// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //! The MainSignalsInstance manages a list of shared_ptr //! callbacks. //! //! A std::unordered_map is used to track what callbacks are currently //! registered, and a std::list is to used to store the callbacks that are //! currently registered as well as any callbacks that are just unregistered //! and about to be deleted when they are done executing. struct MainSignalsInstance { private: Mutex m_mutex; //! List entries consist of a callback pointer and reference count. The //! count is equal to the number of current executions of that entry, plus 1 //! if it's registered. It cannot be 0 because that would imply it is //! unregistered and also not being executed (so shouldn't exist). struct ListEntry { std::shared_ptr callbacks; int count = 1; }; std::list m_list GUARDED_BY(m_mutex); std::unordered_map::iterator> m_map GUARDED_BY(m_mutex); public: // We are not allowed to assume the scheduler only runs in one thread, // but must ensure all callbacks happen in-order, so we end up creating // our own queue here :( SingleThreadedSchedulerClient m_schedulerClient; explicit MainSignalsInstance(CScheduler& scheduler LIFETIMEBOUND) : m_schedulerClient(scheduler) {} void Register(std::shared_ptr callbacks) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) { LOCK(m_mutex); auto inserted = m_map.emplace(callbacks.get(), m_list.end()); if (inserted.second) inserted.first->second = m_list.emplace(m_list.end()); inserted.first->second->callbacks = std::move(callbacks); } void Unregister(CValidationInterface* callbacks) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) { LOCK(m_mutex); auto it = m_map.find(callbacks); if (it != m_map.end()) { if (!--it->second->count) m_list.erase(it->second); m_map.erase(it); } } //! Clear unregisters every previously registered callback, erasing every //! map entry. After this call, the list may still contain callbacks that //! are currently executing, but it will be cleared when they are done //! executing. void Clear() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) { LOCK(m_mutex); for (const auto& entry : m_map) { if (!--entry.second->count) m_list.erase(entry.second); } m_map.clear(); } template void Iterate(F&& f) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) { WAIT_LOCK(m_mutex, lock); for (auto it = m_list.begin(); it != m_list.end();) { ++it->count; { REVERSE_LOCK(lock); f(*it->callbacks); } it = --it->count ? std::next(it) : m_list.erase(it); } } }; static CMainSignals g_signals; void CMainSignals::RegisterBackgroundSignalScheduler(CScheduler& scheduler) { assert(!m_internals); m_internals = std::make_unique(scheduler); } void CMainSignals::UnregisterBackgroundSignalScheduler() { m_internals.reset(nullptr); } void CMainSignals::FlushBackgroundCallbacks() { if (m_internals) { m_internals->m_schedulerClient.EmptyQueue(); } } size_t CMainSignals::CallbacksPending() { if (!m_internals) return 0; return m_internals->m_schedulerClient.CallbacksPending(); } CMainSignals& GetMainSignals() { return g_signals; } void RegisterSharedValidationInterface(std::shared_ptr callbacks) { // Each connection captures the shared_ptr to ensure that each callback is // executed before the subscriber is destroyed. For more details see #18338. g_signals.m_internals->Register(std::move(callbacks)); } void RegisterValidationInterface(CValidationInterface* callbacks) { // Create a shared_ptr with a no-op deleter - CValidationInterface lifecycle // is managed by the caller. RegisterSharedValidationInterface({callbacks, [](CValidationInterface*){}}); } void UnregisterSharedValidationInterface(std::shared_ptr callbacks) { UnregisterValidationInterface(callbacks.get()); } void UnregisterValidationInterface(CValidationInterface* callbacks) { if (g_signals.m_internals) { g_signals.m_internals->Unregister(callbacks); } } void UnregisterAllValidationInterfaces() { if (!g_signals.m_internals) { return; } g_signals.m_internals->Clear(); } void CallFunctionInValidationInterfaceQueue(std::function func) { g_signals.m_internals->m_schedulerClient.AddToProcessQueue(std::move(func)); } void SyncWithValidationInterfaceQueue() { AssertLockNotHeld(cs_main); // Block until the validation queue drains std::promise promise; CallFunctionInValidationInterfaceQueue([&promise] { promise.set_value(); }); promise.get_future().wait(); } // Use a macro instead of a function for conditional logging to prevent // evaluating arguments when logging is not enabled. // // NOTE: The lambda captures all local variables by value. #define ENQUEUE_AND_LOG_EVENT(event, fmt, name, ...) \ do { \ auto local_name = (name); \ LOG_EVENT("Enqueuing " fmt, local_name, __VA_ARGS__); \ m_internals->m_schedulerClient.AddToProcessQueue([=] { \ LOG_EVENT(fmt, local_name, __VA_ARGS__); \ event(); \ }); \ } while (0) #define LOG_EVENT(fmt, ...) \ LogPrint(BCLog::VALIDATION, fmt "\n", __VA_ARGS__) void CMainSignals::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) { // Dependencies exist that require UpdatedBlockTip events to be delivered in the order in which // the chain actually updates. One way to ensure this is for the caller to invoke this signal // in the same critical section where the chain is updated auto event = [pindexNew, pindexFork, fInitialDownload, this] { m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.UpdatedBlockTip(pindexNew, pindexFork, fInitialDownload); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: new block hash=%s fork block hash=%s (in IBD=%s)", __func__, pindexNew->GetBlockHash().ToString(), pindexFork ? pindexFork->GetBlockHash().ToString() : "null", fInitialDownload); } void CMainSignals::SynchronousUpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) { m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.SynchronousUpdatedBlockTip(pindexNew, pindexFork, fInitialDownload); }); } void CMainSignals::TransactionAddedToMempool(const CTransactionRef& tx, int64_t nAcceptTime, uint64_t mempool_sequence) { auto event = [tx, nAcceptTime, mempool_sequence, this] { m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.TransactionAddedToMempool(tx, nAcceptTime, mempool_sequence); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: txid=%s", __func__, tx->GetHash().ToString()); } void CMainSignals::TransactionRemovedFromMempool(const CTransactionRef& tx, MemPoolRemovalReason reason, uint64_t mempool_sequence) { auto event = [tx, reason, mempool_sequence, this] { m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.TransactionRemovedFromMempool(tx, reason, mempool_sequence); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: txid=%s", __func__, tx->GetHash().ToString()); } void CMainSignals::BlockConnected(const std::shared_ptr &pblock, const CBlockIndex *pindex) { auto event = [pblock, pindex, this] { m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.BlockConnected(pblock, pindex); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: block hash=%s block height=%d", __func__, pblock->GetHash().ToString(), pindex->nHeight); } void CMainSignals::BlockDisconnected(const std::shared_ptr &pblock, const CBlockIndex* pindex) { auto event = [pblock, pindex, this] { m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.BlockDisconnected(pblock, pindex); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: block hash=%s block height=%d", __func__, pblock->GetHash().ToString(), pindex->nHeight); } void CMainSignals::ChainStateFlushed(const CBlockLocator &locator) { auto event = [locator, this] { m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.ChainStateFlushed(locator); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: block hash=%s", __func__, locator.IsNull() ? "null" : locator.vHave.front().ToString()); } void CMainSignals::BlockChecked(const CBlock& block, const BlockValidationState& state) { LOG_EVENT("%s: block hash=%s state=%s", __func__, block.GetHash().ToString(), state.ToString()); m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.BlockChecked(block, state); }); } void CMainSignals::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr &block) { LOG_EVENT("%s: block hash=%s", __func__, block->GetHash().ToString()); m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.NewPoWValidBlock(pindex, block); }); } void CMainSignals::AcceptedBlockHeader(const CBlockIndex *pindexNew) { LOG_EVENT("%s: accepted block header hash=%s", __func__, pindexNew->GetBlockHash().ToString()); m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.AcceptedBlockHeader(pindexNew); }); } void CMainSignals::NotifyHeaderTip(const CBlockIndex *pindexNew, bool fInitialDownload) { LOG_EVENT("%s: accepted block header hash=%s initial=%d", __func__, pindexNew->GetBlockHash().ToString(), fInitialDownload); m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.NotifyHeaderTip(pindexNew, fInitialDownload); }); } void CMainSignals::NotifyTransactionLock(const CTransactionRef &tx, const std::shared_ptr& islock) { auto event = [tx, islock, this] { m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.NotifyTransactionLock(tx, islock); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: transaction lock txid=%s", __func__, tx->GetHash().ToString()); } void CMainSignals::NotifyChainLock(const CBlockIndex* pindex, const std::shared_ptr& clsig) { auto event = [pindex, clsig, this] { m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.NotifyChainLock(pindex, clsig); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: notify chainlock at block=%s cl=%s", __func__, pindex->GetBlockHash().ToString(), clsig->ToString()); } void CMainSignals::NotifyGovernanceVote(const CDeterministicMNList& tip_mn_list, const std::shared_ptr& vote) { auto event = [vote, tip_mn_list, this] { m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.NotifyGovernanceVote(tip_mn_list, vote); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: notify governance vote: %s", __func__, vote->GetHash().ToString()); } void CMainSignals::NotifyGovernanceObject(const std::shared_ptr& object) { auto event = [object, this] { m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.NotifyGovernanceObject(object); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: notify governance object: %s", __func__, object->GetHash().ToString()); } void CMainSignals::NotifyInstantSendDoubleSpendAttempt(const CTransactionRef& currentTx, const CTransactionRef& previousTx) { auto event = [currentTx, previousTx, this] { m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.NotifyInstantSendDoubleSpendAttempt(currentTx, previousTx); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: notify instant doublespendattempt currenttxid=%s previoustxid=%s", __func__, currentTx->GetHash().ToString(), previousTx->GetHash().ToString()); } void CMainSignals::NotifyRecoveredSig(const std::shared_ptr& sig) { auto event = [sig, this] { m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.NotifyRecoveredSig(sig); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: notify recoveredsig=%s", __func__, sig->GetHash().ToString()); } void CMainSignals::NotifyMasternodeListChanged(bool undo, const CDeterministicMNList& oldMNList, const CDeterministicMNListDiff& diff) { LOG_EVENT("%s: notify mn list changed undo=%d", __func__, undo); m_internals->Iterate([&](CValidationInterface& callbacks) { callbacks.NotifyMasternodeListChanged(undo, oldMNList, diff); }); }