||
TMP = vld1q_u32(&K[20]);
|
||||
TMP0A = vaddq_u32(MSG1A, TMP);
|
||||
TMP0B = vaddq_u32(MSG1B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG1A = vsha256su0q_u32(MSG1A, MSG2A);
|
||||
MSG1B = vsha256su0q_u32(MSG1B, MSG2B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG1A = vsha256su1q_u32(MSG1A, MSG3A, MSG0A);
|
||||
MSG1B = vsha256su1q_u32(MSG1B, MSG3B, MSG0B);
|
||||
|
||||
// Transform 3: Rounds 25-28
|
||||
TMP = vld1q_u32(&K[24]);
|
||||
TMP0A = vaddq_u32(MSG2A, TMP);
|
||||
TMP0B = vaddq_u32(MSG2B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG2A = vsha256su0q_u32(MSG2A, MSG3A);
|
||||
MSG2B = vsha256su0q_u32(MSG2B, MSG3B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG2A = vsha256su1q_u32(MSG2A, MSG0A, MSG1A);
|
||||
MSG2B = vsha256su1q_u32(MSG2B, MSG0B, MSG1B);
|
||||
|
||||
// Transform 3: Rounds 29-32
|
||||
TMP = vld1q_u32(&K[28]);
|
||||
TMP0A = vaddq_u32(MSG3A, TMP);
|
||||
TMP0B = vaddq_u32(MSG3B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG3A = vsha256su0q_u32(MSG3A, MSG0A);
|
||||
MSG3B = vsha256su0q_u32(MSG3B, MSG0B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG3A = vsha256su1q_u32(MSG3A, MSG1A, MSG2A);
|
||||
MSG3B = vsha256su1q_u32(MSG3B, MSG1B, MSG2B);
|
||||
|
||||
// Transform 3: Rounds 33-36
|
||||
TMP = vld1q_u32(&K[32]);
|
||||
TMP0A = vaddq_u32(MSG0A, TMP);
|
||||
TMP0B = vaddq_u32(MSG0B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG0A = vsha256su0q_u32(MSG0A, MSG1A);
|
||||
MSG0B = vsha256su0q_u32(MSG0B, MSG1B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG0A = vsha256su1q_u32(MSG0A, MSG2A, MSG3A);
|
||||
MSG0B = vsha256su1q_u32(MSG0B, MSG2B, MSG3B);
|
||||
|
||||
// Transform 3: Rounds 37-40
|
||||
TMP = vld1q_u32(&K[36]);
|
||||
TMP0A = vaddq_u32(MSG1A, TMP);
|
||||
TMP0B = vaddq_u32(MSG1B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG1A = vsha256su0q_u32(MSG1A, MSG2A);
|
||||
MSG1B = vsha256su0q_u32(MSG1B, MSG2B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG1A = vsha256su1q_u32(MSG1A, MSG3A, MSG0A);
|
||||
MSG1B = vsha256su1q_u32(MSG1B, MSG3B, MSG0B);
|
||||
|
||||
// Transform 3: Rounds 41-44
|
||||
TMP = vld1q_u32(&K[40]);
|
||||
TMP0A = vaddq_u32(MSG2A, TMP);
|
||||
TMP0B = vaddq_u32(MSG2B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG2A = vsha256su0q_u32(MSG2A, MSG3A);
|
||||
MSG2B = vsha256su0q_u32(MSG2B, MSG3B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG2A = vsha256su1q_u32(MSG2A, MSG0A, MSG1A);
|
||||
MSG2B = vsha256su1q_u32(MSG2B, MSG0B, MSG1B);
|
||||
|
||||
// Transform 3: Rounds 45-48
|
||||
TMP = vld1q_u32(&K[44]);
|
||||
TMP0A = vaddq_u32(MSG3A, TMP);
|
||||
TMP0B = vaddq_u32(MSG3B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
MSG3A = vsha256su0q_u32(MSG3A, MSG0A);
|
||||
MSG3B = vsha256su0q_u32(MSG3B, MSG0B);
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
MSG3A = vsha256su1q_u32(MSG3A, MSG1A, MSG2A);
|
||||
MSG3B = vsha256su1q_u32(MSG3B, MSG1B, MSG2B);
|
||||
|
||||
// Transform 3: Rounds 49-52
|
||||
TMP = vld1q_u32(&K[48]);
|
||||
TMP0A = vaddq_u32(MSG0A, TMP);
|
||||
TMP0B = vaddq_u32(MSG0B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
|
||||
// Transform 3: Rounds 53-56
|
||||
TMP = vld1q_u32(&K[52]);
|
||||
TMP0A = vaddq_u32(MSG1A, TMP);
|
||||
TMP0B = vaddq_u32(MSG1B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
|
||||
// Transform 3: Rounds 57-60
|
||||
TMP = vld1q_u32(&K[56]);
|
||||
TMP0A = vaddq_u32(MSG2A, TMP);
|
||||
TMP0B = vaddq_u32(MSG2B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
|
||||
// Transform 3: Rounds 61-64
|
||||
TMP = vld1q_u32(&K[60]);
|
||||
TMP0A = vaddq_u32(MSG3A, TMP);
|
||||
TMP0B = vaddq_u32(MSG3B, TMP);
|
||||
TMP2A = STATE0A;
|
||||
TMP2B = STATE0B;
|
||||
STATE0A = vsha256hq_u32(STATE0A, STATE1A, TMP0A);
|
||||
STATE0B = vsha256hq_u32(STATE0B, STATE1B, TMP0B);
|
||||
STATE1A = vsha256h2q_u32(STATE1A, TMP2A, TMP0A);
|
||||
STATE1B = vsha256h2q_u32(STATE1B, TMP2B, TMP0B);
|
||||
|
||||
// Transform 3: Update state
|
||||
TMP = vld1q_u32(&INIT[0]);
|
||||
STATE0A = vaddq_u32(STATE0A, TMP);
|
||||
STATE0B = vaddq_u32(STATE0B, TMP);
|
||||
TMP = vld1q_u32(&INIT[4]);
|
||||
STATE1A = vaddq_u32(STATE1A, TMP);
|
||||
STATE1B = vaddq_u32(STATE1B, TMP);
|
||||
|
||||
// Store result
|
||||
vst1q_u8(output, vrev32q_u8(vreinterpretq_u8_u32(STATE0A)));
|
||||
vst1q_u8(output + 16, vrev32q_u8(vreinterpretq_u8_u32(STATE1A)));
|
||||
vst1q_u8(output + 32, vrev32q_u8(vreinterpretq_u8_u32(STATE0B)));
|
||||
vst1q_u8(output + 48, vrev32q_u8(vreinterpretq_u8_u32(STATE1B)));
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
@ -6,7 +6,7 @@
|
||||
// Written and placed in public domain by Jeffrey Walton.
|
||||
// Based on code from Intel, and by Sean Gulley for the miTLS project.
|
||||
|
||||
#ifdef ENABLE_SHANI
|
||||
#ifdef ENABLE_X86_SHANI
|
||||
|
||||
#include <stdint.h>
|
||||
#include <immintrin.h>
|
||||
@ -74,7 +74,7 @@ void inline __attribute__((always_inline)) Save(unsigned char* out, __m128i s)
|
||||
}
|
||||
}
|
||||
|
||||
namespace sha256_shani {
|
||||
namespace sha256_x86_shani {
|
||||
void Transform(uint32_t* s, const unsigned char* chunk, size_t blocks)
|
||||
{
|
||||
__m128i m0, m1, m2, m3, s0, s1, so0, so1;
|
||||
@ -139,7 +139,7 @@ void Transform(uint32_t* s, const unsigned char* chunk, size_t blocks)
|
||||
}
|
||||
}
|
||||
|
||||
namespace sha256d64_shani {
|
||||
namespace sha256d64_x86_shani {
|
||||
|
||||
void Transform_2way(unsigned char* out, const unsigned char* in)
|
||||
{
|
Loading…
Reference in New Issue
Block a user