Merge pull request #7113

086ee67 Switch to a more efficient rolling Bloom filter (Pieter Wuille)
This commit is contained in:
Wladimir J. van der Laan 2015-12-03 13:35:55 +01:00 committed by Alexander Block
parent f1da40c876
commit bf688abcee
3 changed files with 75 additions and 30 deletions

View File

@ -216,30 +216,54 @@ void CBloomFilter::UpdateEmptyFull()
isEmpty = empty; isEmpty = empty;
} }
CRollingBloomFilter::CRollingBloomFilter(unsigned int nElements, double fpRate) : CRollingBloomFilter::CRollingBloomFilter(unsigned int nElements, double fpRate)
b1(nElements * 2, fpRate, 0), b2(nElements * 2, fpRate, 0)
{ {
// Implemented using two bloom filters of 2 * nElements each. double logFpRate = log(fpRate);
// We fill them up, and clear them, staggered, every nElements /* The optimal number of hash functions is log(fpRate) / log(0.5), but
// inserted, so at least one always contains the last nElements * restrict it to the range 1-50. */
// inserted. nHashFuncs = std::max(1, std::min((int)round(logFpRate / log(0.5)), 50));
nInsertions = 0; /* In this rolling bloom filter, we'll store between 2 and 3 generations of nElements / 2 entries. */
nBloomSize = nElements * 2; nEntriesPerGeneration = (nElements + 1) / 2;
uint32_t nMaxElements = nEntriesPerGeneration * 3;
/* The maximum fpRate = pow(1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits), nHashFuncs)
* => pow(fpRate, 1.0 / nHashFuncs) = 1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits)
* => 1.0 - pow(fpRate, 1.0 / nHashFuncs) = exp(-nHashFuncs * nMaxElements / nFilterBits)
* => log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) = -nHashFuncs * nMaxElements / nFilterBits
* => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - pow(fpRate, 1.0 / nHashFuncs))
* => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs))
*/
uint32_t nFilterBits = (uint32_t)ceil(-1.0 * nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs)));
data.clear();
/* We store up to 16 'bits' per data element. */
data.resize((nFilterBits + 15) / 16);
reset(); reset();
} }
/* Similar to CBloomFilter::Hash */
inline unsigned int CRollingBloomFilter::Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const {
return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (data.size() * 16);
}
void CRollingBloomFilter::insert(const std::vector<unsigned char>& vKey) void CRollingBloomFilter::insert(const std::vector<unsigned char>& vKey)
{ {
if (nInsertions == 0) { if (nEntriesThisGeneration == nEntriesPerGeneration) {
b1.clear(); nEntriesThisGeneration = 0;
} else if (nInsertions == nBloomSize / 2) { nGeneration++;
b2.clear(); if (nGeneration == 4) {
nGeneration = 1;
} }
b1.insert(vKey); /* Wipe old entries that used this generation number. */
b2.insert(vKey); for (uint32_t p = 0; p < data.size() * 16; p++) {
if (++nInsertions == nBloomSize) { if (get(p) == nGeneration) {
nInsertions = 0; put(p, 0);
}
}
}
nEntriesThisGeneration++;
for (int n = 0; n < nHashFuncs; n++) {
uint32_t h = Hash(n, vKey);
put(h, nGeneration);
} }
} }
@ -251,10 +275,13 @@ void CRollingBloomFilter::insert(const uint256& hash)
bool CRollingBloomFilter::contains(const std::vector<unsigned char>& vKey) const bool CRollingBloomFilter::contains(const std::vector<unsigned char>& vKey) const
{ {
if (nInsertions < nBloomSize / 2) { for (int n = 0; n < nHashFuncs; n++) {
return b2.contains(vKey); uint32_t h = Hash(n, vKey);
if (get(h) == 0) {
return false;
} }
return b1.contains(vKey); }
return true;
} }
bool CRollingBloomFilter::contains(const uint256& hash) const bool CRollingBloomFilter::contains(const uint256& hash) const
@ -265,8 +292,10 @@ bool CRollingBloomFilter::contains(const uint256& hash) const
void CRollingBloomFilter::reset() void CRollingBloomFilter::reset()
{ {
unsigned int nNewTweak = GetRand(std::numeric_limits<unsigned int>::max()); nTweak = GetRand(std::numeric_limits<unsigned int>::max());
b1.reset(nNewTweak); nEntriesThisGeneration = 0;
b2.reset(nNewTweak); nGeneration = 1;
nInsertions = 0; for (std::vector<uint32_t>::iterator it = data.begin(); it != data.end(); it++) {
*it = 0;
}
} }

View File

@ -110,8 +110,11 @@ public:
* reset() is provided, which also changes nTweak to decrease the impact of * reset() is provided, which also changes nTweak to decrease the impact of
* false-positives. * false-positives.
* *
* contains(item) will always return true if item was one of the last N things * contains(item) will always return true if item was one of the last N to 1.5*N
* insert()'ed ... but may also return true for items that were not inserted. * insert()'ed ... but may also return true for items that were not inserted.
*
* It needs around 1.8 bytes per element per factor 0.1 of false positive rate.
* (More accurately: 3/(log(256)*log(2)) * log(1/fpRate) * nElements bytes)
*/ */
class CRollingBloomFilter class CRollingBloomFilter
{ {
@ -129,10 +132,23 @@ public:
void reset(); void reset();
private: private:
unsigned int nBloomSize; int nEntriesPerGeneration;
unsigned int nInsertions; int nEntriesThisGeneration;
CBloomFilter b1, b2; int nGeneration;
std::vector<uint32_t> data;
unsigned int nTweak;
int nHashFuncs;
unsigned int Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const;
inline int get(uint32_t position) const {
return (data[(position >> 4) % data.size()] >> (2 * (position & 0xF))) & 0x3;
}
inline void put(uint32_t position, uint32_t val) {
uint32_t& cell = data[(position >> 4) % data.size()];
cell = (cell & ~(((uint32_t)3) << (2 * (position & 0xF)))) | (val << (2 * (position & 0xF)));
}
}; };
#endif // BITCOIN_BLOOM_H #endif // BITCOIN_BLOOM_H

View File

@ -88,7 +88,7 @@ namespace {
* million to make it highly unlikely for users to have issues with this * million to make it highly unlikely for users to have issues with this
* filter. * filter.
* *
* Memory used: 1.7MB * Memory used: 1.3MB
*/ */
boost::scoped_ptr<CRollingBloomFilter> recentRejects; boost::scoped_ptr<CRollingBloomFilter> recentRejects;
uint256 hashRecentRejectsChainTip; uint256 hashRecentRejectsChainTip;