Merge #6255: backport: merge bitcoin#24531, #25500, #25814, #25962, #26888, #27264, #27257, #27324, #27374, #27467, #27411, partial bitcoin#25472 (networking backports: part 8)

8320e0ca8e merge bitcoin#27411: Restrict self-advertisements with privacy networks to avoid fingerprinting (Kittywhiskers Van Gogh)
1376289b11 merge bitcoin#27467: skip netgroup diversity follow-up (Kittywhiskers Van Gogh)
a52b3a3bf0 merge bitcoin#27374: skip netgroup diversity of new connections for tor/i2p/cjdns (Kittywhiskers Van Gogh)
ab11e0f998 merge bitcoin#27324: bitcoin#27257 follow-ups (Kittywhiskers Van Gogh)
9023dd25af merge bitcoin#27257: End friendship of CNode, CConnman and ConnmanTestMsg (Kittywhiskers Van Gogh)
3465df2689 merge bitcoin#27264: Improve diversification of new connections (Kittywhiskers Van Gogh)
d3f5b3881b merge bitcoin#26888: simplify the call to vProcessMsg.splice() (Kittywhiskers Van Gogh)
d9e56f3e78 merge bitcoin#25962: Add CNodeOptions and increase constness (Kittywhiskers Van Gogh)
79e67fd96a merge bitcoin#25814: simplify GetLocalAddress() (Kittywhiskers Van Gogh)
6d4945418a partial bitcoin#25472: Increase MS Visual Studio minimum version (Kittywhiskers Van Gogh)
54bb3a438f merge bitcoin#25500: Move inbound eviction logic to its own translation unit (Kittywhiskers Van Gogh)
b50febc0f0 merge bitcoin#24531: Use designated initializers (Kittywhiskers Van Gogh)

Pull request description:

  ## Additional Information

  * Dependent on https://github.com/dashpay/dash/pull/6254
  * When backporting [bitcoin#27411](https://github.com/bitcoin/bitcoin/pull/27411), the `CNetAddr*` variant of `GetLocal()` was not removed (upstream it was replaced by the `CNode&` variant with additional checks that rely on fields in `CNode`) as `CActiveMasternodeManager` relies on `GetLocal()` to detect a valid external address.
    * While it can also rely on other nodes to determine that, removing code that tests against a well-known public address would increase the number of reported failures esp. if the checks are run _before_ the node has a chance to connect to any peers.

  ## Breaking Changes

  None observed.

  ## Checklist:

  - [x] I have performed a self-review of my own code
  - [x] I have commented my code, particularly in hard-to-understand areas **(note: N/A)**
  - [x] I have added or updated relevant unit/integration/functional/e2e tests
  - [x] I have made corresponding changes to the documentation **(note: N/A)**
  - [x] I have assigned this pull request to a milestone _(for repository code-owners and collaborators only)_

ACKs for top commit:
  UdjinM6:
    utACK 8320e0ca8e
  PastaPastaPasta:
    utACK 8320e0ca8e

Tree-SHA512: 1d02bc33c8d62c392960d4dd044edf3de08515a5e8c8794d95cd95e9654da91b20e7290436cf9c79b0ea8dbd42b27dcc61c8eb17e573902574d7b281b8874584
This commit is contained in:
pasta 2024-09-16 11:52:47 -05:00
commit ca4b9eaad1
No known key found for this signature in database
GPG Key ID: 52527BEDABE87984
22 changed files with 803 additions and 503 deletions

View File

@ -271,7 +271,9 @@ BITCOIN_CORE_H = \
node/blockstorage.h \ node/blockstorage.h \
node/coin.h \ node/coin.h \
node/coinstats.h \ node/coinstats.h \
node/connection_types.h \
node/context.h \ node/context.h \
node/eviction.h \
node/psbt.h \ node/psbt.h \
node/transaction.h \ node/transaction.h \
node/ui_interface.h \ node/ui_interface.h \
@ -498,7 +500,9 @@ libbitcoin_server_a_SOURCES = \
node/blockstorage.cpp \ node/blockstorage.cpp \
node/coin.cpp \ node/coin.cpp \
node/coinstats.cpp \ node/coinstats.cpp \
node/connection_types.cpp \
node/context.cpp \ node/context.cpp \
node/eviction.cpp \
node/interfaces.cpp \ node/interfaces.cpp \
node/psbt.cpp \ node/psbt.cpp \
node/transaction.cpp \ node/transaction.cpp \

View File

@ -15,6 +15,42 @@
#include <validation.h> #include <validation.h>
#include <warnings.h> #include <warnings.h>
namespace {
bool GetLocal(CService& addr, const CNetAddr* paddrPeer)
{
if (!fListen)
return false;
int nBestScore = -1;
{
LOCK(g_maplocalhost_mutex);
int nBestReachability = -1;
for (const auto& entry : mapLocalHost)
{
// For privacy reasons, don't advertise our privacy-network address
// to other networks and don't advertise our other-network address
// to privacy networks.
const Network our_net{entry.first.GetNetwork()};
const Network peers_net{paddrPeer->GetNetwork()};
if (our_net != peers_net &&
(our_net == NET_ONION || our_net == NET_I2P ||
peers_net == NET_ONION || peers_net == NET_I2P)) {
continue;
}
int nScore = entry.second.nScore;
int nReachability = entry.first.GetReachabilityFrom(*paddrPeer);
if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore))
{
addr = CService(entry.first, entry.second.nPort);
nBestReachability = nReachability;
nBestScore = nScore;
}
}
}
return nBestScore >= 0;
}
} // anonymous namespace
CActiveMasternodeManager::CActiveMasternodeManager(const CBLSSecretKey& sk, CConnman& connman, const std::unique_ptr<CDeterministicMNManager>& dmnman) : CActiveMasternodeManager::CActiveMasternodeManager(const CBLSSecretKey& sk, CConnman& connman, const std::unique_ptr<CDeterministicMNManager>& dmnman) :
m_info(sk, sk.GetPublicKey()), m_info(sk, sk.GetPublicKey()),
m_connman{connman}, m_connman{connman},
@ -204,8 +240,7 @@ bool CActiveMasternodeManager::GetLocalAddress(CService& addrRet)
auto service = m_info.service; auto service = m_info.service;
m_connman.ForEachNodeContinueIf(CConnman::AllNodes, [&](CNode* pnode) { m_connman.ForEachNodeContinueIf(CConnman::AllNodes, [&](CNode* pnode) {
empty = false; empty = false;
if (pnode->addr.IsIPv4()) if (pnode->addr.IsIPv4()) fFoundLocal = GetLocal(service, *pnode) && IsValidNetAddr(service);
fFoundLocal = GetLocal(service, &pnode->addr) && IsValidNetAddr(service);
return !fFoundLocal; return !fFoundLocal;
}); });
// nothing and no live connections, can't do anything for now // nothing and no live connections, can't do anything for now

View File

@ -17,6 +17,7 @@
#include <compat.h> #include <compat.h>
#include <consensus/consensus.h> #include <consensus/consensus.h>
#include <crypto/sha256.h> #include <crypto/sha256.h>
#include <node/eviction.h>
#include <fs.h> #include <fs.h>
#include <i2p.h> #include <i2p.h>
#include <memusage.h> #include <memusage.h>
@ -185,7 +186,7 @@ uint16_t GetListenPort()
} }
// find 'best' local address for a particular peer // find 'best' local address for a particular peer
bool GetLocal(CService& addr, const CNetAddr *paddrPeer) bool GetLocal(CService& addr, const CNode& peer)
{ {
if (!fListen) if (!fListen)
return false; return false;
@ -196,8 +197,18 @@ bool GetLocal(CService& addr, const CNetAddr *paddrPeer)
LOCK(g_maplocalhost_mutex); LOCK(g_maplocalhost_mutex);
for (const auto& entry : mapLocalHost) for (const auto& entry : mapLocalHost)
{ {
// For privacy reasons, don't advertise our privacy-network address
// to other networks and don't advertise our other-network address
// to privacy networks.
const Network our_net{entry.first.GetNetwork()};
const Network peers_net{peer.ConnectedThroughNetwork()};
if (our_net != peers_net &&
(our_net == NET_ONION || our_net == NET_I2P ||
peers_net == NET_ONION || peers_net == NET_I2P)) {
continue;
}
int nScore = entry.second.nScore; int nScore = entry.second.nScore;
int nReachability = entry.first.GetReachabilityFrom(paddrPeer); int nReachability = entry.first.GetReachabilityFrom(peer.addr);
if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore))
{ {
addr = CService(entry.first, entry.second.nPort); addr = CService(entry.first, entry.second.nPort);
@ -235,14 +246,13 @@ static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
// Otherwise, return the unroutable 0.0.0.0 but filled in with // Otherwise, return the unroutable 0.0.0.0 but filled in with
// the normal parameters, since the IP may be changed to a useful // the normal parameters, since the IP may be changed to a useful
// one by discovery. // one by discovery.
CService GetLocalAddress(const CNetAddr& addrPeer) CService GetLocalAddress(const CNode& peer)
{ {
CService ret{CNetAddr(), GetListenPort()};
CService addr; CService addr;
if (GetLocal(addr, &addrPeer)) { if (GetLocal(addr, peer)) {
ret = CService{addr}; return addr;
} }
return ret; return CService{CNetAddr(), GetListenPort()};
} }
static int GetnScore(const CService& addr) static int GetnScore(const CService& addr)
@ -262,7 +272,7 @@ bool IsPeerAddrLocalGood(CNode *pnode)
std::optional<CService> GetLocalAddrForPeer(CNode& node) std::optional<CService> GetLocalAddrForPeer(CNode& node)
{ {
CService addrLocal{GetLocalAddress(node.addr)}; CService addrLocal{GetLocalAddress(node)};
// If discovery is enabled, sometimes give our peer the address it // If discovery is enabled, sometimes give our peer the address it
// tells us that it sees us as in case it has a better idea of our // tells us that it sees us as in case it has a better idea of our
// address than we do. // address than we do.
@ -617,7 +627,10 @@ CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCo
pszDest ? pszDest : "", pszDest ? pszDest : "",
conn_type, conn_type,
/*inbound_onion=*/false, /*inbound_onion=*/false,
std::move(i2p_transient_session)); CNodeOptions{
.i2p_sam_session = std::move(i2p_transient_session),
.recv_flood_size = nReceiveFloodSize,
});
pnode->AddRef(); pnode->AddRef();
::g_stats_client->inc("peers.connect", 1.0f); ::g_stats_client->inc("peers.connect", 1.0f);
@ -679,26 +692,6 @@ bool CNode::IsBlockRelayOnly() const {
return (ignores_incoming_txs && !HasPermission(NetPermissionFlags::Relay)) || IsBlockOnlyConn(); return (ignores_incoming_txs && !HasPermission(NetPermissionFlags::Relay)) || IsBlockOnlyConn();
} }
std::string ConnectionTypeAsString(ConnectionType conn_type)
{
switch (conn_type) {
case ConnectionType::INBOUND:
return "inbound";
case ConnectionType::MANUAL:
return "manual";
case ConnectionType::FEELER:
return "feeler";
case ConnectionType::OUTBOUND_FULL_RELAY:
return "outbound-full-relay";
case ConnectionType::BLOCK_RELAY:
return "block-relay-only";
case ConnectionType::ADDR_FETCH:
return "addr-fetch";
} // no default case, so the compiler can warn about missing cases
assert(false);
}
CService CNode::GetAddrLocal() const CService CNode::GetAddrLocal() const
{ {
AssertLockNotHeld(m_addr_local_mutex); AssertLockNotHeld(m_addr_local_mutex);
@ -761,7 +754,7 @@ void CNode::CopyStats(CNodeStats& stats)
X(nRecvBytes); X(nRecvBytes);
} }
X(m_legacyWhitelisted); X(m_legacyWhitelisted);
X(m_permissionFlags); X(m_permission_flags);
X(m_last_ping_time); X(m_last_ping_time);
X(m_min_ping_time); X(m_min_ping_time);
@ -1054,7 +1047,7 @@ std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
// Notify transport that bytes have been processed. // Notify transport that bytes have been processed.
node.m_transport->MarkBytesSent(nBytes); node.m_transport->MarkBytesSent(nBytes);
// Update statistics per message type. // Update statistics per message type.
node.mapSendBytesPerMsgType[msg_type] += nBytes; node.AccountForSentBytes(msg_type, nBytes);
nSentSize += nBytes; nSentSize += nBytes;
if ((size_t)nBytes != data.size()) { if ((size_t)nBytes != data.size()) {
// could not send full message; stop sending more // could not send full message; stop sending more
@ -1084,210 +1077,6 @@ std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
return {nSentSize, data_left}; return {nSentSize, data_left};
} }
static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b)
{
return a.m_min_ping_time > b.m_min_ping_time;
}
static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b)
{
return a.m_connected > b.m_connected;
}
static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) {
return a.nKeyedNetGroup < b.nKeyedNetGroup;
}
static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
{
// There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block.
if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time;
if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
return a.m_connected > b.m_connected;
}
static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
{
// There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn.
if (a.m_last_tx_time != b.m_last_tx_time) return a.m_last_tx_time < b.m_last_tx_time;
if (a.m_relay_txs != b.m_relay_txs) return b.m_relay_txs;
if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter;
return a.m_connected > b.m_connected;
}
// Pick out the potential block-relay only peers, and sort them by last block time.
static bool CompareNodeBlockRelayOnlyTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
{
if (a.m_relay_txs != b.m_relay_txs) return a.m_relay_txs;
if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time;
if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
return a.m_connected > b.m_connected;
}
/**
* Sort eviction candidates by network/localhost and connection uptime.
* Candidates near the beginning are more likely to be evicted, and those
* near the end are more likely to be protected, e.g. less likely to be evicted.
* - First, nodes that are not `is_local` and that do not belong to `network`,
* sorted by increasing uptime (from most recently connected to connected longer).
* - Then, nodes that are `is_local` or belong to `network`, sorted by increasing uptime.
*/
struct CompareNodeNetworkTime {
const bool m_is_local;
const Network m_network;
CompareNodeNetworkTime(bool is_local, Network network) : m_is_local(is_local), m_network(network) {}
bool operator()(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b) const
{
if (m_is_local && a.m_is_local != b.m_is_local) return b.m_is_local;
if ((a.m_network == m_network) != (b.m_network == m_network)) return b.m_network == m_network;
return a.m_connected > b.m_connected;
};
};
//! Sort an array by the specified comparator, then erase the last K elements where predicate is true.
template <typename T, typename Comparator>
static void EraseLastKElements(
std::vector<T>& elements, Comparator comparator, size_t k,
std::function<bool(const NodeEvictionCandidate&)> predicate = [](const NodeEvictionCandidate& n) { return true; })
{
std::sort(elements.begin(), elements.end(), comparator);
size_t eraseSize = std::min(k, elements.size());
elements.erase(std::remove_if(elements.end() - eraseSize, elements.end(), predicate), elements.end());
}
void ProtectEvictionCandidatesByRatio(std::vector<NodeEvictionCandidate>& eviction_candidates)
{
// Protect the half of the remaining nodes which have been connected the longest.
// This replicates the non-eviction implicit behavior, and precludes attacks that start later.
// To favorise the diversity of our peer connections, reserve up to half of these protected
// spots for Tor/onion, localhost, I2P, and CJDNS peers, even if they're not longest uptime
// overall. This helps protect these higher-latency peers that tend to be otherwise
// disadvantaged under our eviction criteria.
const size_t initial_size = eviction_candidates.size();
const size_t total_protect_size{initial_size / 2};
// Disadvantaged networks to protect. In the case of equal counts, earlier array members
// have the first opportunity to recover unused slots from the previous iteration.
struct Net { bool is_local; Network id; size_t count; };
std::array<Net, 4> networks{
{{false, NET_CJDNS, 0}, {false, NET_I2P, 0}, {/*localhost=*/true, NET_MAX, 0}, {false, NET_ONION, 0}}};
// Count and store the number of eviction candidates per network.
for (Net& n : networks) {
n.count = std::count_if(eviction_candidates.cbegin(), eviction_candidates.cend(),
[&n](const NodeEvictionCandidate& c) {
return n.is_local ? c.m_is_local : c.m_network == n.id;
});
}
// Sort `networks` by ascending candidate count, to give networks having fewer candidates
// the first opportunity to recover unused protected slots from the previous iteration.
std::stable_sort(networks.begin(), networks.end(), [](Net a, Net b) { return a.count < b.count; });
// Protect up to 25% of the eviction candidates by disadvantaged network.
const size_t max_protect_by_network{total_protect_size / 2};
size_t num_protected{0};
while (num_protected < max_protect_by_network) {
// Count the number of disadvantaged networks from which we have peers to protect.
auto num_networks = std::count_if(networks.begin(), networks.end(), [](const Net& n) { return n.count; });
if (num_networks == 0) {
break;
}
const size_t disadvantaged_to_protect{max_protect_by_network - num_protected};
const size_t protect_per_network{std::max(disadvantaged_to_protect / num_networks, static_cast<size_t>(1))};
// Early exit flag if there are no remaining candidates by disadvantaged network.
bool protected_at_least_one{false};
for (Net& n : networks) {
if (n.count == 0) continue;
const size_t before = eviction_candidates.size();
EraseLastKElements(eviction_candidates, CompareNodeNetworkTime(n.is_local, n.id),
protect_per_network, [&n](const NodeEvictionCandidate& c) {
return n.is_local ? c.m_is_local : c.m_network == n.id;
});
const size_t after = eviction_candidates.size();
if (before > after) {
protected_at_least_one = true;
const size_t delta{before - after};
num_protected += delta;
if (num_protected >= max_protect_by_network) {
break;
}
n.count -= delta;
}
}
if (!protected_at_least_one) {
break;
}
}
// Calculate how many we removed, and update our total number of peers that
// we want to protect based on uptime accordingly.
assert(num_protected == initial_size - eviction_candidates.size());
const size_t remaining_to_protect{total_protect_size - num_protected};
EraseLastKElements(eviction_candidates, ReverseCompareNodeTimeConnected, remaining_to_protect);
}
[[nodiscard]] std::optional<NodeId> SelectNodeToEvict(std::vector<NodeEvictionCandidate>&& vEvictionCandidates)
{
// Protect connections with certain characteristics
// Deterministically select 4 peers to protect by netgroup.
// An attacker cannot predict which netgroups will be protected
EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4);
// Protect the 8 nodes with the lowest minimum ping time.
// An attacker cannot manipulate this metric without physically moving nodes closer to the target.
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8);
// Protect 4 nodes that most recently sent us novel transactions accepted into our mempool.
// An attacker cannot manipulate this metric without performing useful work.
EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4);
// Protect up to 8 non-tx-relay peers that have sent us novel blocks.
EraseLastKElements(vEvictionCandidates, CompareNodeBlockRelayOnlyTime, 8,
[](const NodeEvictionCandidate& n) { return !n.m_relay_txs && n.fRelevantServices; });
// Protect 4 nodes that most recently sent us novel blocks.
// An attacker cannot manipulate this metric without performing useful work.
EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4);
// Protect some of the remaining eviction candidates by ratios of desirable
// or disadvantaged characteristics.
ProtectEvictionCandidatesByRatio(vEvictionCandidates);
if (vEvictionCandidates.empty()) return std::nullopt;
// If any remaining peers are preferred for eviction consider only them.
// This happens after the other preferences since if a peer is really the best by other criteria (esp relaying blocks)
// then we probably don't want to evict it no matter what.
if (std::any_of(vEvictionCandidates.begin(),vEvictionCandidates.end(),[](NodeEvictionCandidate const &n){return n.prefer_evict;})) {
vEvictionCandidates.erase(std::remove_if(vEvictionCandidates.begin(),vEvictionCandidates.end(),
[](NodeEvictionCandidate const &n){return !n.prefer_evict;}),vEvictionCandidates.end());
}
// Identify the network group with the most connections and youngest member.
// (vEvictionCandidates is already sorted by reverse connect time)
uint64_t naMostConnections;
unsigned int nMostConnections = 0;
std::chrono::seconds nMostConnectionsTime{0};
std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes;
for (const NodeEvictionCandidate &node : vEvictionCandidates) {
std::vector<NodeEvictionCandidate> &group = mapNetGroupNodes[node.nKeyedNetGroup];
group.push_back(node);
const auto grouptime{group[0].m_connected};
if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) {
nMostConnections = group.size();
nMostConnectionsTime = grouptime;
naMostConnections = node.nKeyedNetGroup;
}
}
// Reduce to the network group with the most connections
vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
// Disconnect from the network group with the most connections
return vEvictionCandidates.front().id;
}
/** Try to find a connection to evict when the node is full. /** Try to find a connection to evict when the node is full.
* Extreme care must be taken to avoid opening the node to attacker * Extreme care must be taken to avoid opening the node to attacker
* triggered network partitioning. * triggered network partitioning.
@ -1303,10 +1092,6 @@ bool CConnman::AttemptToEvictConnection()
LOCK(m_nodes_mutex); LOCK(m_nodes_mutex);
for (const CNode* node : m_nodes) { for (const CNode* node : m_nodes) {
if (node->HasPermission(NetPermissionFlags::NoBan))
continue;
if (!node->IsInboundConn())
continue;
if (node->fDisconnect) if (node->fDisconnect)
continue; continue;
@ -1329,12 +1114,22 @@ bool CConnman::AttemptToEvictConnection()
} }
} }
NodeEvictionCandidate candidate = {node->GetId(), node->m_connected, node->m_min_ping_time, NodeEvictionCandidate candidate{
node->m_last_block_time, node->m_last_tx_time, .id = node->GetId(),
node->m_has_all_wanted_services, .m_connected = node->m_connected,
node->m_relays_txs.load(), node->m_bloom_filter_loaded.load(), .m_min_ping_time = node->m_min_ping_time,
node->nKeyedNetGroup, node->m_prefer_evict, node->addr.IsLocal(), .m_last_block_time = node->m_last_block_time,
node->ConnectedThroughNetwork()}; .m_last_tx_time = node->m_last_tx_time,
.fRelevantServices = node->m_has_all_wanted_services,
.m_relay_txs = node->m_relays_txs.load(),
.fBloomFilter = node->m_bloom_filter_loaded.load(),
.nKeyedNetGroup = node->nKeyedNetGroup,
.prefer_evict = node->m_prefer_evict,
.m_is_local = node->addr.IsLocal(),
.m_network = node->ConnectedThroughNetwork(),
.m_noban = node->HasPermission(NetPermissionFlags::NoBan),
.m_conn_type = node->m_conn_type,
};
vEvictionCandidates.push_back(candidate); vEvictionCandidates.push_back(candidate);
} }
} }
@ -1375,14 +1170,14 @@ void CConnman::AcceptConnection(const ListenSocket& hListenSocket, CMasternodeSy
const CAddress addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock)), NODE_NONE}; const CAddress addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock)), NODE_NONE};
NetPermissionFlags permissionFlags = NetPermissionFlags::None; NetPermissionFlags permission_flags = NetPermissionFlags::None;
hListenSocket.AddSocketPermissionFlags(permissionFlags); hListenSocket.AddSocketPermissionFlags(permission_flags);
CreateNodeFromAcceptedSocket(std::move(sock), permissionFlags, addr_bind, addr, mn_sync); CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr, mn_sync);
} }
void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock, void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
NetPermissionFlags permissionFlags, NetPermissionFlags permission_flags,
const CAddress& addr_bind, const CAddress& addr_bind,
const CAddress& addr, const CAddress& addr,
CMasternodeSync& mn_sync) CMasternodeSync& mn_sync)
@ -1391,14 +1186,14 @@ void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
int nVerifiedInboundMasternodes = 0; int nVerifiedInboundMasternodes = 0;
int nMaxInbound = nMaxConnections - m_max_outbound; int nMaxInbound = nMaxConnections - m_max_outbound;
AddWhitelistPermissionFlags(permissionFlags, addr); AddWhitelistPermissionFlags(permission_flags, addr);
bool legacyWhitelisted = false; bool legacyWhitelisted = false;
if (NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::Implicit)) { if (NetPermissions::HasFlag(permission_flags, NetPermissionFlags::Implicit)) {
NetPermissions::ClearFlag(permissionFlags, NetPermissionFlags::Implicit); NetPermissions::ClearFlag(permission_flags, NetPermissionFlags::Implicit);
if (gArgs.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) NetPermissions::AddFlag(permissionFlags, NetPermissionFlags::ForceRelay); if (gArgs.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) NetPermissions::AddFlag(permission_flags, NetPermissionFlags::ForceRelay);
if (gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) NetPermissions::AddFlag(permissionFlags, NetPermissionFlags::Relay); if (gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) NetPermissions::AddFlag(permission_flags, NetPermissionFlags::Relay);
NetPermissions::AddFlag(permissionFlags, NetPermissionFlags::Mempool); NetPermissions::AddFlag(permission_flags, NetPermissionFlags::Mempool);
NetPermissions::AddFlag(permissionFlags, NetPermissionFlags::NoBan); NetPermissions::AddFlag(permission_flags, NetPermissionFlags::NoBan);
legacyWhitelisted = true; legacyWhitelisted = true;
} }
@ -1443,7 +1238,7 @@ void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
// Don't accept connections from banned peers. // Don't accept connections from banned peers.
bool banned = m_banman && m_banman->IsBanned(addr); bool banned = m_banman && m_banman->IsBanned(addr);
if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::NoBan) && banned) if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
{ {
LogPrint(BCLog::NET, "%s (banned)\n", strDropped); LogPrint(BCLog::NET, "%s (banned)\n", strDropped);
return; return;
@ -1451,7 +1246,7 @@ void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
// Only accept connections from discouraged peers if our inbound slots aren't (almost) full. // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
bool discouraged = m_banman && m_banman->IsDiscouraged(addr); bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::NoBan) && nInbound + 1 >= nMaxInbound && discouraged) if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= nMaxInbound && discouraged)
{ {
LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort()); LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
return; return;
@ -1482,7 +1277,7 @@ void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize(); uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
ServiceFlags nodeServices = nLocalServices; ServiceFlags nodeServices = nLocalServices;
if (NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::BloomFilter)) { if (NetPermissions::HasFlag(permission_flags, NetPermissionFlags::BloomFilter)) {
nodeServices = static_cast<ServiceFlags>(nodeServices | NODE_BLOOM); nodeServices = static_cast<ServiceFlags>(nodeServices | NODE_BLOOM);
} }
@ -1495,12 +1290,15 @@ void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
addr_bind, addr_bind,
/*addrNameIn=*/"", /*addrNameIn=*/"",
ConnectionType::INBOUND, ConnectionType::INBOUND,
inbound_onion); inbound_onion,
CNodeOptions{
.permission_flags = permission_flags,
.prefer_evict = discouraged,
.recv_flood_size = nReceiveFloodSize,
});
pnode->AddRef(); pnode->AddRef();
pnode->m_permissionFlags = permissionFlags;
// If this flag is present, the user probably expect that RPC and QT report it as whitelisted (backward compatibility) // If this flag is present, the user probably expect that RPC and QT report it as whitelisted (backward compatibility)
pnode->m_legacyWhitelisted = legacyWhitelisted; pnode->m_legacyWhitelisted = legacyWhitelisted;
pnode->m_prefer_evict = discouraged;
m_msgproc->InitializeNode(*pnode, nodeServices); m_msgproc->InitializeNode(*pnode, nodeServices);
{ {
@ -1710,16 +1508,8 @@ void CConnman::CalculateNumConnectionsChangedStats()
mapSentBytesMsgStats[NET_MESSAGE_TYPE_OTHER] = 0; mapSentBytesMsgStats[NET_MESSAGE_TYPE_OTHER] = 0;
const NodesSnapshot snap{*this, /* filter = */ CConnman::FullyConnectedOnly}; const NodesSnapshot snap{*this, /* filter = */ CConnman::FullyConnectedOnly};
for (auto pnode : snap.Nodes()) { for (auto pnode : snap.Nodes()) {
{ WITH_LOCK(pnode->cs_vRecv, pnode->UpdateRecvMapWithStats(mapRecvBytesMsgStats));
LOCK(pnode->cs_vRecv); WITH_LOCK(pnode->cs_vSend, pnode->UpdateSentMapWithStats(mapSentBytesMsgStats));
for (const mapMsgTypeSize::value_type &i : pnode->mapRecvBytesPerMsgType)
mapRecvBytesMsgStats[i.first] += i.second;
}
{
LOCK(pnode->cs_vSend);
for (const mapMsgTypeSize::value_type &i : pnode->mapSendBytesPerMsgType)
mapSentBytesMsgStats[i.first] += i.second;
}
if (pnode->m_bloom_filter_loaded.load()) { if (pnode->m_bloom_filter_loaded.load()) {
spvNodes++; spvNodes++;
} else { } else {
@ -2312,19 +2102,7 @@ size_t CConnman::SocketRecvData(CNode *pnode)
} }
RecordBytesRecv(nBytes); RecordBytesRecv(nBytes);
if (notify) { if (notify) {
size_t nSizeAdded = 0; pnode->MarkReceivedMsgsForProcessing();
auto it(pnode->vRecvMsg.begin());
for (; it != pnode->vRecvMsg.end(); ++it) {
// vRecvMsg contains only completed CNetMessage
// the single possible partially deserialized message are held by TransportDeserializer
nSizeAdded += it->m_raw_message_size;
}
{
LOCK(pnode->cs_vProcessMsg);
pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it);
pnode->nProcessQueueSize += nSizeAdded;
pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize;
}
WakeMessageHandler(); WakeMessageHandler();
} }
} }
@ -2686,12 +2464,14 @@ void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, CDe
// //
CAddress addrConnect; CAddress addrConnect;
// Only connect out to one peer per network group (/16 for IPv4). // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
// This is only done for mainnet and testnet // This is only done for mainnet and testnet
int nOutboundFullRelay = 0; int nOutboundFullRelay = 0;
int nOutboundBlockRelay = 0; int nOutboundBlockRelay = 0;
int nOutboundOnionRelay = 0; int nOutboundOnionRelay = 0;
std::set<std::vector<unsigned char> > setConnected; int outbound_privacy_network_peers = 0;
std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
if (!Params().AllowMultipleAddressesFromGroup()) { if (!Params().AllowMultipleAddressesFromGroup()) {
LOCK(m_nodes_mutex); LOCK(m_nodes_mutex);
for (const CNode* pnode : m_nodes) { for (const CNode* pnode : m_nodes) {
@ -2699,20 +2479,33 @@ void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, CDe
if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++; if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
if (pnode->IsFullOutboundConn() && pnode->ConnectedThroughNetwork() == Network::NET_ONION) nOutboundOnionRelay++; if (pnode->IsFullOutboundConn() && pnode->ConnectedThroughNetwork() == Network::NET_ONION) nOutboundOnionRelay++;
// Netgroups for inbound and manual peers are not excluded because our goal here // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
// is to not use multiple of our limited outbound slots on a single netgroup
// but inbound and manual peers do not use our outbound slots. Inbound peers
// also have the added issue that they could be attacker controlled and used
// to prevent us from connecting to particular hosts if we used them here.
switch (pnode->m_conn_type) { switch (pnode->m_conn_type) {
// We currently don't take inbound connections into account. Since they are
// free to make, an attacker could make them to prevent us from connecting to
// certain peers.
case ConnectionType::INBOUND: case ConnectionType::INBOUND:
case ConnectionType::MANUAL: // Short-lived outbound connections should not affect how we select outbound
break; // peers from addrman.
case ConnectionType::OUTBOUND_FULL_RELAY:
case ConnectionType::BLOCK_RELAY:
case ConnectionType::ADDR_FETCH: case ConnectionType::ADDR_FETCH:
case ConnectionType::FEELER: case ConnectionType::FEELER:
setConnected.insert(m_netgroupman.GetGroup(pnode->addr)); break;
case ConnectionType::MANUAL:
case ConnectionType::OUTBOUND_FULL_RELAY:
case ConnectionType::BLOCK_RELAY:
const CAddress address{pnode->addr};
if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
// Since our addrman-groups for these networks are
// random, without relation to the route we
// take to connect to these peers or to the
// difficulty in obtaining addresses with diverse
// groups, we don't worry about diversity with
// respect to our addrman groups when connecting to
// these networks.
++outbound_privacy_network_peers;
} else {
outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
}
} // no default case, so the compiler can warn about missing cases } // no default case, so the compiler can warn about missing cases
} }
} }
@ -2802,7 +2595,7 @@ void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, CDe
m_anchors.pop_back(); m_anchors.pop_back();
if (!addr.IsValid() || IsLocal(addr) || !IsReachable(addr) || if (!addr.IsValid() || IsLocal(addr) || !IsReachable(addr) ||
!HasAllDesirableServiceFlags(addr.nServices) || !HasAllDesirableServiceFlags(addr.nServices) ||
setConnected.count(m_netgroupman.GetGroup(addr))) continue; outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
addrConnect = addr; addrConnect = addr;
LogPrint(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort()); LogPrint(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
break; break;
@ -2845,13 +2638,13 @@ void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, CDe
auto dmn = mnList.GetMNByService(addr); auto dmn = mnList.GetMNByService(addr);
bool isMasternode = dmn != nullptr; bool isMasternode = dmn != nullptr;
// Require outbound connections, other than feelers, to be to distinct network groups // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
if (!fFeeler && setConnected.count(m_netgroupman.GetGroup(addr))) { if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
break; break;
} }
// if we selected an invalid address, restart // if we selected an invalid address, restart
if (!addr.IsValid() || setConnected.count(m_netgroupman.GetGroup(addr))) if (!addr.IsValid() || outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr)))
break; break;
// don't try to connect to masternodes that we already have a connection to (most likely inbound) // don't try to connect to masternodes that we already have a connection to (most likely inbound)
@ -2906,8 +2699,12 @@ void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, CDe
LogPrint(BCLog::NET, "Making feeler connection\n"); LogPrint(BCLog::NET, "Making feeler connection\n");
} }
} }
// Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, nullptr, conn_type); // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
// Don't record addrman failure attempts when node is offline. This can be identified since all local
// network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(nMaxConnections - 1, 2)};
OpenNetworkConnection(addrConnect, count_failures, &grant, /*strDest=*/nullptr, conn_type);
} }
} }
} }
@ -4250,8 +4047,6 @@ ServiceFlags CConnman::GetLocalServices() const
return nLocalServices; return nLocalServices;
} }
unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; }
CNode::CNode(NodeId idIn, CNode::CNode(NodeId idIn,
std::shared_ptr<Sock> sock, std::shared_ptr<Sock> sock,
const CAddress& addrIn, const CAddress& addrIn,
@ -4261,19 +4056,22 @@ CNode::CNode(NodeId idIn,
const std::string& addrNameIn, const std::string& addrNameIn,
ConnectionType conn_type_in, ConnectionType conn_type_in,
bool inbound_onion, bool inbound_onion,
std::unique_ptr<i2p::sam::Session>&& i2p_sam_session) CNodeOptions&& node_opts)
: m_transport{std::make_unique<V1Transport>(idIn, SER_NETWORK, INIT_PROTO_VERSION)}, : m_transport{std::make_unique<V1Transport>(idIn, SER_NETWORK, INIT_PROTO_VERSION)},
m_permission_flags{node_opts.permission_flags},
m_sock{sock}, m_sock{sock},
m_connected{GetTime<std::chrono::seconds>()}, m_connected{GetTime<std::chrono::seconds>()},
addr{addrIn}, addr{addrIn},
addrBind{addrBindIn}, addrBind{addrBindIn},
m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn}, m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
m_inbound_onion{inbound_onion}, m_inbound_onion{inbound_onion},
m_prefer_evict{node_opts.prefer_evict},
nKeyedNetGroup{nKeyedNetGroupIn}, nKeyedNetGroup{nKeyedNetGroupIn},
m_conn_type{conn_type_in},
id{idIn}, id{idIn},
nLocalHostNonce{nLocalHostNonceIn}, nLocalHostNonce{nLocalHostNonceIn},
m_conn_type{conn_type_in}, m_recv_flood_size{node_opts.recv_flood_size},
m_i2p_sam_session{std::move(i2p_sam_session)} m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
{ {
if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND); if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
@ -4288,6 +4086,37 @@ CNode::CNode(NodeId idIn,
} }
} }
void CNode::MarkReceivedMsgsForProcessing()
{
AssertLockNotHeld(m_msg_process_queue_mutex);
size_t nSizeAdded = 0;
for (const auto& msg : vRecvMsg) {
// vRecvMsg contains only completed CNetMessage
// the single possible partially deserialized message are held by TransportDeserializer
nSizeAdded += msg.m_raw_message_size;
}
LOCK(m_msg_process_queue_mutex);
m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
m_msg_process_queue_size += nSizeAdded;
fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
}
std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
{
LOCK(m_msg_process_queue_mutex);
if (m_msg_process_queue.empty()) return std::nullopt;
std::list<CNetMessage> msgs;
// Just take one message
msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
m_msg_process_queue_size -= msgs.front().m_raw_message_size;
fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
}
bool CConnman::NodeFullyConnected(const CNode* pnode) bool CConnman::NodeFullyConnected(const CNode* pnode)
{ {
return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect; return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;

216
src/net.h
View File

@ -19,6 +19,7 @@
#include <netaddress.h> #include <netaddress.h>
#include <netbase.h> #include <netbase.h>
#include <netgroup.h> #include <netgroup.h>
#include <node/connection_types.h>
#include <policy/feerate.h> #include <policy/feerate.h>
#include <protocol.h> #include <protocol.h>
#include <random.h> #include <random.h>
@ -158,78 +159,6 @@ struct CSerializedNetMsg {
size_t GetMemoryUsage() const noexcept; size_t GetMemoryUsage() const noexcept;
}; };
/** Different types of connections to a peer. This enum encapsulates the
* information we have available at the time of opening or accepting the
* connection. Aside from INBOUND, all types are initiated by us.
*
* If adding or removing types, please update CONNECTION_TYPE_DOC in
* src/rpc/net.cpp and src/qt/rpcconsole.cpp, as well as the descriptions in
* src/qt/guiutil.cpp and src/bitcoin-cli.cpp::NetinfoRequestHandler. */
enum class ConnectionType {
/**
* Inbound connections are those initiated by a peer. This is the only
* property we know at the time of connection, until P2P messages are
* exchanged.
*/
INBOUND,
/**
* These are the default connections that we use to connect with the
* network. There is no restriction on what is relayed; by default we relay
* blocks, addresses & transactions. We automatically attempt to open
* MAX_OUTBOUND_FULL_RELAY_CONNECTIONS using addresses from our AddrMan.
*/
OUTBOUND_FULL_RELAY,
/**
* We open manual connections to addresses that users explicitly requested
* via the addnode RPC or the -addnode/-connect configuration options. Even if a
* manual connection is misbehaving, we do not automatically disconnect or
* add it to our discouragement filter.
*/
MANUAL,
/**
* Feeler connections are short-lived connections made to check that a node
* is alive. They can be useful for:
* - test-before-evict: if one of the peers is considered for eviction from
* our AddrMan because another peer is mapped to the same slot in the tried table,
* evict only if this longer-known peer is offline.
* - move node addresses from New to Tried table, so that we have more
* connectable addresses in our AddrMan.
* Note that in the literature ("Eclipse Attacks on Bitcoins Peer-to-Peer Network")
* only the latter feature is referred to as "feeler connections",
* although in our codebase feeler connections encompass test-before-evict as well.
* We make these connections approximately every FEELER_INTERVAL:
* first we resolve previously found collisions if they exist (test-before-evict),
* otherwise we connect to a node from the new table.
*/
FEELER,
/**
* We use block-relay-only connections to help prevent against partition
* attacks. By not relaying transactions or addresses, these connections
* are harder to detect by a third party, thus helping obfuscate the
* network topology. We automatically attempt to open
* MAX_BLOCK_RELAY_ONLY_ANCHORS using addresses from our anchors.dat. Then
* addresses from our AddrMan if MAX_BLOCK_RELAY_ONLY_CONNECTIONS
* isn't reached yet.
*/
BLOCK_RELAY,
/**
* AddrFetch connections are short lived connections used to solicit
* addresses from peers. These are initiated to addresses submitted via the
* -seednode command line argument, or under certain conditions when the
* AddrMan is empty.
*/
ADDR_FETCH,
};
/** Convert ConnectionType enum to a string value */
std::string ConnectionTypeAsString(ConnectionType conn_type);
/** /**
* Look up IP addresses from all interfaces on the machine and add them to the * Look up IP addresses from all interfaces on the machine and add them to the
* list of local addresses to self-advertise. * list of local addresses to self-advertise.
@ -270,8 +199,8 @@ bool AddLocal(const CNetAddr& addr, int nScore = LOCAL_NONE);
void RemoveLocal(const CService& addr); void RemoveLocal(const CService& addr);
bool SeenLocal(const CService& addr); bool SeenLocal(const CService& addr);
bool IsLocal(const CService& addr); bool IsLocal(const CService& addr);
bool GetLocal(CService &addr, const CNetAddr *paddrPeer = nullptr); bool GetLocal(CService& addr, const CNode& peer);
CService GetLocalAddress(const CNetAddr& addrPeer); CService GetLocalAddress(const CNode& peer);
extern bool fDiscover; extern bool fDiscover;
@ -313,7 +242,7 @@ public:
mapMsgTypeSize mapSendBytesPerMsgType; mapMsgTypeSize mapSendBytesPerMsgType;
uint64_t nRecvBytes; uint64_t nRecvBytes;
mapMsgTypeSize mapRecvBytesPerMsgType; mapMsgTypeSize mapRecvBytesPerMsgType;
NetPermissionFlags m_permissionFlags; NetPermissionFlags m_permission_flags;
bool m_legacyWhitelisted; bool m_legacyWhitelisted;
std::chrono::microseconds m_last_ping_time; std::chrono::microseconds m_last_ping_time;
std::chrono::microseconds m_min_ping_time; std::chrono::microseconds m_min_ping_time;
@ -348,6 +277,14 @@ public:
std::string m_type; std::string m_type;
CNetMessage(CDataStream&& recv_in) : m_recv(std::move(recv_in)) {} CNetMessage(CDataStream&& recv_in) : m_recv(std::move(recv_in)) {}
// Only one CNetMessage object will exist for the same message on either
// the receive or processing queue. For performance reasons we therefore
// delete the copy constructor and assignment operator to avoid the
// possibility of copying CNetMessage objects.
CNetMessage(CNetMessage&&) = default;
CNetMessage(const CNetMessage&) = delete;
CNetMessage& operator=(CNetMessage&&) = default;
CNetMessage& operator=(const CNetMessage&) = delete;
void SetVersion(int nVersionIn) void SetVersion(int nVersionIn)
{ {
@ -520,18 +457,23 @@ public:
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex); size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
}; };
struct CNodeOptions
{
NetPermissionFlags permission_flags = NetPermissionFlags::None;
std::unique_ptr<i2p::sam::Session> i2p_sam_session = nullptr;
bool prefer_evict = false;
size_t recv_flood_size{DEFAULT_MAXRECEIVEBUFFER * 1000};
};
/** Information about a peer */ /** Information about a peer */
class CNode class CNode
{ {
friend class CConnman;
friend struct ConnmanTestMsg;
public: public:
/** Transport serializer/deserializer. The receive side functions are only called under cs_vRecv, while /** Transport serializer/deserializer. The receive side functions are only called under cs_vRecv, while
* the sending side functions are only called under cs_vSend. */ * the sending side functions are only called under cs_vSend. */
const std::unique_ptr<Transport> m_transport; const std::unique_ptr<Transport> m_transport;
NetPermissionFlags m_permissionFlags{NetPermissionFlags::None}; // treated as const outside of fuzz tester const NetPermissionFlags m_permission_flags;
/** /**
* Socket used for communication with the node. * Socket used for communication with the node.
@ -554,10 +496,6 @@ public:
Mutex m_sock_mutex; Mutex m_sock_mutex;
Mutex cs_vRecv; Mutex cs_vRecv;
RecursiveMutex cs_vProcessMsg;
std::list<CNetMessage> vProcessMsg GUARDED_BY(cs_vProcessMsg);
size_t nProcessQueueSize GUARDED_BY(cs_vProcessMsg){0};
uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0}; uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0};
std::atomic<std::chrono::seconds> m_last_send{0s}; std::atomic<std::chrono::seconds> m_last_send{0s};
@ -583,9 +521,9 @@ public:
* from the wire. This cleaned string can safely be logged or displayed. * from the wire. This cleaned string can safely be logged or displayed.
*/ */
std::string cleanSubVer GUARDED_BY(m_subver_mutex){}; std::string cleanSubVer GUARDED_BY(m_subver_mutex){};
bool m_prefer_evict{false}; // This peer is preferred for eviction. (treated as const) const bool m_prefer_evict{false}; // This peer is preferred for eviction.
bool HasPermission(NetPermissionFlags permission) const { bool HasPermission(NetPermissionFlags permission) const {
return NetPermissions::HasFlag(m_permissionFlags, permission); return NetPermissions::HasFlag(m_permission_flags, permission);
} }
// This boolean is unusued in actual processing, only present for backward compatibility at RPC/QT level // This boolean is unusued in actual processing, only present for backward compatibility at RPC/QT level
bool m_legacyWhitelisted{false}; bool m_legacyWhitelisted{false};
@ -617,6 +555,45 @@ public:
std::atomic_bool fHasRecvData{false}; std::atomic_bool fHasRecvData{false};
std::atomic_bool fCanSendData{false}; std::atomic_bool fCanSendData{false};
const ConnectionType m_conn_type;
/** Move all messages from the received queue to the processing queue. */
void MarkReceivedMsgsForProcessing()
EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex);
/** Poll the next message from the processing queue of this connection.
*
* Returns std::nullopt if the processing queue is empty, or a pair
* consisting of the message and a bool that indicates if the processing
* queue has more entries. */
std::optional<std::pair<CNetMessage, bool>> PollMessage()
EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex);
/** Account for the total size of a sent message in the per msg type connection stats. */
void AccountForSentBytes(const std::string& msg_type, size_t sent_bytes)
EXCLUSIVE_LOCKS_REQUIRED(cs_vSend)
{
mapSendBytesPerMsgType[msg_type] += sent_bytes;
}
/** Update a supplied map with bytes sent for each msg type for this node */
void UpdateSentMapWithStats(mapMsgTypeSize& map_sentbytes_msg)
EXCLUSIVE_LOCKS_REQUIRED(cs_vSend)
{
for (auto& [msg_type, bytes] : mapSendBytesPerMsgType) {
map_sentbytes_msg[msg_type] += bytes;
}
}
/** Update a supplied map with bytes recv for each msg type for this node */
void UpdateRecvMapWithStats(mapMsgTypeSize& map_recvbytes_msg)
EXCLUSIVE_LOCKS_REQUIRED(cs_vRecv)
{
for (auto& [msg_type, bytes] : mapRecvBytesPerMsgType) {
map_recvbytes_msg[msg_type] += bytes;
}
}
/** /**
* Get network the peer connected through. * Get network the peer connected through.
* *
@ -628,6 +605,7 @@ public:
* @return network the peer connected through. * @return network the peer connected through.
*/ */
Network ConnectedThroughNetwork() const; Network ConnectedThroughNetwork() const;
bool IsOutboundOrBlockRelayConn() const { bool IsOutboundOrBlockRelayConn() const {
switch (m_conn_type) { switch (m_conn_type) {
case ConnectionType::OUTBOUND_FULL_RELAY: case ConnectionType::OUTBOUND_FULL_RELAY:
@ -740,7 +718,7 @@ public:
const std::string &addrNameIn, const std::string &addrNameIn,
ConnectionType conn_type_in, ConnectionType conn_type_in,
bool inbound_onion, bool inbound_onion,
std::unique_ptr<i2p::sam::Session>&& i2p_sam_session = nullptr); CNodeOptions&& node_opts = {});
CNode(const CNode&) = delete; CNode(const CNode&) = delete;
CNode& operator=(const CNode&) = delete; CNode& operator=(const CNode&) = delete;
@ -853,10 +831,14 @@ public:
private: private:
const NodeId id; const NodeId id;
const uint64_t nLocalHostNonce; const uint64_t nLocalHostNonce;
const ConnectionType m_conn_type;
std::atomic<int> m_greatest_common_version{INIT_PROTO_VERSION}; std::atomic<int> m_greatest_common_version{INIT_PROTO_VERSION};
std::list<CNetMessage> vRecvMsg; // Used only by SocketHandler thread const size_t m_recv_flood_size;
std::list<CNetMessage> vRecvMsg; // Used only by SocketHandler thread
Mutex m_msg_process_queue_mutex;
std::list<CNetMessage> m_msg_process_queue GUARDED_BY(m_msg_process_queue_mutex);
size_t m_msg_process_queue_size GUARDED_BY(m_msg_process_queue_mutex){0};
// Our address, as reported by the peer // Our address, as reported by the peer
CService addrLocal GUARDED_BY(m_addr_local_mutex); CService addrLocal GUARDED_BY(m_addr_local_mutex);
@ -1281,8 +1263,6 @@ public:
/** Get a unique deterministic randomizer. */ /** Get a unique deterministic randomizer. */
CSipHasher GetDeterministicRandomizer(uint64_t id) const; CSipHasher GetDeterministicRandomizer(uint64_t id) const;
unsigned int GetReceiveFloodSize() const;
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc); void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc);
/** Return true if we should disconnect the peer for failing an inactivity check. */ /** Return true if we should disconnect the peer for failing an inactivity check. */
@ -1346,12 +1326,12 @@ private:
* Create a `CNode` object from a socket that has just been accepted and add the node to * Create a `CNode` object from a socket that has just been accepted and add the node to
* the `m_nodes` member. * the `m_nodes` member.
* @param[in] sock Connected socket to communicate with the peer. * @param[in] sock Connected socket to communicate with the peer.
* @param[in] permissionFlags The peer's permissions. * @param[in] permission_flags The peer's permissions.
* @param[in] addr_bind The address and port at our side of the connection. * @param[in] addr_bind The address and port at our side of the connection.
* @param[in] addr The address and port at the peer's side of the connection. * @param[in] addr The address and port at the peer's side of the connection.
*/ */
void CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock, void CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
NetPermissionFlags permissionFlags, NetPermissionFlags permission_flags,
const CAddress& addr_bind, const CAddress& addr_bind,
const CAddress& addr, const CAddress& addr,
CMasternodeSync& mn_sync) EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc); CMasternodeSync& mn_sync) EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc);
@ -1711,62 +1691,10 @@ extern std::function<void(const CAddress& addr,
bool is_incoming)> bool is_incoming)>
CaptureMessage; CaptureMessage;
struct NodeEvictionCandidate
{
NodeId id;
std::chrono::seconds m_connected;
std::chrono::microseconds m_min_ping_time;
std::chrono::seconds m_last_block_time;
std::chrono::seconds m_last_tx_time;
bool fRelevantServices;
bool m_relay_txs;
bool fBloomFilter;
uint64_t nKeyedNetGroup;
bool prefer_evict;
bool m_is_local;
Network m_network;
};
/**
* Select an inbound peer to evict after filtering out (protecting) peers having
* distinct, difficult-to-forge characteristics. The protection logic picks out
* fixed numbers of desirable peers per various criteria, followed by (mostly)
* ratios of desirable or disadvantaged peers. If any eviction candidates
* remain, the selection logic chooses a peer to evict.
*/
[[nodiscard]] std::optional<NodeId> SelectNodeToEvict(std::vector<NodeEvictionCandidate>&& vEvictionCandidates);
class CExplicitNetCleanup class CExplicitNetCleanup
{ {
public: public:
static void callCleanup(); static void callCleanup();
}; };
extern RecursiveMutex cs_main;
/** Protect desirable or disadvantaged inbound peers from eviction by ratio.
*
* This function protects half of the peers which have been connected the
* longest, to replicate the non-eviction implicit behavior and preclude attacks
* that start later.
*
* Half of these protected spots (1/4 of the total) are reserved for the
* following categories of peers, sorted by longest uptime, even if they're not
* longest uptime overall:
*
* - onion peers connected via our tor control service
*
* - localhost peers, as manually configured hidden services not using
* `-bind=addr[:port]=onion` will not be detected as inbound onion connections
*
* - I2P peers
*
* - CJDNS peers
*
* This helps protect these privacy network peers, which tend to be otherwise
* disadvantaged under our eviction criteria for their higher min ping times
* relative to IPv4/IPv6 peers, and favorise the diversity of peer connections.
*/
void ProtectEvictionCandidatesByRatio(std::vector<NodeEvictionCandidate>& vEvictionCandidates);
#endif // BITCOIN_NET_H #endif // BITCOIN_NET_H

View File

@ -3460,7 +3460,7 @@ void PeerManagerImpl::ProcessMessage(
// indicate to the peer that we will participate in addr relay. // indicate to the peer that we will participate in addr relay.
if (fListen && !m_chainman.ActiveChainstate().IsInitialBlockDownload()) if (fListen && !m_chainman.ActiveChainstate().IsInitialBlockDownload())
{ {
CAddress addr{GetLocalAddress(pfrom.addr), peer->m_our_services, (uint32_t)GetAdjustedTime()}; CAddress addr{GetLocalAddress(pfrom), peer->m_our_services, (uint32_t)GetAdjustedTime()};
FastRandomContext insecure_rand; FastRandomContext insecure_rand;
if (addr.IsRoutable()) if (addr.IsRoutable())
{ {
@ -5013,8 +5013,6 @@ bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt
{ {
AssertLockHeld(g_msgproc_mutex); AssertLockHeld(g_msgproc_mutex);
bool fMoreWork = false;
PeerRef peer = GetPeerRef(pfrom->GetId()); PeerRef peer = GetPeerRef(pfrom->GetId());
if (peer == nullptr) return false; if (peer == nullptr) return false;
@ -5050,17 +5048,14 @@ bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt
// Don't bother if send buffer is too full to respond anyway // Don't bother if send buffer is too full to respond anyway
if (pfrom->fPauseSend) return false; if (pfrom->fPauseSend) return false;
std::list<CNetMessage> msgs; auto poll_result{pfrom->PollMessage()};
{ if (!poll_result) {
LOCK(pfrom->cs_vProcessMsg); // No message to process
if (pfrom->vProcessMsg.empty()) return false; return false;
// Just take one message
msgs.splice(msgs.begin(), pfrom->vProcessMsg, pfrom->vProcessMsg.begin());
pfrom->nProcessQueueSize -= msgs.front().m_raw_message_size;
pfrom->fPauseRecv = pfrom->nProcessQueueSize > m_connman.GetReceiveFloodSize();
fMoreWork = !pfrom->vProcessMsg.empty();
} }
CNetMessage& msg(msgs.front());
CNetMessage& msg{poll_result->first};
bool fMoreWork = poll_result->second;
TRACE6(net, inbound_message, TRACE6(net, inbound_message,
pfrom->GetId(), pfrom->GetId(),

View File

@ -742,19 +742,16 @@ uint64_t CNetAddr::GetHash() const
// private extensions to enum Network, only returned by GetExtNetwork, // private extensions to enum Network, only returned by GetExtNetwork,
// and only used in GetReachabilityFrom // and only used in GetReachabilityFrom
static const int NET_UNKNOWN = NET_MAX + 0; static const int NET_TEREDO = NET_MAX;
static const int NET_TEREDO = NET_MAX + 1; int static GetExtNetwork(const CNetAddr& addr)
int static GetExtNetwork(const CNetAddr *addr)
{ {
if (addr == nullptr) if (addr.IsRFC4380())
return NET_UNKNOWN;
if (addr->IsRFC4380())
return NET_TEREDO; return NET_TEREDO;
return addr->GetNetwork(); return addr.GetNetwork();
} }
/** Calculates a metric for how reachable (*this) is from a given partner */ /** Calculates a metric for how reachable (*this) is from a given partner */
int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const int CNetAddr::GetReachabilityFrom(const CNetAddr& paddrPartner) const
{ {
enum Reachability { enum Reachability {
REACH_UNREACHABLE, REACH_UNREACHABLE,
@ -769,7 +766,7 @@ int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const
if (!IsRoutable() || IsInternal()) if (!IsRoutable() || IsInternal())
return REACH_UNREACHABLE; return REACH_UNREACHABLE;
int ourNet = GetExtNetwork(this); int ourNet = GetExtNetwork(*this);
int theirNet = GetExtNetwork(paddrPartner); int theirNet = GetExtNetwork(paddrPartner);
bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145(); bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
@ -809,7 +806,6 @@ int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const
case NET_IPV6: return REACH_IPV6_WEAK; case NET_IPV6: return REACH_IPV6_WEAK;
case NET_IPV4: return REACH_IPV4; case NET_IPV4: return REACH_IPV4;
} }
case NET_UNKNOWN:
case NET_UNROUTABLE: case NET_UNROUTABLE:
default: default:
switch(ourNet) { switch(ourNet) {

View File

@ -211,7 +211,7 @@ public:
bool HasLinkedIPv4() const; bool HasLinkedIPv4() const;
std::vector<unsigned char> GetAddrBytes() const; std::vector<unsigned char> GetAddrBytes() const;
int GetReachabilityFrom(const CNetAddr *paddrPartner = nullptr) const; int GetReachabilityFrom(const CNetAddr& paddrPartner) const;
explicit CNetAddr(const struct in6_addr& pipv6Addr, const uint32_t scope = 0); explicit CNetAddr(const struct in6_addr& pipv6Addr, const uint32_t scope = 0);
bool GetIn6Addr(struct in6_addr* pipv6Addr) const; bool GetIn6Addr(struct in6_addr* pipv6Addr) const;

View File

@ -0,0 +1,26 @@
// Copyright (c) 2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <node/connection_types.h>
#include <cassert>
std::string ConnectionTypeAsString(ConnectionType conn_type)
{
switch (conn_type) {
case ConnectionType::INBOUND:
return "inbound";
case ConnectionType::MANUAL:
return "manual";
case ConnectionType::FEELER:
return "feeler";
case ConnectionType::OUTBOUND_FULL_RELAY:
return "outbound-full-relay";
case ConnectionType::BLOCK_RELAY:
return "block-relay-only";
case ConnectionType::ADDR_FETCH:
return "addr-fetch";
} // no default case, so the compiler can warn about missing cases
assert(false);
}

View File

@ -0,0 +1,82 @@
// Copyright (c) 2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_NODE_CONNECTION_TYPES_H
#define BITCOIN_NODE_CONNECTION_TYPES_H
#include <string>
/** Different types of connections to a peer. This enum encapsulates the
* information we have available at the time of opening or accepting the
* connection. Aside from INBOUND, all types are initiated by us.
*
* If adding or removing types, please update CONNECTION_TYPE_DOC in
* src/rpc/net.cpp and src/qt/rpcconsole.cpp, as well as the descriptions in
* src/qt/guiutil.cpp and src/bitcoin-cli.cpp::NetinfoRequestHandler. */
enum class ConnectionType {
/**
* Inbound connections are those initiated by a peer. This is the only
* property we know at the time of connection, until P2P messages are
* exchanged.
*/
INBOUND,
/**
* These are the default connections that we use to connect with the
* network. There is no restriction on what is relayed; by default we relay
* blocks, addresses & transactions. We automatically attempt to open
* MAX_OUTBOUND_FULL_RELAY_CONNECTIONS using addresses from our AddrMan.
*/
OUTBOUND_FULL_RELAY,
/**
* We open manual connections to addresses that users explicitly requested
* via the addnode RPC or the -addnode/-connect configuration options. Even if a
* manual connection is misbehaving, we do not automatically disconnect or
* add it to our discouragement filter.
*/
MANUAL,
/**
* Feeler connections are short-lived connections made to check that a node
* is alive. They can be useful for:
* - test-before-evict: if one of the peers is considered for eviction from
* our AddrMan because another peer is mapped to the same slot in the tried table,
* evict only if this longer-known peer is offline.
* - move node addresses from New to Tried table, so that we have more
* connectable addresses in our AddrMan.
* Note that in the literature ("Eclipse Attacks on Bitcoins Peer-to-Peer Network")
* only the latter feature is referred to as "feeler connections",
* although in our codebase feeler connections encompass test-before-evict as well.
* We make these connections approximately every FEELER_INTERVAL:
* first we resolve previously found collisions if they exist (test-before-evict),
* otherwise we connect to a node from the new table.
*/
FEELER,
/**
* We use block-relay-only connections to help prevent against partition
* attacks. By not relaying transactions or addresses, these connections
* are harder to detect by a third party, thus helping obfuscate the
* network topology. We automatically attempt to open
* MAX_BLOCK_RELAY_ONLY_ANCHORS using addresses from our anchors.dat. Then
* addresses from our AddrMan if MAX_BLOCK_RELAY_ONLY_CONNECTIONS
* isn't reached yet.
*/
BLOCK_RELAY,
/**
* AddrFetch connections are short lived connections used to solicit
* addresses from peers. These are initiated to addresses submitted via the
* -seednode command line argument, or under certain conditions when the
* AddrMan is empty.
*/
ADDR_FETCH,
};
/** Convert ConnectionType enum to a string value */
std::string ConnectionTypeAsString(ConnectionType conn_type);
#endif // BITCOIN_NODE_CONNECTION_TYPES_H

240
src/node/eviction.cpp Normal file
View File

@ -0,0 +1,240 @@
// Copyright (c) 2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <node/eviction.h>
#include <algorithm>
#include <array>
#include <chrono>
#include <cstdint>
#include <functional>
#include <map>
#include <vector>
static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
{
return a.m_min_ping_time > b.m_min_ping_time;
}
static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
{
return a.m_connected > b.m_connected;
}
static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) {
return a.nKeyedNetGroup < b.nKeyedNetGroup;
}
static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
{
// There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block.
if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time;
if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
return a.m_connected > b.m_connected;
}
static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
{
// There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn.
if (a.m_last_tx_time != b.m_last_tx_time) return a.m_last_tx_time < b.m_last_tx_time;
if (a.m_relay_txs != b.m_relay_txs) return b.m_relay_txs;
if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter;
return a.m_connected > b.m_connected;
}
// Pick out the potential block-relay only peers, and sort them by last block time.
static bool CompareNodeBlockRelayOnlyTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
{
if (a.m_relay_txs != b.m_relay_txs) return a.m_relay_txs;
if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time;
if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
return a.m_connected > b.m_connected;
}
/**
* Sort eviction candidates by network/localhost and connection uptime.
* Candidates near the beginning are more likely to be evicted, and those
* near the end are more likely to be protected, e.g. less likely to be evicted.
* - First, nodes that are not `is_local` and that do not belong to `network`,
* sorted by increasing uptime (from most recently connected to connected longer).
* - Then, nodes that are `is_local` or belong to `network`, sorted by increasing uptime.
*/
struct CompareNodeNetworkTime {
const bool m_is_local;
const Network m_network;
CompareNodeNetworkTime(bool is_local, Network network) : m_is_local(is_local), m_network(network) {}
bool operator()(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b) const
{
if (m_is_local && a.m_is_local != b.m_is_local) return b.m_is_local;
if ((a.m_network == m_network) != (b.m_network == m_network)) return b.m_network == m_network;
return a.m_connected > b.m_connected;
};
};
//! Sort an array by the specified comparator, then erase the last K elements where predicate is true.
template <typename T, typename Comparator>
static void EraseLastKElements(
std::vector<T>& elements, Comparator comparator, size_t k,
std::function<bool(const NodeEvictionCandidate&)> predicate = [](const NodeEvictionCandidate& n) { return true; })
{
std::sort(elements.begin(), elements.end(), comparator);
size_t eraseSize = std::min(k, elements.size());
elements.erase(std::remove_if(elements.end() - eraseSize, elements.end(), predicate), elements.end());
}
void ProtectNoBanConnections(std::vector<NodeEvictionCandidate>& eviction_candidates)
{
eviction_candidates.erase(std::remove_if(eviction_candidates.begin(), eviction_candidates.end(),
[](NodeEvictionCandidate const& n) {
return n.m_noban;
}),
eviction_candidates.end());
}
void ProtectOutboundConnections(std::vector<NodeEvictionCandidate>& eviction_candidates)
{
eviction_candidates.erase(std::remove_if(eviction_candidates.begin(), eviction_candidates.end(),
[](NodeEvictionCandidate const& n) {
return n.m_conn_type != ConnectionType::INBOUND;
}),
eviction_candidates.end());
}
void ProtectEvictionCandidatesByRatio(std::vector<NodeEvictionCandidate>& eviction_candidates)
{
// Protect the half of the remaining nodes which have been connected the longest.
// This replicates the non-eviction implicit behavior, and precludes attacks that start later.
// To favorise the diversity of our peer connections, reserve up to half of these protected
// spots for Tor/onion, localhost, I2P, and CJDNS peers, even if they're not longest uptime
// overall. This helps protect these higher-latency peers that tend to be otherwise
// disadvantaged under our eviction criteria.
const size_t initial_size = eviction_candidates.size();
const size_t total_protect_size{initial_size / 2};
// Disadvantaged networks to protect. In the case of equal counts, earlier array members
// have the first opportunity to recover unused slots from the previous iteration.
struct Net { bool is_local; Network id; size_t count; };
std::array<Net, 4> networks{
{{false, NET_CJDNS, 0}, {false, NET_I2P, 0}, {/*localhost=*/true, NET_MAX, 0}, {false, NET_ONION, 0}}};
// Count and store the number of eviction candidates per network.
for (Net& n : networks) {
n.count = std::count_if(eviction_candidates.cbegin(), eviction_candidates.cend(),
[&n](const NodeEvictionCandidate& c) {
return n.is_local ? c.m_is_local : c.m_network == n.id;
});
}
// Sort `networks` by ascending candidate count, to give networks having fewer candidates
// the first opportunity to recover unused protected slots from the previous iteration.
std::stable_sort(networks.begin(), networks.end(), [](Net a, Net b) { return a.count < b.count; });
// Protect up to 25% of the eviction candidates by disadvantaged network.
const size_t max_protect_by_network{total_protect_size / 2};
size_t num_protected{0};
while (num_protected < max_protect_by_network) {
// Count the number of disadvantaged networks from which we have peers to protect.
auto num_networks = std::count_if(networks.begin(), networks.end(), [](const Net& n) { return n.count; });
if (num_networks == 0) {
break;
}
const size_t disadvantaged_to_protect{max_protect_by_network - num_protected};
const size_t protect_per_network{std::max(disadvantaged_to_protect / num_networks, static_cast<size_t>(1))};
// Early exit flag if there are no remaining candidates by disadvantaged network.
bool protected_at_least_one{false};
for (Net& n : networks) {
if (n.count == 0) continue;
const size_t before = eviction_candidates.size();
EraseLastKElements(eviction_candidates, CompareNodeNetworkTime(n.is_local, n.id),
protect_per_network, [&n](const NodeEvictionCandidate& c) {
return n.is_local ? c.m_is_local : c.m_network == n.id;
});
const size_t after = eviction_candidates.size();
if (before > after) {
protected_at_least_one = true;
const size_t delta{before - after};
num_protected += delta;
if (num_protected >= max_protect_by_network) {
break;
}
n.count -= delta;
}
}
if (!protected_at_least_one) {
break;
}
}
// Calculate how many we removed, and update our total number of peers that
// we want to protect based on uptime accordingly.
assert(num_protected == initial_size - eviction_candidates.size());
const size_t remaining_to_protect{total_protect_size - num_protected};
EraseLastKElements(eviction_candidates, ReverseCompareNodeTimeConnected, remaining_to_protect);
}
[[nodiscard]] std::optional<NodeId> SelectNodeToEvict(std::vector<NodeEvictionCandidate>&& vEvictionCandidates)
{
// Protect connections with certain characteristics
ProtectNoBanConnections(vEvictionCandidates);
ProtectOutboundConnections(vEvictionCandidates);
// Deterministically select 4 peers to protect by netgroup.
// An attacker cannot predict which netgroups will be protected
EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4);
// Protect the 8 nodes with the lowest minimum ping time.
// An attacker cannot manipulate this metric without physically moving nodes closer to the target.
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8);
// Protect 4 nodes that most recently sent us novel transactions accepted into our mempool.
// An attacker cannot manipulate this metric without performing useful work.
EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4);
// Protect up to 8 non-tx-relay peers that have sent us novel blocks.
EraseLastKElements(vEvictionCandidates, CompareNodeBlockRelayOnlyTime, 8,
[](const NodeEvictionCandidate& n) { return !n.m_relay_txs && n.fRelevantServices; });
// Protect 4 nodes that most recently sent us novel blocks.
// An attacker cannot manipulate this metric without performing useful work.
EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4);
// Protect some of the remaining eviction candidates by ratios of desirable
// or disadvantaged characteristics.
ProtectEvictionCandidatesByRatio(vEvictionCandidates);
if (vEvictionCandidates.empty()) return std::nullopt;
// If any remaining peers are preferred for eviction consider only them.
// This happens after the other preferences since if a peer is really the best by other criteria (esp relaying blocks)
// then we probably don't want to evict it no matter what.
if (std::any_of(vEvictionCandidates.begin(),vEvictionCandidates.end(),[](NodeEvictionCandidate const &n){return n.prefer_evict;})) {
vEvictionCandidates.erase(std::remove_if(vEvictionCandidates.begin(),vEvictionCandidates.end(),
[](NodeEvictionCandidate const &n){return !n.prefer_evict;}),vEvictionCandidates.end());
}
// Identify the network group with the most connections and youngest member.
// (vEvictionCandidates is already sorted by reverse connect time)
uint64_t naMostConnections;
unsigned int nMostConnections = 0;
std::chrono::seconds nMostConnectionsTime{0};
std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes;
for (const NodeEvictionCandidate &node : vEvictionCandidates) {
std::vector<NodeEvictionCandidate> &group = mapNetGroupNodes[node.nKeyedNetGroup];
group.push_back(node);
const auto grouptime{group[0].m_connected};
if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) {
nMostConnections = group.size();
nMostConnectionsTime = grouptime;
naMostConnections = node.nKeyedNetGroup;
}
}
// Reduce to the network group with the most connections
vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
// Disconnect from the network group with the most connections
return vEvictionCandidates.front().id;
}

69
src/node/eviction.h Normal file
View File

@ -0,0 +1,69 @@
// Copyright (c) 2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_NODE_EVICTION_H
#define BITCOIN_NODE_EVICTION_H
#include <node/connection_types.h>
#include <net_permissions.h>
#include <chrono>
#include <cstdint>
#include <optional>
#include <vector>
typedef int64_t NodeId;
struct NodeEvictionCandidate {
NodeId id;
std::chrono::seconds m_connected;
std::chrono::microseconds m_min_ping_time;
std::chrono::seconds m_last_block_time;
std::chrono::seconds m_last_tx_time;
bool fRelevantServices;
bool m_relay_txs;
bool fBloomFilter;
uint64_t nKeyedNetGroup;
bool prefer_evict;
bool m_is_local;
Network m_network;
bool m_noban;
ConnectionType m_conn_type;
};
/**
* Select an inbound peer to evict after filtering out (protecting) peers having
* distinct, difficult-to-forge characteristics. The protection logic picks out
* fixed numbers of desirable peers per various criteria, followed by (mostly)
* ratios of desirable or disadvantaged peers. If any eviction candidates
* remain, the selection logic chooses a peer to evict.
*/
[[nodiscard]] std::optional<NodeId> SelectNodeToEvict(std::vector<NodeEvictionCandidate>&& vEvictionCandidates);
/** Protect desirable or disadvantaged inbound peers from eviction by ratio.
*
* This function protects half of the peers which have been connected the
* longest, to replicate the non-eviction implicit behavior and preclude attacks
* that start later.
*
* Half of these protected spots (1/4 of the total) are reserved for the
* following categories of peers, sorted by longest uptime, even if they're not
* longest uptime overall:
*
* - onion peers connected via our tor control service
*
* - localhost peers, as manually configured hidden services not using
* `-bind=addr[:port]=onion` will not be detected as inbound onion connections
*
* - I2P peers
*
* - CJDNS peers
*
* This helps protect these privacy network peers, which tend to be otherwise
* disadvantaged under our eviction criteria for their higher min ping times
* relative to IPv4/IPv6 peers, and favorise the diversity of peer connections.
*/
void ProtectEvictionCandidatesByRatio(std::vector<NodeEvictionCandidate>& vEvictionCandidates);
#endif // BITCOIN_NODE_EVICTION_H

View File

@ -1234,11 +1234,11 @@ void RPCConsole::updateDetailWidget()
ui->peerSubversion->setText(QString::fromStdString(stats->nodeStats.cleanSubVer)); ui->peerSubversion->setText(QString::fromStdString(stats->nodeStats.cleanSubVer));
ui->peerConnectionType->setText(GUIUtil::ConnectionTypeToQString(stats->nodeStats.m_conn_type, /* prepend_direction */ true)); ui->peerConnectionType->setText(GUIUtil::ConnectionTypeToQString(stats->nodeStats.m_conn_type, /* prepend_direction */ true));
ui->peerNetwork->setText(GUIUtil::NetworkToQString(stats->nodeStats.m_network)); ui->peerNetwork->setText(GUIUtil::NetworkToQString(stats->nodeStats.m_network));
if (stats->nodeStats.m_permissionFlags == NetPermissionFlags::None) { if (stats->nodeStats.m_permission_flags == NetPermissionFlags::None) {
ui->peerPermissions->setText(ts.na); ui->peerPermissions->setText(ts.na);
} else { } else {
QStringList permissions; QStringList permissions;
for (const auto& permission : NetPermissions::ToStrings(stats->nodeStats.m_permissionFlags)) { for (const auto& permission : NetPermissions::ToStrings(stats->nodeStats.m_permission_flags)) {
permissions.append(QString::fromStdString(permission)); permissions.append(QString::fromStdString(permission));
} }
ui->peerPermissions->setText(permissions.join(" & ")); ui->peerPermissions->setText(permissions.join(" & "));

View File

@ -260,7 +260,7 @@ static RPCHelpMan getpeerinfo()
obj.pushKV("whitelisted", stats.m_legacyWhitelisted); obj.pushKV("whitelisted", stats.m_legacyWhitelisted);
} }
UniValue permissions(UniValue::VARR); UniValue permissions(UniValue::VARR);
for (const auto& permission : NetPermissions::ToStrings(stats.m_permissionFlags)) { for (const auto& permission : NetPermissions::ToStrings(stats.m_permission_flags)) {
permissions.push_back(permission); permissions.push_back(permission);
} }
obj.pushKV("permissions", permissions); obj.pushKV("permissions", permissions);

View File

@ -71,7 +71,6 @@ BOOST_AUTO_TEST_CASE(outbound_slow_chain_eviction)
/*successfully_connected=*/true, /*successfully_connected=*/true,
/*remote_services=*/ServiceFlags(NODE_NETWORK), /*remote_services=*/ServiceFlags(NODE_NETWORK),
/*local_services=*/ServiceFlags(NODE_NETWORK), /*local_services=*/ServiceFlags(NODE_NETWORK),
/*permission_flags=*/NetPermissionFlags::None,
/*version=*/PROTOCOL_VERSION, /*version=*/PROTOCOL_VERSION,
/*relay_txs=*/true); /*relay_txs=*/true);
TestOnlyResetTimeData(); TestOnlyResetTimeData();

View File

@ -126,7 +126,6 @@ FUZZ_TARGET_INIT(connman, initialize_connman)
std::vector<CNodeStats> stats; std::vector<CNodeStats> stats;
connman.GetNodeStats(stats); connman.GetNodeStats(stats);
(void)connman.GetOutboundTargetBytesLeft(); (void)connman.GetOutboundTargetBytesLeft();
(void)connman.GetReceiveFloodSize();
(void)connman.GetTotalBytesRecv(); (void)connman.GetTotalBytesRecv();
(void)connman.GetTotalBytesSent(); (void)connman.GetTotalBytesSent();
(void)connman.GetTryNewOutboundPeer(); (void)connman.GetTryNewOutboundPeer();

View File

@ -83,7 +83,7 @@ FUZZ_TARGET(netaddress)
(void)service.ToStringAddrPort(); (void)service.ToStringAddrPort();
const CNetAddr other_net_addr = ConsumeNetAddr(fuzzed_data_provider); const CNetAddr other_net_addr = ConsumeNetAddr(fuzzed_data_provider);
(void)net_addr.GetReachabilityFrom(&other_net_addr); (void)net_addr.GetReachabilityFrom(other_net_addr);
(void)sub_net.Match(other_net_addr); (void)sub_net.Match(other_net_addr);
const CService other_service{net_addr, fuzzed_data_provider.ConsumeIntegral<uint16_t>()}; const CService other_service{net_addr, fuzzed_data_provider.ConsumeIntegral<uint16_t>()};

View File

@ -32,6 +32,8 @@ FUZZ_TARGET(node_eviction)
/* prefer_evict */ fuzzed_data_provider.ConsumeBool(), /* prefer_evict */ fuzzed_data_provider.ConsumeBool(),
/* m_is_local */ fuzzed_data_provider.ConsumeBool(), /* m_is_local */ fuzzed_data_provider.ConsumeBool(),
/* m_network */ fuzzed_data_provider.PickValueInArray(ALL_NETWORKS), /* m_network */ fuzzed_data_provider.PickValueInArray(ALL_NETWORKS),
/* m_noban */ fuzzed_data_provider.ConsumeBool(),
/* m_conn_type */ fuzzed_data_provider.PickValueInArray(ALL_CONNECTION_TYPES),
}); });
} }
// Make a copy since eviction_candidates may be in some valid but otherwise // Make a copy since eviction_candidates may be in some valid but otherwise

View File

@ -288,7 +288,6 @@ void FillNode(FuzzedDataProvider& fuzzed_data_provider, ConnmanTestMsg& connman,
/*successfully_connected=*/fuzzed_data_provider.ConsumeBool(), /*successfully_connected=*/fuzzed_data_provider.ConsumeBool(),
/*remote_services=*/ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS), /*remote_services=*/ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS),
/*local_services=*/ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS), /*local_services=*/ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS),
/*permission_flags=*/ConsumeWeakEnum(fuzzed_data_provider, ALL_NET_PERMISSION_FLAGS),
/*version=*/fuzzed_data_provider.ConsumeIntegralInRange<int32_t>(MIN_PEER_PROTO_VERSION, std::numeric_limits<int32_t>::max()), /*version=*/fuzzed_data_provider.ConsumeIntegralInRange<int32_t>(MIN_PEER_PROTO_VERSION, std::numeric_limits<int32_t>::max()),
/*relay_txs=*/fuzzed_data_provider.ConsumeBool()); /*relay_txs=*/fuzzed_data_provider.ConsumeBool());
} }

View File

@ -366,6 +366,7 @@ auto ConsumeNode(FuzzedDataProvider& fuzzed_data_provider, const std::optional<N
const ConnectionType conn_type = fuzzed_data_provider.PickValueInArray(ALL_CONNECTION_TYPES); const ConnectionType conn_type = fuzzed_data_provider.PickValueInArray(ALL_CONNECTION_TYPES);
const bool inbound_onion{conn_type == ConnectionType::INBOUND ? fuzzed_data_provider.ConsumeBool() : false}; const bool inbound_onion{conn_type == ConnectionType::INBOUND ? fuzzed_data_provider.ConsumeBool() : false};
NetPermissionFlags permission_flags = ConsumeWeakEnum(fuzzed_data_provider, ALL_NET_PERMISSION_FLAGS);
if constexpr (ReturnUniquePtr) { if constexpr (ReturnUniquePtr) {
return std::make_unique<CNode>(node_id, return std::make_unique<CNode>(node_id,
sock, sock,
@ -375,7 +376,8 @@ auto ConsumeNode(FuzzedDataProvider& fuzzed_data_provider, const std::optional<N
addr_bind, addr_bind,
addr_name, addr_name,
conn_type, conn_type,
inbound_onion); inbound_onion,
CNodeOptions{ .permission_flags = permission_flags });
} else { } else {
return CNode{node_id, return CNode{node_id,
sock, sock,
@ -385,7 +387,8 @@ auto ConsumeNode(FuzzedDataProvider& fuzzed_data_provider, const std::optional<N
addr_bind, addr_bind,
addr_name, addr_name,
conn_type, conn_type,
inbound_onion}; inbound_onion,
CNodeOptions{ .permission_flags = permission_flags }};
} }
} }
inline std::unique_ptr<CNode> ConsumeNodeAsUniquePtr(FuzzedDataProvider& fdp, const std::optional<NodeId>& node_id_in = std::nullopt) { return ConsumeNode<true>(fdp, node_id_in); } inline std::unique_ptr<CNode> ConsumeNodeAsUniquePtr(FuzzedDataProvider& fdp, const std::optional<NodeId>& node_id_in = std::nullopt) { return ConsumeNode<true>(fdp, node_id_in); }

View File

@ -908,4 +908,109 @@ BOOST_AUTO_TEST_CASE(initial_advertise_from_version_message)
TestOnlyResetTimeData(); TestOnlyResetTimeData();
} }
BOOST_AUTO_TEST_CASE(advertise_local_address)
{
auto CreatePeer = [](const CAddress& addr) {
return std::make_unique<CNode>(/*id=*/0,
/*sock=*/nullptr,
addr,
/*nKeyedNetGroupIn=*/0,
/*nLocalHostNonceIn=*/0,
CAddress{},
/*pszDest=*/std::string{},
ConnectionType::OUTBOUND_FULL_RELAY,
/*inbound_onion=*/false);
};
SetReachable(NET_CJDNS, true);
CAddress addr_ipv4{Lookup("1.2.3.4", 8333, false).value(), NODE_NONE};
BOOST_REQUIRE(addr_ipv4.IsValid());
BOOST_REQUIRE(addr_ipv4.IsIPv4());
CAddress addr_ipv6{Lookup("1122:3344:5566:7788:9900:aabb:ccdd:eeff", 8333, false).value(), NODE_NONE};
BOOST_REQUIRE(addr_ipv6.IsValid());
BOOST_REQUIRE(addr_ipv6.IsIPv6());
CAddress addr_ipv6_tunnel{Lookup("2002:3344:5566:7788:9900:aabb:ccdd:eeff", 8333, false).value(), NODE_NONE};
BOOST_REQUIRE(addr_ipv6_tunnel.IsValid());
BOOST_REQUIRE(addr_ipv6_tunnel.IsIPv6());
BOOST_REQUIRE(addr_ipv6_tunnel.IsRFC3964());
CAddress addr_teredo{Lookup("2001:0000:5566:7788:9900:aabb:ccdd:eeff", 8333, false).value(), NODE_NONE};
BOOST_REQUIRE(addr_teredo.IsValid());
BOOST_REQUIRE(addr_teredo.IsIPv6());
BOOST_REQUIRE(addr_teredo.IsRFC4380());
CAddress addr_onion;
BOOST_REQUIRE(addr_onion.SetSpecial("pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscryd.onion"));
BOOST_REQUIRE(addr_onion.IsValid());
BOOST_REQUIRE(addr_onion.IsTor());
CAddress addr_i2p;
BOOST_REQUIRE(addr_i2p.SetSpecial("udhdrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v4jna.b32.i2p"));
BOOST_REQUIRE(addr_i2p.IsValid());
BOOST_REQUIRE(addr_i2p.IsI2P());
CService service_cjdns{Lookup("fc00:3344:5566:7788:9900:aabb:ccdd:eeff", 8333, false).value(), NODE_NONE};
CAddress addr_cjdns{MaybeFlipIPv6toCJDNS(service_cjdns), NODE_NONE};
BOOST_REQUIRE(addr_cjdns.IsValid());
BOOST_REQUIRE(addr_cjdns.IsCJDNS());
const auto peer_ipv4{CreatePeer(addr_ipv4)};
const auto peer_ipv6{CreatePeer(addr_ipv6)};
const auto peer_ipv6_tunnel{CreatePeer(addr_ipv6_tunnel)};
const auto peer_teredo{CreatePeer(addr_teredo)};
const auto peer_onion{CreatePeer(addr_onion)};
const auto peer_i2p{CreatePeer(addr_i2p)};
const auto peer_cjdns{CreatePeer(addr_cjdns)};
// one local clearnet address - advertise to all but privacy peers
AddLocal(addr_ipv4);
BOOST_CHECK(GetLocalAddress(*peer_ipv4) == addr_ipv4);
BOOST_CHECK(GetLocalAddress(*peer_ipv6) == addr_ipv4);
BOOST_CHECK(GetLocalAddress(*peer_ipv6_tunnel) == addr_ipv4);
BOOST_CHECK(GetLocalAddress(*peer_teredo) == addr_ipv4);
BOOST_CHECK(GetLocalAddress(*peer_cjdns) == addr_ipv4);
BOOST_CHECK(!GetLocalAddress(*peer_onion).IsValid());
BOOST_CHECK(!GetLocalAddress(*peer_i2p).IsValid());
RemoveLocal(addr_ipv4);
// local privacy addresses - don't advertise to clearnet peers
AddLocal(addr_onion);
AddLocal(addr_i2p);
BOOST_CHECK(!GetLocalAddress(*peer_ipv4).IsValid());
BOOST_CHECK(!GetLocalAddress(*peer_ipv6).IsValid());
BOOST_CHECK(!GetLocalAddress(*peer_ipv6_tunnel).IsValid());
BOOST_CHECK(!GetLocalAddress(*peer_teredo).IsValid());
BOOST_CHECK(!GetLocalAddress(*peer_cjdns).IsValid());
BOOST_CHECK(GetLocalAddress(*peer_onion) == addr_onion);
BOOST_CHECK(GetLocalAddress(*peer_i2p) == addr_i2p);
RemoveLocal(addr_onion);
RemoveLocal(addr_i2p);
// local addresses from all networks
AddLocal(addr_ipv4);
AddLocal(addr_ipv6);
AddLocal(addr_ipv6_tunnel);
AddLocal(addr_teredo);
AddLocal(addr_onion);
AddLocal(addr_i2p);
AddLocal(addr_cjdns);
BOOST_CHECK(GetLocalAddress(*peer_ipv4) == addr_ipv4);
BOOST_CHECK(GetLocalAddress(*peer_ipv6) == addr_ipv6);
BOOST_CHECK(GetLocalAddress(*peer_ipv6_tunnel) == addr_ipv6);
BOOST_CHECK(GetLocalAddress(*peer_teredo) == addr_ipv4);
BOOST_CHECK(GetLocalAddress(*peer_onion) == addr_onion);
BOOST_CHECK(GetLocalAddress(*peer_i2p) == addr_i2p);
BOOST_CHECK(GetLocalAddress(*peer_cjdns) == addr_cjdns);
RemoveLocal(addr_ipv4);
RemoveLocal(addr_ipv6);
RemoveLocal(addr_ipv6_tunnel);
RemoveLocal(addr_teredo);
RemoveLocal(addr_onion);
RemoveLocal(addr_i2p);
RemoveLocal(addr_cjdns);
}
BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE_END()

View File

@ -5,6 +5,7 @@
#include <test/util/net.h> #include <test/util/net.h>
#include <chainparams.h> #include <chainparams.h>
#include <node/eviction.h>
#include <net.h> #include <net.h>
#include <net_processing.h> #include <net_processing.h>
#include <netmessagemaker.h> #include <netmessagemaker.h>
@ -16,7 +17,6 @@ void ConnmanTestMsg::Handshake(CNode& node,
bool successfully_connected, bool successfully_connected,
ServiceFlags remote_services, ServiceFlags remote_services,
ServiceFlags local_services, ServiceFlags local_services,
NetPermissionFlags permission_flags,
int32_t version, int32_t version,
bool relay_txs) bool relay_txs)
{ {
@ -54,7 +54,6 @@ void ConnmanTestMsg::Handshake(CNode& node,
assert(peerman.GetNodeStateStats(node.GetId(), statestats)); assert(peerman.GetNodeStateStats(node.GetId(), statestats));
assert(statestats.m_relay_txs == (relay_txs && !node.IsBlockOnlyConn())); assert(statestats.m_relay_txs == (relay_txs && !node.IsBlockOnlyConn()));
assert(statestats.their_services == remote_services); assert(statestats.their_services == remote_services);
node.m_permissionFlags = permission_flags;
if (successfully_connected) { if (successfully_connected) {
CSerializedNetMsg msg_verack{mm.Make(NetMsgType::VERACK)}; CSerializedNetMsg msg_verack{mm.Make(NetMsgType::VERACK)};
(void)connman.ReceiveMsgFrom(node, std::move(msg_verack)); (void)connman.ReceiveMsgFrom(node, std::move(msg_verack));
@ -69,19 +68,7 @@ void ConnmanTestMsg::NodeReceiveMsgBytes(CNode& node, Span<const uint8_t> msg_by
{ {
assert(node.ReceiveMsgBytes(msg_bytes, complete)); assert(node.ReceiveMsgBytes(msg_bytes, complete));
if (complete) { if (complete) {
size_t nSizeAdded = 0; node.MarkReceivedMsgsForProcessing();
auto it(node.vRecvMsg.begin());
for (; it != node.vRecvMsg.end(); ++it) {
// vRecvMsg contains only completed CNetMessage
// the single possible partially deserialized message are held by TransportDeserializer
nSizeAdded += it->m_raw_message_size;
}
{
LOCK(node.cs_vProcessMsg);
node.vProcessMsg.splice(node.vProcessMsg.end(), node.vRecvMsg, node.vRecvMsg.begin(), it);
node.nProcessQueueSize += nSizeAdded;
node.fPauseRecv = node.nProcessQueueSize > nReceiveFloodSize;
}
} }
} }
@ -128,6 +115,8 @@ std::vector<NodeEvictionCandidate> GetRandomNodeEvictionCandidates(int n_candida
/* prefer_evict */ random_context.randbool(), /* prefer_evict */ random_context.randbool(),
/* m_is_local */ random_context.randbool(), /* m_is_local */ random_context.randbool(),
/* m_network */ ALL_NETWORKS[random_context.randrange(ALL_NETWORKS.size())], /* m_network */ ALL_NETWORKS[random_context.randrange(ALL_NETWORKS.size())],
/* m_noban */ false,
/* m_conn_type */ConnectionType::INBOUND,
}); });
} }
return candidates; return candidates;

View File

@ -6,6 +6,7 @@
#define BITCOIN_TEST_UTIL_NET_H #define BITCOIN_TEST_UTIL_NET_H
#include <compat.h> #include <compat.h>
#include <node/eviction.h>
#include <netaddress.h> #include <netaddress.h>
#include <net.h> #include <net.h>
#include <util/sock.h> #include <util/sock.h>
@ -42,7 +43,6 @@ struct ConnmanTestMsg : public CConnman {
bool successfully_connected, bool successfully_connected,
ServiceFlags remote_services, ServiceFlags remote_services,
ServiceFlags local_services, ServiceFlags local_services,
NetPermissionFlags permission_flags,
int32_t version, int32_t version,
bool relay_txs) bool relay_txs)
EXCLUSIVE_LOCKS_REQUIRED(NetEventsInterface::g_msgproc_mutex); EXCLUSIVE_LOCKS_REQUIRED(NetEventsInterface::g_msgproc_mutex);