Add comparison tool test runner, built on mininode

comptool.py creates a tool for running a test suite on top of the mininode p2p
framework.  It supports two types of tests: those for which we expect certain
behavior (acceptance or rejection of a block or transaction) and those for
which we are just comparing that the behavior of 2 or more nodes is the same.

blockstore.py defines BlockStore and TxStore, which provide db-backed maps
between block/tx hashes and the corresponding block or tx.

blocktools.py defines utility functions for creating and manipulating blocks
and transactions.

invalidblockrequest.py is an example test in the comptool framework, which
tests the behavior of a single node when sent two different types of invalid
blocks (a block with a duplicated transaction and a block with a bad coinbase
value).
This commit is contained in:
Suhas Daftuar 2015-04-28 12:39:47 -04:00
parent 6c1d1ba6fc
commit b93974c3f3
6 changed files with 667 additions and 0 deletions

View File

@ -31,6 +31,7 @@ testScripts=(
'merkle_blocks.py'
# 'forknotify.py'
'maxblocksinflight.py'
'invalidblockrequest.py'
);
if [ "x${ENABLE_BITCOIND}${ENABLE_UTILS}${ENABLE_WALLET}" = "x111" ]; then
for (( i = 0; i < ${#testScripts[@]}; i++ ))

127
qa/rpc-tests/blockstore.py Normal file
View File

@ -0,0 +1,127 @@
# BlockStore: a helper class that keeps a map of blocks and implements
# helper functions for responding to getheaders and getdata,
# and for constructing a getheaders message
#
from mininode import *
import dbm
class BlockStore(object):
def __init__(self, datadir):
self.blockDB = dbm.open(datadir + "/blocks", 'c')
self.currentBlock = 0L
def close(self):
self.blockDB.close()
def get(self, blockhash):
serialized_block = None
try:
serialized_block = self.blockDB[repr(blockhash)]
except KeyError:
return None
f = cStringIO.StringIO(serialized_block)
ret = CBlock()
ret.deserialize(f)
ret.calc_sha256()
return ret
# Note: this pulls full blocks out of the database just to retrieve
# the headers -- perhaps we could keep a separate data structure
# to avoid this overhead.
def headers_for(self, locator, hash_stop, current_tip=None):
if current_tip is None:
current_tip = self.currentBlock
current_block = self.get(current_tip)
if current_block is None:
return None
response = msg_headers()
headersList = [ CBlockHeader(current_block) ]
maxheaders = 2000
while (headersList[0].sha256 not in locator.vHave):
prevBlockHash = headersList[0].hashPrevBlock
prevBlock = self.get(prevBlockHash)
if prevBlock is not None:
headersList.insert(0, CBlockHeader(prevBlock))
else:
break
headersList = headersList[:maxheaders] # truncate if we have too many
hashList = [x.sha256 for x in headersList]
index = len(headersList)
if (hash_stop in hashList):
index = hashList.index(hash_stop)+1
response.headers = headersList[:index]
return response
def add_block(self, block):
block.calc_sha256()
try:
self.blockDB[repr(block.sha256)] = bytes(block.serialize())
except TypeError as e:
print "Unexpected error: ", sys.exc_info()[0], e.args
self.currentBlock = block.sha256
def get_blocks(self, inv):
responses = []
for i in inv:
if (i.type == 2): # MSG_BLOCK
block = self.get(i.hash)
if block is not None:
responses.append(msg_block(block))
return responses
def get_locator(self, current_tip=None):
if current_tip is None:
current_tip = self.currentBlock
r = []
counter = 0
step = 1
lastBlock = self.get(current_tip)
while lastBlock is not None:
r.append(lastBlock.hashPrevBlock)
for i in range(step):
lastBlock = self.get(lastBlock.hashPrevBlock)
if lastBlock is None:
break
counter += 1
if counter > 10:
step *= 2
locator = CBlockLocator()
locator.vHave = r
return locator
class TxStore(object):
def __init__(self, datadir):
self.txDB = dbm.open(datadir + "/transactions", 'c')
def close(self):
self.txDB.close()
def get(self, txhash):
serialized_tx = None
try:
serialized_tx = self.txDB[repr(txhash)]
except KeyError:
return None
f = cStringIO.StringIO(serialized_tx)
ret = CTransaction()
ret.deserialize(f)
ret.calc_sha256()
return ret
def add_transaction(self, tx):
tx.calc_sha256()
try:
self.txDB[repr(tx.sha256)] = bytes(tx.serialize())
except TypeError as e:
print "Unexpected error: ", sys.exc_info()[0], e.args
def get_transactions(self, inv):
responses = []
for i in inv:
if (i.type == 1): # MSG_TX
tx = self.get(i.hash)
if tx is not None:
responses.append(msg_tx(tx))
return responses

View File

@ -0,0 +1,65 @@
# blocktools.py - utilities for manipulating blocks and transactions
#
# Distributed under the MIT/X11 software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
#
from mininode import *
from script import CScript, CScriptOp
# Create a block (with regtest difficulty)
def create_block(hashprev, coinbase, nTime=None):
block = CBlock()
if nTime is None:
import time
block.nTime = int(time.time()+600)
else:
block.nTime = nTime
block.hashPrevBlock = hashprev
block.nBits = 0x207fffff # Will break after a difficulty adjustment...
block.vtx.append(coinbase)
block.hashMerkleRoot = block.calc_merkle_root()
block.calc_sha256()
return block
def serialize_script_num(value):
r = bytearray(0)
if value == 0:
return r
neg = value < 0
absvalue = -value if neg else value
while (absvalue):
r.append(chr(absvalue & 0xff))
absvalue >>= 8
if r[-1] & 0x80:
r.append(0x80 if neg else 0)
elif neg:
r[-1] |= 0x80
return r
counter=1
# Create an anyone-can-spend coinbase transaction, assuming no miner fees
def create_coinbase(heightAdjust = 0):
global counter
coinbase = CTransaction()
coinbase.vin.append(CTxIn(COutPoint(0, 0xffffffff),
ser_string(serialize_script_num(counter+heightAdjust)), 0xffffffff))
counter += 1
coinbaseoutput = CTxOut()
coinbaseoutput.nValue = 50*100000000
halvings = int((counter+heightAdjust)/150) # regtest
coinbaseoutput.nValue >>= halvings
coinbaseoutput.scriptPubKey = ""
coinbase.vout = [ coinbaseoutput ]
coinbase.calc_sha256()
return coinbase
# Create a transaction with an anyone-can-spend output, that spends the
# nth output of prevtx.
def create_transaction(prevtx, n, sig, value):
tx = CTransaction()
assert(n < len(prevtx.vout))
tx.vin.append(CTxIn(COutPoint(prevtx.sha256, n), sig, 0xffffffff))
tx.vout.append(CTxOut(value, ""))
tx.calc_sha256()
return tx

330
qa/rpc-tests/comptool.py Executable file
View File

@ -0,0 +1,330 @@
#!/usr/bin/env python2
#
# Distributed under the MIT/X11 software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
#
from mininode import *
from blockstore import BlockStore, TxStore
from util import p2p_port
'''
This is a tool for comparing two or more bitcoinds to each other
using a script provided.
To use, create a class that implements get_tests(), and pass it in
as the test generator to TestManager. get_tests() should be a python
generator that returns TestInstance objects. See below for definition.
'''
# TestNode behaves as follows:
# Configure with a BlockStore and TxStore
# on_inv: log the message but don't request
# on_headers: log the chain tip
# on_pong: update ping response map (for synchronization)
# on_getheaders: provide headers via BlockStore
# on_getdata: provide blocks via BlockStore
class TestNode(NodeConnCB):
def __init__(self, block_store, tx_store):
NodeConnCB.__init__(self)
self.create_callback_map()
self.conn = None
self.bestblockhash = None
self.block_store = block_store
self.block_request_map = {}
self.tx_store = tx_store
self.tx_request_map = {}
# When the pingmap is non-empty we're waiting for
# a response
self.pingMap = {}
self.lastInv = []
def add_connection(self, conn):
self.conn = conn
def on_headers(self, conn, message):
if len(message.headers) > 0:
best_header = message.headers[-1]
best_header.calc_sha256()
self.bestblockhash = best_header.sha256
def on_getheaders(self, conn, message):
response = self.block_store.headers_for(message.locator, message.hashstop)
if response is not None:
conn.send_message(response)
def on_getdata(self, conn, message):
[conn.send_message(r) for r in self.block_store.get_blocks(message.inv)]
[conn.send_message(r) for r in self.tx_store.get_transactions(message.inv)]
for i in message.inv:
if i.type == 1:
self.tx_request_map[i.hash] = True
elif i.type == 2:
self.block_request_map[i.hash] = True
def on_inv(self, conn, message):
self.lastInv = [x.hash for x in message.inv]
def on_pong(self, conn, message):
try:
del self.pingMap[message.nonce]
except KeyError:
raise AssertionError("Got pong for unknown ping [%s]" % repr(message))
def send_inv(self, obj):
mtype = 2 if isinstance(obj, CBlock) else 1
self.conn.send_message(msg_inv([CInv(mtype, obj.sha256)]))
def send_getheaders(self):
# We ask for headers from their last tip.
m = msg_getheaders()
m.locator = self.block_store.get_locator(self.bestblockhash)
self.conn.send_message(m)
# This assumes BIP31
def send_ping(self, nonce):
self.pingMap[nonce] = True
self.conn.send_message(msg_ping(nonce))
def received_ping_response(self, nonce):
return nonce not in self.pingMap
def send_mempool(self):
self.lastInv = []
self.conn.send_message(msg_mempool())
# TestInstance:
#
# Instances of these are generated by the test generator, and fed into the
# comptool.
#
# "blocks_and_transactions" should be an array of [obj, True/False/None]:
# - obj is either a CBlock or a CTransaction, and
# - the second value indicates whether the object should be accepted
# into the blockchain or mempool (for tests where we expect a certain
# answer), or "None" if we don't expect a certain answer and are just
# comparing the behavior of the nodes being tested.
# sync_every_block: if True, then each block will be inv'ed, synced, and
# nodes will be tested based on the outcome for the block. If False,
# then inv's accumulate until all blocks are processed (or max inv size
# is reached) and then sent out in one inv message. Then the final block
# will be synced across all connections, and the outcome of the final
# block will be tested.
# sync_every_tx: analagous to behavior for sync_every_block, except if outcome
# on the final tx is None, then contents of entire mempool are compared
# across all connections. (If outcome of final tx is specified as true
# or false, then only the last tx is tested against outcome.)
class TestInstance(object):
def __init__(self, objects=[], sync_every_block=True, sync_every_tx=False):
self.blocks_and_transactions = objects
self.sync_every_block = sync_every_block
self.sync_every_tx = sync_every_tx
class TestManager(object):
def __init__(self, testgen, datadir):
self.test_generator = testgen
self.connections = []
self.block_store = BlockStore(datadir)
self.tx_store = TxStore(datadir)
self.ping_counter = 1
def add_all_connections(self, nodes):
for i in range(len(nodes)):
# Create a p2p connection to each node
self.connections.append(NodeConn('127.0.0.1', p2p_port(i),
nodes[i], TestNode(self.block_store, self.tx_store)))
# Make sure the TestNode (callback class) has a reference to its
# associated NodeConn
self.connections[-1].cb.add_connection(self.connections[-1])
def wait_for_verack(self):
sleep_time = 0.05
max_tries = 10 / sleep_time # Wait at most 10 seconds
while max_tries > 0:
done = True
for c in self.connections:
if c.cb.verack_received is False:
done = False
break
if done:
break
time.sleep(sleep_time)
def wait_for_pings(self, counter):
received_pongs = False
while received_pongs is not True:
time.sleep(0.05)
received_pongs = True
for c in self.connections:
if c.cb.received_ping_response(counter) is not True:
received_pongs = False
break
# sync_blocks: Wait for all connections to request the blockhash given
# then send get_headers to find out the tip of each node, and synchronize
# the response by using a ping (and waiting for pong with same nonce).
def sync_blocks(self, blockhash, num_blocks):
# Wait for nodes to request block (50ms sleep * 20 tries * num_blocks)
max_tries = 20*num_blocks
while max_tries > 0:
results = [ blockhash in c.cb.block_request_map and
c.cb.block_request_map[blockhash] for c in self.connections ]
if False not in results:
break
time.sleep(0.05)
max_tries -= 1
# --> error if not requested
if max_tries == 0:
# print [ c.cb.block_request_map for c in self.connections ]
raise AssertionError("Not all nodes requested block")
# --> Answer request (we did this inline!)
# Send getheaders message
[ c.cb.send_getheaders() for c in self.connections ]
# Send ping and wait for response -- synchronization hack
[ c.cb.send_ping(self.ping_counter) for c in self.connections ]
self.wait_for_pings(self.ping_counter)
self.ping_counter += 1
# Analogous to sync_block (see above)
def sync_transaction(self, txhash, num_events):
# Wait for nodes to request transaction (50ms sleep * 20 tries * num_events)
max_tries = 20*num_events
while max_tries > 0:
results = [ txhash in c.cb.tx_request_map and
c.cb.tx_request_map[txhash] for c in self.connections ]
if False not in results:
break
time.sleep(0.05)
max_tries -= 1
# --> error if not requested
if max_tries == 0:
# print [ c.cb.tx_request_map for c in self.connections ]
raise AssertionError("Not all nodes requested transaction")
# --> Answer request (we did this inline!)
# Get the mempool
[ c.cb.send_mempool() for c in self.connections ]
# Send ping and wait for response -- synchronization hack
[ c.cb.send_ping(self.ping_counter) for c in self.connections ]
self.wait_for_pings(self.ping_counter)
self.ping_counter += 1
# Sort inv responses from each node
[ c.cb.lastInv.sort() for c in self.connections ]
# Verify that the tip of each connection all agree with each other, and
# with the expected outcome (if given)
def check_results(self, blockhash, outcome):
for c in self.connections:
if outcome is None:
if c.cb.bestblockhash != self.connections[0].cb.bestblockhash:
return False
elif ((c.cb.bestblockhash == blockhash) != outcome):
# print c.cb.bestblockhash, blockhash, outcome
return False
return True
# Either check that the mempools all agree with each other, or that
# txhash's presence in the mempool matches the outcome specified.
# This is somewhat of a strange comparison, in that we're either comparing
# a particular tx to an outcome, or the entire mempools altogether;
# perhaps it would be useful to add the ability to check explicitly that
# a particular tx's existence in the mempool is the same across all nodes.
def check_mempool(self, txhash, outcome):
for c in self.connections:
if outcome is None:
# Make sure the mempools agree with each other
if c.cb.lastInv != self.connections[0].cb.lastInv:
# print c.rpc.getrawmempool()
return False
elif ((txhash in c.cb.lastInv) != outcome):
# print c.rpc.getrawmempool(), c.cb.lastInv
return False
return True
def run(self):
# Wait until verack is received
self.wait_for_verack()
test_number = 1
for test_instance in self.test_generator.get_tests():
# We use these variables to keep track of the last block
# and last transaction in the tests, which are used
# if we're not syncing on every block or every tx.
[ block, block_outcome ] = [ None, None ]
[ tx, tx_outcome ] = [ None, None ]
invqueue = []
for b_or_t, outcome in test_instance.blocks_and_transactions:
# Determine if we're dealing with a block or tx
if isinstance(b_or_t, CBlock): # Block test runner
block = b_or_t
block_outcome = outcome
# Add to shared block_store, set as current block
self.block_store.add_block(block)
for c in self.connections:
c.cb.block_request_map[block.sha256] = False
# Either send inv's to each node and sync, or add
# to invqueue for later inv'ing.
if (test_instance.sync_every_block):
[ c.cb.send_inv(block) for c in self.connections ]
self.sync_blocks(block.sha256, 1)
if (not self.check_results(block.sha256, outcome)):
raise AssertionError("Test failed at test %d" % test_number)
else:
invqueue.append(CInv(2, block.sha256))
else: # Tx test runner
assert(isinstance(b_or_t, CTransaction))
tx = b_or_t
tx_outcome = outcome
# Add to shared tx store
self.tx_store.add_transaction(tx)
for c in self.connections:
c.cb.tx_request_map[tx.sha256] = False
# Again, either inv to all nodes or save for later
if (test_instance.sync_every_tx):
[ c.cb.send_inv(tx) for c in self.connections ]
self.sync_transaction(tx.sha256, 1)
if (not self.check_mempool(tx.sha256, outcome)):
raise AssertionError("Test failed at test %d" % test_number)
else:
invqueue.append(CInv(1, tx.sha256))
# Ensure we're not overflowing the inv queue
if len(invqueue) == MAX_INV_SZ:
[ c.sb.send_message(msg_inv(invqueue)) for c in self.connections ]
invqueue = []
# Do final sync if we weren't syncing on every block or every tx.
if (not test_instance.sync_every_block and block is not None):
if len(invqueue) > 0:
[ c.send_message(msg_inv(invqueue)) for c in self.connections ]
invqueue = []
self.sync_blocks(block.sha256,
len(test_instance.blocks_and_transactions))
if (not self.check_results(block.sha256, block_outcome)):
raise AssertionError("Block test failed at test %d" % test_number)
if (not test_instance.sync_every_tx and tx is not None):
if len(invqueue) > 0:
[ c.send_message(msg_inv(invqueue)) for c in self.connections ]
invqueue = []
self.sync_transaction(tx.sha256, len(test_instance.blocks_and_transactions))
if (not self.check_mempool(tx.sha256, tx_outcome)):
raise AssertionError("Mempool test failed at test %d" % test_number)
print "Test %d: PASS" % test_number, [ c.rpc.getblockcount() for c in self.connections ]
test_number += 1
self.block_store.close()
self.tx_store.close()
[ c.disconnect_node() for c in self.connections ]

View File

@ -0,0 +1,115 @@
#!/usr/bin/env python2
#
# Distributed under the MIT/X11 software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
#
from test_framework import ComparisonTestFramework
from util import *
from comptool import TestManager, TestInstance
from mininode import *
from blocktools import *
import logging
import copy
import time
'''
In this test we connect to one node over p2p, and test block requests:
1) Valid blocks should be requested and become chain tip.
2) Invalid block with duplicated transaction should be re-requested.
3) Invalid block with bad coinbase value should be rejected and not
re-requested.
'''
# Use the ComparisonTestFramework with 1 node: only use --testbinary.
class InvalidBlockRequestTest(ComparisonTestFramework):
''' Can either run this test as 1 node with expected answers, or two and compare them.
Change the "outcome" variable from each TestInstance object to only do the comparison. '''
def __init__(self):
self.num_nodes = 1
def run_test(self):
test = TestManager(self, self.options.tmpdir)
test.add_all_connections(self.nodes)
self.tip = None
self.block_time = None
NetworkThread().start() # Start up network handling in another thread
test.run()
def get_tests(self):
if self.tip is None:
self.tip = int ("0x" + self.nodes[0].getbestblockhash() + "L", 0)
self.block_time = int(time.time())+1
'''
Create a new block with an anyone-can-spend coinbase
'''
block = create_block(self.tip, create_coinbase(), self.block_time)
self.block_time += 1
block.solve()
# Save the coinbase for later
self.block1 = block
self.tip = block.sha256
yield TestInstance([[block, True]])
'''
Now we need that block to mature so we can spend the coinbase.
'''
test = TestInstance(sync_every_block=False)
for i in xrange(100):
block = create_block(self.tip, create_coinbase(), self.block_time)
block.solve()
self.tip = block.sha256
self.block_time += 1
test.blocks_and_transactions.append([block, True])
yield test
'''
Now we use merkle-root malleability to generate an invalid block with
same blockheader.
Manufacture a block with 3 transactions (coinbase, spend of prior
coinbase, spend of that spend). Duplicate the 3rd transaction to
leave merkle root and blockheader unchanged but invalidate the block.
'''
block2 = create_block(self.tip, create_coinbase(), self.block_time)
self.block_time += 1
# chr(81) is OP_TRUE
tx1 = create_transaction(self.block1.vtx[0], 0, chr(81), 50*100000000)
tx2 = create_transaction(tx1, 0, chr(81), 50*100000000)
block2.vtx.extend([tx1, tx2])
block2.hashMerkleRoot = block2.calc_merkle_root()
block2.rehash()
block2.solve()
orig_hash = block2.sha256
block2_orig = copy.deepcopy(block2)
# Mutate block 2
block2.vtx.append(tx2)
assert_equal(block2.hashMerkleRoot, block2.calc_merkle_root())
assert_equal(orig_hash, block2.rehash())
assert(block2_orig.vtx != block2.vtx)
self.tip = block2.sha256
yield TestInstance([[block2, False], [block2_orig, True]])
'''
Make sure that a totally screwed up block is not valid.
'''
block3 = create_block(self.tip, create_coinbase(), self.block_time)
self.block_time += 1
block3.vtx[0].vout[0].nValue = 100*100000000 # Too high!
block3.vtx[0].sha256=None
block3.vtx[0].calc_sha256()
block3.hashMerkleRoot = block3.calc_merkle_root()
block3.rehash()
block3.solve()
yield TestInstance([[block3, False]])
if __name__ == '__main__':
InvalidBlockRequestTest().main()

View File

@ -140,3 +140,32 @@ class BitcoinTestFramework(object):
else:
print("Failed")
sys.exit(1)
# Test framework for doing p2p comparison testing, which sets up some bitcoind
# binaries:
# 1 binary: test binary
# 2 binaries: 1 test binary, 1 ref binary
# n>2 binaries: 1 test binary, n-1 ref binaries
class ComparisonTestFramework(BitcoinTestFramework):
# Can override the num_nodes variable to indicate how many nodes to run.
def __init__(self):
self.num_nodes = 2
def add_options(self, parser):
parser.add_option("--testbinary", dest="testbinary", default="bitcoind",
help="bitcoind binary to test")
parser.add_option("--refbinary", dest="refbinary", default="bitcoind",
help="bitcoind binary to use for reference nodes (if any)")
def setup_chain(self):
print "Initializing test directory "+self.options.tmpdir
initialize_chain_clean(self.options.tmpdir, self.num_nodes)
def setup_network(self):
self.nodes = start_nodes(self.num_nodes, self.options.tmpdir,
extra_args=[['-debug', '-whitelist=127.0.0.1']] * self.num_nodes,
binary=[self.options.testbinary] +
[self.options.refbinary]*(self.num_nodes-1))