// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2015 The Bitcoin Core developers // Copyright (c) 2014-2020 The Dash Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #if defined(HAVE_CONFIG_H) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef WIN32 #include #else #include #endif #ifdef USE_POLL #include #endif #ifdef USE_EPOLL #include #endif #ifdef USE_KQUEUE #include #endif #ifdef USE_UPNP #include #include #include #include #endif #include #include // Dump addresses to peers.dat and banlist.dat every 15 minutes (900s) #define DUMP_ADDRESSES_INTERVAL 900 // We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization. #define FEELER_SLEEP_WINDOW 1 // MSG_NOSIGNAL is not available on some platforms, if it doesn't exist define it as 0 #if !defined(MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif // MSG_DONTWAIT is not available on some platforms, if it doesn't exist define it as 0 #if !defined(MSG_DONTWAIT) #define MSG_DONTWAIT 0 #endif // Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h. // Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version. #ifdef WIN32 #ifndef PROTECTION_LEVEL_UNRESTRICTED #define PROTECTION_LEVEL_UNRESTRICTED 10 #endif #ifndef IPV6_PROTECTION_LEVEL #define IPV6_PROTECTION_LEVEL 23 #endif #endif /** Used to pass flags to the Bind() function */ enum BindFlags { BF_NONE = 0, BF_EXPLICIT = (1U << 0), BF_REPORT_ERROR = (1U << 1), BF_WHITELIST = (1U << 2), }; #ifndef USE_WAKEUP_PIPE // The set of sockets cannot be modified while waiting // The sleep time needs to be small to avoid new sockets stalling static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50; #else // select() is woken up through the wakeup pipe whenever a new node is added, so we can wait much longer. // We are however still somewhat limited in how long we can sleep as there is periodic work (cleanup) to be done in // the socket handler thread static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 500; #endif const static std::string NET_MESSAGE_COMMAND_OTHER = "*other*"; constexpr const CConnman::CFullyConnectedOnly CConnman::FullyConnectedOnly; constexpr const CConnman::CAllNodes CConnman::AllNodes; static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8] static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8] // // Global state variables // bool fDiscover = true; bool fListen = true; bool fRelayTxes = true; CCriticalSection cs_mapLocalHost; std::map mapLocalHost GUARDED_BY(cs_mapLocalHost); static bool vfLimited[NET_MAX] GUARDED_BY(cs_mapLocalHost) = {}; std::string strSubVersion; void CConnman::AddOneShot(const std::string& strDest) { LOCK(cs_vOneShots); vOneShots.push_back(strDest); } unsigned short GetListenPort() { return (unsigned short)(gArgs.GetArg("-port", Params().GetDefaultPort())); } // find 'best' local address for a particular peer bool GetLocal(CService& addr, const CNetAddr *paddrPeer) { if (!fListen) return false; int nBestScore = -1; int nBestReachability = -1; { LOCK(cs_mapLocalHost); for (const auto& entry : mapLocalHost) { int nScore = entry.second.nScore; int nReachability = entry.first.GetReachabilityFrom(paddrPeer); if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) { addr = CService(entry.first, entry.second.nPort); nBestReachability = nReachability; nBestScore = nScore; } } } return nBestScore >= 0; } //! Convert the pnSeed6 array into usable address objects. static std::vector convertSeed6(const std::vector &vSeedsIn) { // It'll only connect to one or two seed nodes because once it connects, // it'll get a pile of addresses with newer timestamps. // Seed nodes are given a random 'last seen time' of between one and two // weeks ago. const int64_t nOneWeek = 7*24*60*60; std::vector vSeedsOut; vSeedsOut.reserve(vSeedsIn.size()); for (const auto& seed_in : vSeedsIn) { struct in6_addr ip; memcpy(&ip, seed_in.addr, sizeof(ip)); CAddress addr(CService(ip, seed_in.port), GetDesirableServiceFlags(NODE_NONE)); addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek; vSeedsOut.push_back(addr); } return vSeedsOut; } // get best local address for a particular peer as a CAddress // Otherwise, return the unroutable 0.0.0.0 but filled in with // the normal parameters, since the IP may be changed to a useful // one by discovery. CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices) { CAddress ret(CService(CNetAddr(),GetListenPort()), nLocalServices); CService addr; if (GetLocal(addr, paddrPeer)) { ret = CAddress(addr, nLocalServices); } ret.nTime = GetAdjustedTime(); return ret; } int GetnScore(const CService& addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == LOCAL_NONE) return 0; return mapLocalHost[addr].nScore; } // Is our peer's addrLocal potentially useful as an external IP source? bool IsPeerAddrLocalGood(CNode *pnode) { CService addrLocal = pnode->GetAddrLocal(); return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() && !IsLimited(addrLocal.GetNetwork()); } // pushes our own address to a peer void AdvertiseLocal(CNode *pnode) { if (fListen && pnode->fSuccessfullyConnected) { CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices()); if (gArgs.GetBoolArg("-addrmantest", false)) { // use IPv4 loopback during addrmantest addrLocal = CAddress(CService(LookupNumeric("127.0.0.1", GetListenPort())), pnode->GetLocalServices()); } // If discovery is enabled, sometimes give our peer the address it // tells us that it sees us as in case it has a better idea of our // address than we do. if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() || GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8:2) == 0)) { addrLocal.SetIP(pnode->GetAddrLocal()); } if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false)) { LogPrint(BCLog::NET, "AdvertiseLocal: advertising address %s\n", addrLocal.ToString()); FastRandomContext insecure_rand; pnode->PushAddress(addrLocal, insecure_rand); } } } // learn a new local address bool AddLocal(const CService& addr, int nScore) { if (!addr.IsRoutable() && Params().RequireRoutableExternalIP()) return false; if (!fDiscover && nScore < LOCAL_MANUAL) return false; if (IsLimited(addr)) return false; LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore); { LOCK(cs_mapLocalHost); bool fAlready = mapLocalHost.count(addr) > 0; LocalServiceInfo &info = mapLocalHost[addr]; if (!fAlready || nScore >= info.nScore) { info.nScore = nScore + (fAlready ? 1 : 0); info.nPort = addr.GetPort(); } } return true; } bool AddLocal(const CNetAddr &addr, int nScore) { return AddLocal(CService(addr, GetListenPort()), nScore); } bool RemoveLocal(const CService& addr) { LOCK(cs_mapLocalHost); LogPrintf("RemoveLocal(%s)\n", addr.ToString()); mapLocalHost.erase(addr); return true; } /** Make a particular network entirely off-limits (no automatic connects to it) */ void SetLimited(enum Network net, bool fLimited) { if (net == NET_UNROUTABLE || net == NET_INTERNAL) return; LOCK(cs_mapLocalHost); vfLimited[net] = fLimited; } bool IsLimited(enum Network net) { LOCK(cs_mapLocalHost); return vfLimited[net]; } bool IsLimited(const CNetAddr &addr) { return IsLimited(addr.GetNetwork()); } /** vote for a local address */ bool SeenLocal(const CService& addr) { { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == 0) return false; mapLocalHost[addr].nScore++; } return true; } /** check whether a given address is potentially local */ bool IsLocal(const CService& addr) { LOCK(cs_mapLocalHost); return mapLocalHost.count(addr) > 0; } /** check whether a given network is one we can probably connect to */ bool IsReachable(enum Network net) { LOCK(cs_mapLocalHost); return !vfLimited[net]; } /** check whether a given address is in a network we can probably connect to */ bool IsReachable(const CNetAddr& addr) { enum Network net = addr.GetNetwork(); return IsReachable(net); } CNode* CConnman::FindNode(const CNetAddr& ip, bool fExcludeDisconnecting) { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (fExcludeDisconnecting && pnode->fDisconnect) { continue; } if (static_cast(pnode->addr) == ip) { return pnode; } } return nullptr; } CNode* CConnman::FindNode(const CSubNet& subNet, bool fExcludeDisconnecting) { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (fExcludeDisconnecting && pnode->fDisconnect) { continue; } if (subNet.Match(static_cast(pnode->addr))) { return pnode; } } return nullptr; } CNode* CConnman::FindNode(const std::string& addrName, bool fExcludeDisconnecting) { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (fExcludeDisconnecting && pnode->fDisconnect) { continue; } if (pnode->GetAddrName() == addrName) { return pnode; } } return nullptr; } CNode* CConnman::FindNode(const CService& addr, bool fExcludeDisconnecting) { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (fExcludeDisconnecting && pnode->fDisconnect) { continue; } if (static_cast(pnode->addr) == addr) { return pnode; } } return nullptr; } bool CConnman::CheckIncomingNonce(uint64_t nonce) { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (!pnode->fSuccessfullyConnected && !pnode->fInbound && pnode->GetLocalNonce() == nonce) return false; } return true; } /** Get the bind address for a socket as CAddress */ static CAddress GetBindAddress(SOCKET sock) { CAddress addr_bind; struct sockaddr_storage sockaddr_bind; socklen_t sockaddr_bind_len = sizeof(sockaddr_bind); if (sock != INVALID_SOCKET) { if (!getsockname(sock, (struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) { addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind); } else { LogPrint(BCLog::NET, "Warning: getsockname failed\n"); } } return addr_bind; } CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, bool manual_connection) { if (pszDest == nullptr) { bool fAllowLocal = Params().AllowMultiplePorts() && addrConnect.GetPort() != GetListenPort(); if (!fAllowLocal && IsLocal(addrConnect)) { return nullptr; } // Look for an existing connection CNode* pnode = FindNode(static_cast(addrConnect)); if (pnode) { LogPrintf("Failed to open new connection, already connected\n"); return nullptr; } } /// debug print if (fLogIPs) { LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n", pszDest ? pszDest : addrConnect.ToString(), pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0); } else { LogPrint(BCLog::NET, "trying connection lastseen=%.1fhrs\n", pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0); } // Resolve const int default_port = Params().GetDefaultPort(); if (pszDest) { std::vector resolved; if (Lookup(pszDest, resolved, default_port, fNameLookup && !HaveNameProxy(), 256) && !resolved.empty()) { addrConnect = CAddress(resolved[GetRand(resolved.size())], NODE_NONE); if (!addrConnect.IsValid()) { LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToString(), pszDest); return nullptr; } // It is possible that we already have a connection to the IP/port pszDest resolved to. // In that case, drop the connection that was just created, and return the existing CNode instead. // Also store the name we used to connect in that CNode, so that future FindNode() calls to that // name catch this early. LOCK(cs_vNodes); CNode* pnode = FindNode(static_cast(addrConnect)); if (pnode) { pnode->MaybeSetAddrName(std::string(pszDest)); LogPrintf("Failed to open new connection, already connected\n"); return nullptr; } } } // Connect bool connected = false; SOCKET hSocket = INVALID_SOCKET; proxyType proxy; if (addrConnect.IsValid()) { bool proxyConnectionFailed = false; if (GetProxy(addrConnect.GetNetwork(), proxy)) { hSocket = CreateSocket(proxy.proxy); if (hSocket == INVALID_SOCKET) { return nullptr; } connected = ConnectThroughProxy(proxy, addrConnect.ToStringIP(), addrConnect.GetPort(), hSocket, nConnectTimeout, &proxyConnectionFailed); } else { // no proxy needed (none set for target network) hSocket = CreateSocket(addrConnect); if (hSocket == INVALID_SOCKET) { return nullptr; } connected = ConnectSocketDirectly(addrConnect, hSocket, nConnectTimeout, manual_connection); } if (!proxyConnectionFailed) { // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to // the proxy, mark this as an attempt. addrman.Attempt(addrConnect, fCountFailure); } } else if (pszDest && GetNameProxy(proxy)) { hSocket = CreateSocket(proxy.proxy); if (hSocket == INVALID_SOCKET) { return nullptr; } std::string host; int port = default_port; SplitHostPort(std::string(pszDest), port, host); connected = ConnectThroughProxy(proxy, host, port, hSocket, nConnectTimeout, nullptr); } if (!connected) { CloseSocket(hSocket); return nullptr; } // Add node NodeId id = GetNewNodeId(); uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize(); CAddress addr_bind = GetBindAddress(hSocket); CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect, CalculateKeyedNetGroup(addrConnect), nonce, addr_bind, pszDest ? pszDest : "", false); pnode->AddRef(); statsClient.inc("peers.connect", 1.0f); return pnode; } void CConnman::DumpBanlist() { SweepBanned(); // clean unused entries (if bantime has expired) if (!BannedSetIsDirty()) return; int64_t nStart = GetTimeMillis(); CBanDB bandb; banmap_t banmap; GetBanned(banmap); if (bandb.Write(banmap)) { SetBannedSetDirty(false); } LogPrint(BCLog::NET, "Flushed %d banned node ips/subnets to banlist.dat %dms\n", banmap.size(), GetTimeMillis() - nStart); } void CNode::CloseSocketDisconnect(CConnman* connman) { AssertLockHeld(connman->cs_vNodes); fDisconnect = true; LOCK(cs_hSocket); if (hSocket == INVALID_SOCKET) { return; } fHasRecvData = false; fCanSendData = false; connman->mapSocketToNode.erase(hSocket); connman->mapReceivableNodes.erase(GetId()); connman->mapSendableNodes.erase(GetId()); { LOCK(connman->cs_mapNodesWithDataToSend); if (connman->mapNodesWithDataToSend.erase(GetId()) != 0) { // See comment in PushMessage Release(); } } connman->UnregisterEvents(this); LogPrint(BCLog::NET, "disconnecting peer=%d\n", id); CloseSocket(hSocket); statsClient.inc("peers.disconnect", 1.0f); } void CConnman::ClearBanned() { { LOCK(cs_setBanned); setBanned.clear(); setBannedIsDirty = true; } DumpBanlist(); //store banlist to disk if(clientInterface) clientInterface->BannedListChanged(); } bool CConnman::IsBanned(CNetAddr ip) { LOCK(cs_setBanned); for (const auto& it : setBanned) { CSubNet subNet = it.first; CBanEntry banEntry = it.second; if (subNet.Match(ip) && GetTime() < banEntry.nBanUntil) { return true; } } return false; } bool CConnman::IsBanned(CSubNet subnet) { LOCK(cs_setBanned); banmap_t::iterator i = setBanned.find(subnet); if (i != setBanned.end()) { CBanEntry banEntry = (*i).second; if (GetTime() < banEntry.nBanUntil) { return true; } } return false; } void CConnman::Ban(const CNetAddr& addr, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { CSubNet subNet(addr); Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch); } void CConnman::Ban(const CSubNet& subNet, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { CBanEntry banEntry(GetTime()); banEntry.banReason = banReason; if (bantimeoffset <= 0) { bantimeoffset = gArgs.GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME); sinceUnixEpoch = false; } banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime() )+bantimeoffset; { LOCK(cs_setBanned); if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) { setBanned[subNet] = banEntry; setBannedIsDirty = true; } else return; } if(clientInterface) clientInterface->BannedListChanged(); { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (subNet.Match(static_cast(pnode->addr))) pnode->fDisconnect = true; } } if(banReason == BanReasonManuallyAdded) DumpBanlist(); //store banlist to disk immediately if user requested ban } bool CConnman::Unban(const CNetAddr &addr) { CSubNet subNet(addr); return Unban(subNet); } bool CConnman::Unban(const CSubNet &subNet) { { LOCK(cs_setBanned); if (!setBanned.erase(subNet)) return false; setBannedIsDirty = true; } if(clientInterface) clientInterface->BannedListChanged(); DumpBanlist(); //store banlist to disk immediately return true; } void CConnman::GetBanned(banmap_t &banMap) { LOCK(cs_setBanned); // Sweep the banlist so expired bans are not returned SweepBanned(); banMap = setBanned; //create a thread safe copy } void CConnman::SetBanned(const banmap_t &banMap) { LOCK(cs_setBanned); setBanned = banMap; setBannedIsDirty = true; } void CConnman::SweepBanned() { int64_t now = GetTime(); bool notifyUI = false; { LOCK(cs_setBanned); banmap_t::iterator it = setBanned.begin(); while(it != setBanned.end()) { CSubNet subNet = (*it).first; CBanEntry banEntry = (*it).second; if(now > banEntry.nBanUntil) { setBanned.erase(it++); setBannedIsDirty = true; notifyUI = true; LogPrint(BCLog::NET, "%s: Removed banned node ip/subnet from banlist.dat: %s\n", __func__, subNet.ToString()); } else ++it; } } // update UI if(notifyUI && clientInterface) { clientInterface->BannedListChanged(); } } bool CConnman::BannedSetIsDirty() { LOCK(cs_setBanned); return setBannedIsDirty; } void CConnman::SetBannedSetDirty(bool dirty) { LOCK(cs_setBanned); //reuse setBanned lock for the isDirty flag setBannedIsDirty = dirty; } bool CConnman::IsWhitelistedRange(const CNetAddr &addr) { for (const CSubNet& subnet : vWhitelistedRange) { if (subnet.Match(addr)) return true; } return false; } std::string CNode::GetAddrName() const { LOCK(cs_addrName); return addrName; } void CNode::MaybeSetAddrName(const std::string& addrNameIn) { LOCK(cs_addrName); if (addrName.empty()) { addrName = addrNameIn; } } CService CNode::GetAddrLocal() const { LOCK(cs_addrLocal); return addrLocal; } void CNode::SetAddrLocal(const CService& addrLocalIn) { LOCK(cs_addrLocal); if (addrLocal.IsValid()) { error("Addr local already set for node: %i. Refusing to change from %s to %s", id, addrLocal.ToString(), addrLocalIn.ToString()); } else { addrLocal = addrLocalIn; } } std::string CNode::GetLogString() const { return fLogIPs ? addr.ToString() : strprintf("%d", id); } #undef X #define X(name) stats.name = name void CNode::copyStats(CNodeStats &stats) { stats.nodeid = this->GetId(); X(nServices); X(addr); X(addrBind); { LOCK(cs_filter); X(fRelayTxes); } X(nLastSend); X(nLastRecv); X(nTimeConnected); X(nTimeOffset); stats.addrName = GetAddrName(); X(nVersion); { LOCK(cs_SubVer); X(cleanSubVer); } X(fInbound); X(m_manual_connection); X(nStartingHeight); { LOCK(cs_vSend); X(mapSendBytesPerMsgCmd); X(nSendBytes); } { LOCK(cs_vRecv); X(mapRecvBytesPerMsgCmd); X(nRecvBytes); } X(fWhitelisted); // It is common for nodes with good ping times to suddenly become lagged, // due to a new block arriving or other large transfer. // Merely reporting pingtime might fool the caller into thinking the node was still responsive, // since pingtime does not update until the ping is complete, which might take a while. // So, if a ping is taking an unusually long time in flight, // the caller can immediately detect that this is happening. int64_t nPingUsecWait = 0; if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) { nPingUsecWait = GetTimeMicros() - nPingUsecStart; } // Raw ping time is in microseconds, but show it to user as whole seconds (Dash users should be well used to small numbers with many decimal places by now :) stats.dPingTime = (((double)nPingUsecTime) / 1e6); stats.dMinPing = (((double)nMinPingUsecTime) / 1e6); stats.dPingWait = (((double)nPingUsecWait) / 1e6); // Leave string empty if addrLocal invalid (not filled in yet) CService addrLocalUnlocked = GetAddrLocal(); stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : ""; { LOCK(cs_mnauth); X(verifiedProRegTxHash); X(verifiedPubKeyHash); } X(m_masternode_connection); } #undef X bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes, bool& complete) { complete = false; int64_t nTimeMicros = GetTimeMicros(); LOCK(cs_vRecv); nLastRecv = nTimeMicros / 1000000; nRecvBytes += nBytes; while (nBytes > 0) { // get current incomplete message, or create a new one if (vRecvMsg.empty() || vRecvMsg.back().complete()) vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK, INIT_PROTO_VERSION)); CNetMessage& msg = vRecvMsg.back(); // absorb network data int handled; if (!msg.in_data) { handled = msg.readHeader(pch, nBytes); } else { handled = msg.readData(pch, nBytes); } if (handled < 0) return false; if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) { LogPrint(BCLog::NET, "Oversized message from peer=%i, disconnecting\n", GetId()); return false; } pch += handled; nBytes -= handled; if (msg.complete()) { //store received bytes per message command //to prevent a memory DOS, only allow valid commands mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand); if (i == mapRecvBytesPerMsgCmd.end()) i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER); assert(i != mapRecvBytesPerMsgCmd.end()); i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE; statsClient.count("bandwidth.message." + std::string(msg.hdr.pchCommand) + ".bytesReceived", msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE, 1.0f); msg.nTime = nTimeMicros; complete = true; } } return true; } void CNode::SetSendVersion(int nVersionIn) { // Send version may only be changed in the version message, and // only one version message is allowed per session. We can therefore // treat this value as const and even atomic as long as it's only used // once a version message has been successfully processed. Any attempt to // set this twice is an error. if (nSendVersion != 0) { error("Send version already set for node: %i. Refusing to change from %i to %i", id, nSendVersion, nVersionIn); } else { nSendVersion = nVersionIn; } } int CNode::GetSendVersion() const { // The send version should always be explicitly set to // INIT_PROTO_VERSION rather than using this value until SetSendVersion // has been called. if (nSendVersion == 0) { error("Requesting unset send version for node: %i. Using %i", id, INIT_PROTO_VERSION); return INIT_PROTO_VERSION; } return nSendVersion; } int CNetMessage::readHeader(const char *pch, unsigned int nBytes) { // copy data to temporary parsing buffer unsigned int nRemaining = 24 - nHdrPos; unsigned int nCopy = std::min(nRemaining, nBytes); memcpy(&hdrbuf[nHdrPos], pch, nCopy); nHdrPos += nCopy; // if header incomplete, exit if (nHdrPos < 24) return nCopy; // deserialize to CMessageHeader try { hdrbuf >> hdr; } catch (const std::exception&) { return -1; } // reject messages larger than MAX_SIZE if (hdr.nMessageSize > MAX_SIZE) return -1; // switch state to reading message data in_data = true; return nCopy; } int CNetMessage::readData(const char *pch, unsigned int nBytes) { unsigned int nRemaining = hdr.nMessageSize - nDataPos; unsigned int nCopy = std::min(nRemaining, nBytes); if (vRecv.size() < nDataPos + nCopy) { // Allocate up to 256 KiB ahead, but never more than the total message size. vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024)); } hasher.Write((const unsigned char*)pch, nCopy); memcpy(&vRecv[nDataPos], pch, nCopy); nDataPos += nCopy; return nCopy; } const uint256& CNetMessage::GetMessageHash() const { assert(complete()); if (data_hash.IsNull()) hasher.Finalize(data_hash.begin()); return data_hash; } size_t CConnman::SocketSendData(CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(pnode->cs_vSend) { auto it = pnode->vSendMsg.begin(); size_t nSentSize = 0; while (it != pnode->vSendMsg.end()) { const auto &data = *it; assert(data.size() > pnode->nSendOffset); int nBytes = 0; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) break; nBytes = send(pnode->hSocket, reinterpret_cast(data.data()) + pnode->nSendOffset, data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT); } if (nBytes > 0) { pnode->nLastSend = GetSystemTimeInSeconds(); pnode->nSendBytes += nBytes; pnode->nSendOffset += nBytes; nSentSize += nBytes; if (pnode->nSendOffset == data.size()) { pnode->nSendOffset = 0; pnode->nSendSize -= data.size(); pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize; it++; } else { // could not send full message; stop sending more pnode->fCanSendData = false; break; } } else { if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { LogPrintf("socket send error %s (peer=%d)\n", NetworkErrorString(nErr), pnode->GetId()); pnode->fDisconnect = true; } } // couldn't send anything at all pnode->fCanSendData = false; break; } } if (it == pnode->vSendMsg.end()) { assert(pnode->nSendOffset == 0); assert(pnode->nSendSize == 0); } pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it); pnode->nSendMsgSize = pnode->vSendMsg.size(); return nSentSize; } struct NodeEvictionCandidate { NodeId id; int64_t nTimeConnected; int64_t nMinPingUsecTime; int64_t nLastBlockTime; int64_t nLastTXTime; bool fRelevantServices; bool fRelayTxes; bool fBloomFilter; uint64_t nKeyedNetGroup; }; static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b) { return a.nMinPingUsecTime > b.nMinPingUsecTime; } static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b) { return a.nTimeConnected > b.nTimeConnected; } static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nKeyedNetGroup < b.nKeyedNetGroup; } static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block. if (a.nLastBlockTime != b.nLastBlockTime) return a.nLastBlockTime < b.nLastBlockTime; if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices; return a.nTimeConnected > b.nTimeConnected; } static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn. if (a.nLastTXTime != b.nLastTXTime) return a.nLastTXTime < b.nLastTXTime; if (a.fRelayTxes != b.fRelayTxes) return b.fRelayTxes; if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter; return a.nTimeConnected > b.nTimeConnected; } //! Sort an array by the specified comparator, then erase the last K elements. template static void EraseLastKElements(std::vector &elements, Comparator comparator, size_t k) { std::sort(elements.begin(), elements.end(), comparator); size_t eraseSize = std::min(k, elements.size()); elements.erase(elements.end() - eraseSize, elements.end()); } /** Try to find a connection to evict when the node is full. * Extreme care must be taken to avoid opening the node to attacker * triggered network partitioning. * The strategy used here is to protect a small number of peers * for each of several distinct characteristics which are difficult * to forge. In order to partition a node the attacker must be * simultaneously better at all of them than honest peers. */ bool CConnman::AttemptToEvictConnection() { std::vector vEvictionCandidates; { LOCK(cs_vNodes); for (const CNode* node : vNodes) { if (node->fWhitelisted) continue; if (!node->fInbound) continue; if (node->fDisconnect) continue; if (fMasternodeMode) { // This handles eviction protected nodes. Nodes are always protected for a short time after the connection // was accepted. This short time is meant for the VERSION/VERACK exchange and the possible MNAUTH that might // follow when the incoming connection is from another masternode. When a message other than MNAUTH // is received after VERSION/VERACK, the protection is lifted immediately. bool isProtected = GetSystemTimeInSeconds() - node->nTimeConnected < INBOUND_EVICTION_PROTECTION_TIME; if (node->nTimeFirstMessageReceived != 0 && !node->fFirstMessageIsMNAUTH) { isProtected = false; } // if MNAUTH was valid, the node is always protected (and at the same time not accounted when // checking incoming connection limits) if (!node->verifiedProRegTxHash.IsNull()) { isProtected = true; } if (isProtected) { continue; } } NodeEvictionCandidate candidate = {node->GetId(), node->nTimeConnected, node->nMinPingUsecTime, node->nLastBlockTime, node->nLastTXTime, HasAllDesirableServiceFlags(node->nServices), node->fRelayTxes, node->pfilter != nullptr, node->nKeyedNetGroup}; vEvictionCandidates.push_back(candidate); } } // Protect connections with certain characteristics // Deterministically select 4 peers to protect by netgroup. // An attacker cannot predict which netgroups will be protected EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4); // Protect the 8 nodes with the lowest minimum ping time. // An attacker cannot manipulate this metric without physically moving nodes closer to the target. EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8); // Protect 4 nodes that most recently sent us transactions. // An attacker cannot manipulate this metric without performing useful work. EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4); // Protect 4 nodes that most recently sent us blocks. // An attacker cannot manipulate this metric without performing useful work. EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4); // Protect the half of the remaining nodes which have been connected the longest. // This replicates the non-eviction implicit behavior, and precludes attacks that start later. EraseLastKElements(vEvictionCandidates, ReverseCompareNodeTimeConnected, vEvictionCandidates.size() / 2); if (vEvictionCandidates.empty()) return false; // Identify the network group with the most connections and youngest member. // (vEvictionCandidates is already sorted by reverse connect time) uint64_t naMostConnections; unsigned int nMostConnections = 0; int64_t nMostConnectionsTime = 0; std::map > mapNetGroupNodes; for (const NodeEvictionCandidate &node : vEvictionCandidates) { std::vector &group = mapNetGroupNodes[node.nKeyedNetGroup]; group.push_back(node); int64_t grouptime = group[0].nTimeConnected; if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) { nMostConnections = group.size(); nMostConnectionsTime = grouptime; naMostConnections = node.nKeyedNetGroup; } } // Reduce to the network group with the most connections vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]); // Disconnect from the network group with the most connections NodeId evicted = vEvictionCandidates.front().id; LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (pnode->GetId() == evicted) { pnode->fDisconnect = true; return true; } } return false; } void CConnman::AcceptConnection(const ListenSocket& hListenSocket) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len); CAddress addr; int nInbound = 0; int nVerifiedInboundMasternodes = 0; int nMaxInbound = nMaxConnections - (nMaxOutbound + nMaxFeeler); if (hSocket != INVALID_SOCKET) { if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) { LogPrintf("Warning: Unknown socket family\n"); } } bool whitelisted = hListenSocket.whitelisted || IsWhitelistedRange(addr); { LOCK(cs_vNodes); for (const CNode* pnode : vNodes) { if (pnode->fInbound) { nInbound++; if (!pnode->verifiedProRegTxHash.IsNull()) { nVerifiedInboundMasternodes++; } } } } if (hSocket == INVALID_SOCKET) { int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK) LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr)); return; } std::string strDropped; if (fLogIPs) { strDropped = strprintf("connection from %s dropped", addr.ToString()); } else { strDropped = "connection dropped"; } if (!fNetworkActive) { LogPrintf("%s: not accepting new connections\n", strDropped); CloseSocket(hSocket); return; } if (!IsSelectableSocket(hSocket)) { LogPrintf("%s: non-selectable socket\n", strDropped); CloseSocket(hSocket); return; } // According to the internet TCP_NODELAY is not carried into accepted sockets // on all platforms. Set it again here just to be sure. SetSocketNoDelay(hSocket); if (IsBanned(addr) && !whitelisted) { LogPrint(BCLog::NET, "%s (banned)\n", strDropped); CloseSocket(hSocket); return; } // Evict connections until we are below nMaxInbound. In case eviction protection resulted in nodes to not be evicted // before, they might get evicted in batches now (after the protection timeout). // We don't evict verified MN connections and also don't take them into account when checking limits. We can do this // because we know that such connections are naturally limited by the total number of MNs, so this is not usable // for attacks. while (nInbound - nVerifiedInboundMasternodes >= nMaxInbound) { if (!AttemptToEvictConnection()) { // No connection to evict, disconnect the new connection LogPrint(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n"); CloseSocket(hSocket); return; } nInbound--; } // don't accept incoming connections until fully synced if(fMasternodeMode && !masternodeSync.IsSynced()) { LogPrint(BCLog::NET, "AcceptConnection -- masternode is not synced yet, skipping inbound connection attempt\n"); CloseSocket(hSocket); return; } NodeId id = GetNewNodeId(); uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize(); CAddress addr_bind = GetBindAddress(hSocket); CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addr, CalculateKeyedNetGroup(addr), nonce, addr_bind, "", true); pnode->AddRef(); pnode->fWhitelisted = whitelisted; m_msgproc->InitializeNode(pnode); if (fLogIPs) { LogPrint(BCLog::NET_NETCONN, "connection from %s accepted, sock=%d, peer=%d\n", addr.ToString(), pnode->hSocket, pnode->GetId()); } else { LogPrint(BCLog::NET_NETCONN, "connection accepted, sock=%d, peer=%d\n", pnode->hSocket, pnode->GetId()); } { LOCK(cs_vNodes); vNodes.push_back(pnode); mapSocketToNode.emplace(pnode->hSocket, pnode); RegisterEvents(pnode); WakeSelect(); } } void CConnman::DisconnectNodes() { { LOCK(cs_vNodes); if (!fNetworkActive) { // Disconnect any connected nodes for (CNode* pnode : vNodes) { if (!pnode->fDisconnect) { LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId()); pnode->fDisconnect = true; } } } // Disconnect unused nodes for (auto it = vNodes.begin(); it != vNodes.end(); ) { CNode* pnode = *it; if (pnode->fDisconnect) { // If we were the ones who initiated the disconnect, we must assume that the other side wants to see // pending messages. If the other side initiated the disconnect (or disconnected after we've shutdown // the socket), we can be pretty sure that they are not interested in any pending messages anymore and // thus can immediately close the socket. if (!pnode->fOtherSideDisconnected) { if (pnode->nDisconnectLingerTime == 0) { // let's not immediately close the socket but instead wait for at least 100ms so that there is a // chance to flush all/some pending data. Otherwise the other side might not receive REJECT messages // that were pushed right before setting fDisconnect=true // Flushing must happen in two places to ensure data can be received by the other side: // 1. vSendMsg must be empty and all messages sent via send(). This is ensured by SocketHandler() // being called before DisconnectNodes and also by the linger time // 2. Internal socket send buffers must be flushed. This is ensured solely by the linger time pnode->nDisconnectLingerTime = GetTimeMillis() + 100; } if (GetTimeMillis() < pnode->nDisconnectLingerTime) { // everything flushed to the kernel? if (!pnode->fSocketShutdown && pnode->nSendMsgSize == 0) { LOCK(pnode->cs_hSocket); if (pnode->hSocket != INVALID_SOCKET) { // Give the other side a chance to detect the disconnect as early as possible (recv() will return 0) ::shutdown(pnode->hSocket, SD_SEND); } pnode->fSocketShutdown = true; } ++it; continue; } } if (fLogIPs) { LogPrintf("ThreadSocketHandler -- removing node: peer=%d addr=%s nRefCount=%d fInbound=%d m_masternode_connection=%d m_masternode_iqr_connection=%d\n", pnode->GetId(), pnode->addr.ToString(), pnode->GetRefCount(), pnode->fInbound, pnode->m_masternode_connection, pnode->m_masternode_iqr_connection); } else { LogPrintf("ThreadSocketHandler -- removing node: peer=%d nRefCount=%d fInbound=%d m_masternode_connection=%d m_masternode_iqr_connection=%d\n", pnode->GetId(), pnode->GetRefCount(), pnode->fInbound, pnode->m_masternode_connection, pnode->m_masternode_iqr_connection); } // remove from vNodes it = vNodes.erase(it); // release outbound grant (if any) pnode->grantOutbound.Release(); // close socket and cleanup pnode->CloseSocketDisconnect(this); // hold in disconnected pool until all refs are released pnode->Release(); vNodesDisconnected.push_back(pnode); } else { ++it; } } } { // Delete disconnected nodes std::list vNodesDisconnectedCopy = vNodesDisconnected; for (auto it = vNodesDisconnected.begin(); it != vNodesDisconnected.end(); ) { CNode* pnode = *it; // wait until threads are done using it bool fDelete = false; if (pnode->GetRefCount() <= 0) { { TRY_LOCK(pnode->cs_inventory, lockInv); if (lockInv) { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) { fDelete = true; } } } if (fDelete) { it = vNodesDisconnected.erase(it); DeleteNode(pnode); } } if (!fDelete) { ++it; } } } } void CConnman::NotifyNumConnectionsChanged() { size_t vNodesSize; { LOCK(cs_vNodes); vNodesSize = vNodes.size(); } // If we had zero connections before and new connections now or if we just dropped // to zero connections reset the sync process if its outdated. if ((vNodesSize > 0 && nPrevNodeCount == 0) || (vNodesSize == 0 && nPrevNodeCount > 0)) { masternodeSync.Reset(); } if(vNodesSize != nPrevNodeCount) { nPrevNodeCount = vNodesSize; if(clientInterface) clientInterface->NotifyNumConnectionsChanged(vNodesSize); CalculateNumConnectionsChangedStats(); } } void CConnman::CalculateNumConnectionsChangedStats() { if (!gArgs.GetBoolArg("-statsenabled", DEFAULT_STATSD_ENABLE)) { return; } // count various node attributes for statsD int fullNodes = 0; int spvNodes = 0; int inboundNodes = 0; int outboundNodes = 0; int ipv4Nodes = 0; int ipv6Nodes = 0; int torNodes = 0; mapMsgCmdSize mapRecvBytesMsgStats; mapMsgCmdSize mapSentBytesMsgStats; for (const std::string &msg : getAllNetMessageTypes()) { mapRecvBytesMsgStats[msg] = 0; mapSentBytesMsgStats[msg] = 0; } mapRecvBytesMsgStats[NET_MESSAGE_COMMAND_OTHER] = 0; mapSentBytesMsgStats[NET_MESSAGE_COMMAND_OTHER] = 0; LOCK(cs_vNodes); for (const CNode* pnode : vNodes) { for (const mapMsgCmdSize::value_type &i : pnode->mapRecvBytesPerMsgCmd) mapRecvBytesMsgStats[i.first] += i.second; for (const mapMsgCmdSize::value_type &i : pnode->mapSendBytesPerMsgCmd) mapSentBytesMsgStats[i.first] += i.second; if(pnode->fClient) spvNodes++; else fullNodes++; if(pnode->fInbound) inboundNodes++; else outboundNodes++; if(pnode->addr.IsIPv4()) ipv4Nodes++; if(pnode->addr.IsIPv6()) ipv6Nodes++; if(pnode->addr.IsTor()) torNodes++; if(pnode->nPingUsecTime > 0) statsClient.timing("peers.ping_us", pnode->nPingUsecTime, 1.0f); } for (const std::string &msg : getAllNetMessageTypes()) { statsClient.gauge("bandwidth.message." + msg + ".totalBytesReceived", mapRecvBytesMsgStats[msg], 1.0f); statsClient.gauge("bandwidth.message." + msg + ".totalBytesSent", mapSentBytesMsgStats[msg], 1.0f); } statsClient.gauge("peers.totalConnections", nPrevNodeCount, 1.0f); statsClient.gauge("peers.spvNodeConnections", spvNodes, 1.0f); statsClient.gauge("peers.fullNodeConnections", fullNodes, 1.0f); statsClient.gauge("peers.inboundConnections", inboundNodes, 1.0f); statsClient.gauge("peers.outboundConnections", outboundNodes, 1.0f); statsClient.gauge("peers.ipv4Connections", ipv4Nodes, 1.0f); statsClient.gauge("peers.ipv6Connections", ipv6Nodes, 1.0f); statsClient.gauge("peers.torConnections", torNodes, 1.0f); } void CConnman::InactivityCheck(CNode *pnode) { int64_t nTime = GetSystemTimeInSeconds(); if (nTime - pnode->nTimeConnected > m_peer_connect_timeout) { if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) { LogPrint(BCLog::NET, "socket no message in first %i seconds, %d %d from %d\n", m_peer_connect_timeout, pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->GetId()); pnode->fDisconnect = true; } else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) { LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend); pnode->fDisconnect = true; } else if (nTime - pnode->nLastRecv > TIMEOUT_INTERVAL) { LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv); pnode->fDisconnect = true; } else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros()) { LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart)); pnode->fDisconnect = true; } else if (!pnode->fSuccessfullyConnected) { LogPrint(BCLog::NET, "version handshake timeout from %d\n", pnode->GetId()); pnode->fDisconnect = true; } } } bool CConnman::GenerateSelectSet(std::set &recv_set, std::set &send_set, std::set &error_set) { for (const ListenSocket& hListenSocket : vhListenSocket) { recv_set.insert(hListenSocket.socket); } { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { bool select_recv = !pnode->fHasRecvData; bool select_send = !pnode->fCanSendData; LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) continue; error_set.insert(pnode->hSocket); if (select_send) { send_set.insert(pnode->hSocket); } if (select_recv) { recv_set.insert(pnode->hSocket); } } } #ifdef USE_WAKEUP_PIPE // We add a pipe to the read set so that the select() call can be woken up from the outside // This is done when data is added to send buffers (vSendMsg) or when new peers are added // This is currently only implemented for POSIX compliant systems. This means that Windows will fall back to // timing out after 50ms and then trying to send. This is ok as we assume that heavy-load daemons are usually // run on Linux and friends. recv_set.insert(wakeupPipe[0]); #endif return !recv_set.empty() || !send_set.empty() || !error_set.empty(); } #ifdef USE_KQUEUE void CConnman::SocketEventsKqueue(std::set &recv_set, std::set &send_set, std::set &error_set, bool fOnlyPoll) { const size_t maxEvents = 64; struct kevent events[maxEvents]; struct timespec timeout; timeout.tv_sec = fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS / 1000; timeout.tv_nsec = (fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS % 1000) * 1000 * 1000; wakeupSelectNeeded = true; int n = kevent(kqueuefd, nullptr, 0, events, maxEvents, &timeout); wakeupSelectNeeded = false; if (n == -1) { LogPrintf("kevent wait error\n"); } else if (n > 0) { for (int i = 0; i < n; i++) { auto& event = events[i]; if ((event.flags & EV_ERROR) || (event.flags & EV_EOF)) { error_set.insert((SOCKET)event.ident); continue; } if (event.filter == EVFILT_READ) { recv_set.insert((SOCKET)event.ident); } if (event.filter == EVFILT_WRITE) { send_set.insert((SOCKET)event.ident); } } } } #endif #ifdef USE_EPOLL void CConnman::SocketEventsEpoll(std::set &recv_set, std::set &send_set, std::set &error_set, bool fOnlyPoll) { const size_t maxEvents = 64; epoll_event events[maxEvents]; wakeupSelectNeeded = true; int n = epoll_wait(epollfd, events, maxEvents, fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS); wakeupSelectNeeded = false; for (int i = 0; i < n; i++) { auto& e = events[i]; if((e.events & EPOLLERR) || (e.events & EPOLLHUP)) { error_set.insert((SOCKET)e.data.fd); continue; } if (e.events & EPOLLIN) { recv_set.insert((SOCKET)e.data.fd); } if (e.events & EPOLLOUT) { send_set.insert((SOCKET)e.data.fd); } } } #endif #ifdef USE_POLL void CConnman::SocketEventsPoll(std::set &recv_set, std::set &send_set, std::set &error_set, bool fOnlyPoll) { std::set recv_select_set, send_select_set, error_select_set; if (!GenerateSelectSet(recv_select_set, send_select_set, error_select_set)) { if (!fOnlyPoll) interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS)); return; } std::unordered_map pollfds; for (SOCKET socket_id : recv_select_set) { pollfds[socket_id].fd = socket_id; pollfds[socket_id].events |= POLLIN; } for (SOCKET socket_id : send_select_set) { pollfds[socket_id].fd = socket_id; pollfds[socket_id].events |= POLLOUT; } for (SOCKET socket_id : error_select_set) { pollfds[socket_id].fd = socket_id; // These flags are ignored, but we set them for clarity pollfds[socket_id].events |= POLLERR|POLLHUP; } std::vector vpollfds; vpollfds.reserve(pollfds.size()); for (auto it : pollfds) { vpollfds.push_back(std::move(it.second)); } wakeupSelectNeeded = true; int r = poll(vpollfds.data(), vpollfds.size(), fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS); wakeupSelectNeeded = false; if (r < 0) { return; } if (interruptNet) return; for (struct pollfd pollfd_entry : vpollfds) { if (pollfd_entry.revents & POLLIN) recv_set.insert(pollfd_entry.fd); if (pollfd_entry.revents & POLLOUT) send_set.insert(pollfd_entry.fd); if (pollfd_entry.revents & (POLLERR|POLLHUP)) error_set.insert(pollfd_entry.fd); } } #endif void CConnman::SocketEventsSelect(std::set &recv_set, std::set &send_set, std::set &error_set, bool fOnlyPoll) { std::set recv_select_set, send_select_set, error_select_set; if (!GenerateSelectSet(recv_select_set, send_select_set, error_select_set)) { interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS)); return; } // // Find which sockets have data to receive // struct timeval timeout; timeout.tv_sec = 0; timeout.tv_usec = fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS * 1000; // frequency to poll pnode->vSend fd_set fdsetRecv; fd_set fdsetSend; fd_set fdsetError; FD_ZERO(&fdsetRecv); FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); SOCKET hSocketMax = 0; for (SOCKET hSocket : recv_select_set) { FD_SET(hSocket, &fdsetRecv); hSocketMax = std::max(hSocketMax, hSocket); } for (SOCKET hSocket : send_select_set) { FD_SET(hSocket, &fdsetSend); hSocketMax = std::max(hSocketMax, hSocket); } for (SOCKET hSocket : error_select_set) { FD_SET(hSocket, &fdsetError); hSocketMax = std::max(hSocketMax, hSocket); } wakeupSelectNeeded = true; int nSelect = select(hSocketMax + 1, &fdsetRecv, &fdsetSend, &fdsetError, &timeout); wakeupSelectNeeded = false; if (interruptNet) return; if (nSelect == SOCKET_ERROR) { int nErr = WSAGetLastError(); LogPrintf("socket select error %s\n", NetworkErrorString(nErr)); for (unsigned int i = 0; i <= hSocketMax; i++) FD_SET(i, &fdsetRecv); FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); if (!interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS))) return; } for (SOCKET hSocket : recv_select_set) { if (FD_ISSET(hSocket, &fdsetRecv)) { recv_set.insert(hSocket); } } for (SOCKET hSocket : send_select_set) { if (FD_ISSET(hSocket, &fdsetSend)) { send_set.insert(hSocket); } } for (SOCKET hSocket : error_select_set) { if (FD_ISSET(hSocket, &fdsetError)) { error_set.insert(hSocket); } } } void CConnman::SocketEvents(std::set &recv_set, std::set &send_set, std::set &error_set, bool fOnlyPoll) { switch (socketEventsMode) { #ifdef USE_KQUEUE case SOCKETEVENTS_KQUEUE: SocketEventsKqueue(recv_set, send_set, error_set, fOnlyPoll); break; #endif #ifdef USE_EPOLL case SOCKETEVENTS_EPOLL: SocketEventsEpoll(recv_set, send_set, error_set, fOnlyPoll); break; #endif #ifdef USE_POLL case SOCKETEVENTS_POLL: SocketEventsPoll(recv_set, send_set, error_set, fOnlyPoll); break; #endif case SOCKETEVENTS_SELECT: SocketEventsSelect(recv_set, send_set, error_set, fOnlyPoll); break; default: assert(false); } } void CConnman::SocketHandler() { bool fOnlyPoll = false; { // check if we have work to do and thus should avoid waiting for events LOCK2(cs_vNodes, cs_mapNodesWithDataToSend); if (!mapReceivableNodes.empty()) { fOnlyPoll = true; } else if (!mapSendableNodes.empty() && !mapNodesWithDataToSend.empty()) { // we must check if at least one of the nodes with pending messages is also sendable, as otherwise a single // node would be able to make the network thread busy with polling for (auto& p : mapNodesWithDataToSend) { if (mapSendableNodes.count(p.first)) { fOnlyPoll = true; break; } } } } std::set recv_set, send_set, error_set; SocketEvents(recv_set, send_set, error_set, fOnlyPoll); #ifdef USE_WAKEUP_PIPE // drain the wakeup pipe if (recv_set.count(wakeupPipe[0])) { char buf[128]; while (true) { int r = read(wakeupPipe[0], buf, sizeof(buf)); if (r <= 0) { break; } } } #endif if (interruptNet) return; // // Accept new connections // for (const ListenSocket& hListenSocket : vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET && recv_set.count(hListenSocket.socket) > 0) { AcceptConnection(hListenSocket); } } std::vector vErrorNodes; std::vector vReceivableNodes; std::vector vSendableNodes; { LOCK(cs_vNodes); for (auto hSocket : error_set) { auto it = mapSocketToNode.find(hSocket); if (it == mapSocketToNode.end()) { continue; } it->second->AddRef(); vErrorNodes.emplace_back(it->second); } for (auto hSocket : recv_set) { if (error_set.count(hSocket)) { // no need to handle it twice continue; } auto it = mapSocketToNode.find(hSocket); if (it == mapSocketToNode.end()) { continue; } auto jt = mapReceivableNodes.emplace(it->second->GetId(), it->second); assert(jt.first->second == it->second); it->second->fHasRecvData = true; } for (auto hSocket : send_set) { auto it = mapSocketToNode.find(hSocket); if (it == mapSocketToNode.end()) { continue; } auto jt = mapSendableNodes.emplace(it->second->GetId(), it->second); assert(jt.first->second == it->second); it->second->fCanSendData = true; } // collect nodes that have a receivable socket // also clean up mapReceivableNodes from nodes that were receivable in the last iteration but aren't anymore vReceivableNodes.reserve(mapReceivableNodes.size()); for (auto it = mapReceivableNodes.begin(); it != mapReceivableNodes.end(); ) { if (!it->second->fHasRecvData) { it = mapReceivableNodes.erase(it); } else { // Implement the following logic: // * If there is data to send, try sending data. As this only // happens when optimistic write failed, we choose to first drain the // write buffer in this case before receiving more. This avoids // needlessly queueing received data, if the remote peer is not themselves // receiving data. This means properly utilizing TCP flow control signalling. // * Otherwise, if there is space left in the receive buffer (!fPauseRecv), try // receiving data (which should succeed as the socket signalled as receivable). if (!it->second->fPauseRecv && it->second->nSendMsgSize == 0 && !it->second->fDisconnect) { it->second->AddRef(); vReceivableNodes.emplace_back(it->second); } ++it; } } // collect nodes that have data to send and have a socket with non-empty write buffers // also clean up mapNodesWithDataToSend from nodes that had messages to send in the last iteration // but don't have any in this iteration LOCK(cs_mapNodesWithDataToSend); vSendableNodes.reserve(mapNodesWithDataToSend.size()); for (auto it = mapNodesWithDataToSend.begin(); it != mapNodesWithDataToSend.end(); ) { if (it->second->nSendMsgSize == 0) { // See comment in PushMessage it->second->Release(); it = mapNodesWithDataToSend.erase(it); } else { if (it->second->fCanSendData) { it->second->AddRef(); vSendableNodes.emplace_back(it->second); } ++it; } } } for (CNode* pnode : vErrorNodes) { if (interruptNet) { break; } // let recv() return errors and then handle it SocketRecvData(pnode); } for (CNode* pnode : vReceivableNodes) { if (interruptNet) { break; } if (pnode->fPauseRecv) { continue; } SocketRecvData(pnode); } for (CNode* pnode : vSendableNodes) { if (interruptNet) { break; } LOCK(pnode->cs_vSend); size_t nBytes = SocketSendData(pnode); if (nBytes) { RecordBytesSent(nBytes); } } ReleaseNodeVector(vErrorNodes); ReleaseNodeVector(vReceivableNodes); ReleaseNodeVector(vSendableNodes); if (interruptNet) { return; } { LOCK(cs_vNodes); // remove nodes from mapSendableNodes, so that the next iteration knows that there is no work to do // (even if there are pending messages to be sent) for (auto it = mapSendableNodes.begin(); it != mapSendableNodes.end(); ) { if (!it->second->fCanSendData) { LogPrint(BCLog::NET, "%s -- remove mapSendableNodes, peer=%d\n", __func__, it->second->GetId()); it = mapSendableNodes.erase(it); } else { ++it; } } } } size_t CConnman::SocketRecvData(CNode *pnode) { // typical socket buffer is 8K-64K char pchBuf[0x10000]; int nBytes = 0; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) return 0; nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT); if (nBytes < (int)sizeof(pchBuf)) { pnode->fHasRecvData = false; } } if (nBytes > 0) { bool notify = false; if (!pnode->ReceiveMsgBytes(pchBuf, nBytes, notify)) { LOCK(cs_vNodes); pnode->CloseSocketDisconnect(this); } RecordBytesRecv(nBytes); if (notify) { size_t nSizeAdded = 0; auto it(pnode->vRecvMsg.begin()); for (; it != pnode->vRecvMsg.end(); ++it) { if (!it->complete()) break; nSizeAdded += it->vRecv.size() + CMessageHeader::HEADER_SIZE; } { LOCK(pnode->cs_vProcessMsg); pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it); pnode->nProcessQueueSize += nSizeAdded; pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize; } WakeMessageHandler(); } } else if (nBytes == 0) { // socket closed gracefully if (!pnode->fDisconnect) { LogPrint(BCLog::NET, "socket closed\n"); } LOCK(cs_vNodes); pnode->fOtherSideDisconnected = true; // avoid lingering pnode->CloseSocketDisconnect(this); } else if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { if (!pnode->fDisconnect) LogPrintf("socket recv error %s\n", NetworkErrorString(nErr)); LOCK(cs_vNodes); pnode->fOtherSideDisconnected = true; // avoid lingering pnode->CloseSocketDisconnect(this); } } if (nBytes < 0) { return 0; } return (size_t)nBytes; } void CConnman::ThreadSocketHandler() { int64_t nLastCleanupNodes = 0; while (!interruptNet) { // Handle sockets before we do the next round of disconnects. This allows us to flush send buffers one last time // before actually closing sockets. Receiving is however skipped in case a peer is pending to be disconnected SocketHandler(); if (GetTimeMillis() - nLastCleanupNodes > 1000) { ForEachNode(AllNodes, [&](CNode* pnode) { InactivityCheck(pnode); }); nLastCleanupNodes = GetTimeMillis(); } DisconnectNodes(); NotifyNumConnectionsChanged(); } } void CConnman::WakeMessageHandler() { { std::lock_guard lock(mutexMsgProc); fMsgProcWake = true; } condMsgProc.notify_one(); } void CConnman::WakeSelect() { #ifdef USE_WAKEUP_PIPE if (wakeupPipe[1] == -1) { return; } char buf{0}; if (write(wakeupPipe[1], &buf, sizeof(buf)) != 1) { LogPrint(BCLog::NET, "write to wakeupPipe failed\n"); } #endif wakeupSelectNeeded = false; } #ifdef USE_UPNP static CThreadInterrupt g_upnp_interrupt; static std::thread g_upnp_thread; void ThreadMapPort() { std::string port = strprintf("%u", GetListenPort()); const char * multicastif = nullptr; const char * minissdpdpath = nullptr; struct UPNPDev * devlist = nullptr; char lanaddr[64]; #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0); #elif MINIUPNPC_API_VERSION < 14 /* miniupnpc 1.6 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error); #else /* miniupnpc 1.9.20150730 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error); #endif struct UPNPUrls urls; struct IGDdatas data; int r; r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr)); if (r == 1) { if (fDiscover) { char externalIPAddress[40]; r = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, externalIPAddress); if(r != UPNPCOMMAND_SUCCESS) LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r); else { if(externalIPAddress[0]) { CNetAddr resolved; if(LookupHost(externalIPAddress, resolved, false)) { LogPrintf("UPnP: ExternalIPAddress = %s\n", resolved.ToString().c_str()); AddLocal(resolved, LOCAL_UPNP); } } else LogPrintf("UPnP: GetExternalIPAddress failed.\n"); } } std::string strDesc = "Dash Core " + FormatFullVersion(); do { #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0); #else /* miniupnpc 1.6 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0"); #endif if(r!=UPNPCOMMAND_SUCCESS) LogPrintf("AddPortMapping(%s, %s, %s) failed with code %d (%s)\n", port, port, lanaddr, r, strupnperror(r)); else LogPrintf("UPnP Port Mapping successful.\n"); } while(g_upnp_interrupt.sleep_for(std::chrono::minutes(20))); r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0); LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r); freeUPNPDevlist(devlist); devlist = nullptr; FreeUPNPUrls(&urls); } else { LogPrintf("No valid UPnP IGDs found\n"); freeUPNPDevlist(devlist); devlist = nullptr; if (r != 0) FreeUPNPUrls(&urls); } } void StartMapPort() { if (!g_upnp_thread.joinable()) { assert(!g_upnp_interrupt); g_upnp_thread = std::thread((std::bind(&TraceThread, "upnp", &ThreadMapPort))); } } void InterruptMapPort() { if(g_upnp_thread.joinable()) { g_upnp_interrupt(); } } void StopMapPort() { if(g_upnp_thread.joinable()) { g_upnp_thread.join(); g_upnp_interrupt.reset(); } } #else void StartMapPort() { // Intentionally left blank. } void InterruptMapPort() { // Intentionally left blank. } void StopMapPort() { // Intentionally left blank. } #endif void CConnman::ThreadDNSAddressSeed() { // goal: only query DNS seeds if address need is acute // Avoiding DNS seeds when we don't need them improves user privacy by // creating fewer identifying DNS requests, reduces trust by giving seeds // less influence on the network topology, and reduces traffic to the seeds. if ((addrman.size() > 0) && (!gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED))) { if (!interruptNet.sleep_for(std::chrono::seconds(11))) return; LOCK(cs_vNodes); int nRelevant = 0; for (auto pnode : vNodes) { nRelevant += pnode->fSuccessfullyConnected && !pnode->fFeeler && !pnode->fOneShot && !pnode->m_manual_connection && !pnode->fInbound && !pnode->m_masternode_probe_connection; } if (nRelevant >= 2) { LogPrintf("P2P peers available. Skipped DNS seeding.\n"); return; } } const std::vector &vSeeds = Params().DNSSeeds(); int found = 0; LogPrintf("Loading addresses from DNS seeds (could take a while)\n"); for (const std::string &seed : vSeeds) { if (interruptNet) { return; } if (HaveNameProxy()) { AddOneShot(seed); } else { std::vector vIPs; std::vector vAdd; ServiceFlags requiredServiceBits = GetDesirableServiceFlags(NODE_NONE); std::string host = strprintf("x%x.%s", requiredServiceBits, seed); CNetAddr resolveSource; if (!resolveSource.SetInternal(host)) { continue; } unsigned int nMaxIPs = 256; // Limits number of IPs learned from a DNS seed if (LookupHost(host.c_str(), vIPs, nMaxIPs, true)) { for (const CNetAddr& ip : vIPs) { int nOneDay = 24*3600; CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()), requiredServiceBits); addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old vAdd.push_back(addr); found++; } addrman.Add(vAdd, resolveSource); } else { // We now avoid directly using results from DNS Seeds which do not support service bit filtering, // instead using them as a oneshot to get nodes with our desired service bits. AddOneShot(seed); } } } LogPrintf("%d addresses found from DNS seeds\n", found); } void CConnman::DumpAddresses() { int64_t nStart = GetTimeMillis(); CAddrDB adb; adb.Write(addrman); LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } void CConnman::DumpData() { DumpAddresses(); DumpBanlist(); } void CConnman::ProcessOneShot() { std::string strDest; { LOCK(cs_vOneShots); if (vOneShots.empty()) return; strDest = vOneShots.front(); vOneShots.pop_front(); } CAddress addr; CSemaphoreGrant grant(*semOutbound, true); if (grant) { OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true); } } bool CConnman::GetTryNewOutboundPeer() { return m_try_another_outbound_peer; } void CConnman::SetTryNewOutboundPeer(bool flag) { m_try_another_outbound_peer = flag; LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n", flag ? "true" : "false"); } // Return the number of peers we have over our outbound connection limit // Exclude peers that are marked for disconnect, or are going to be // disconnected soon (eg one-shots and feelers) // Also exclude peers that haven't finished initial connection handshake yet // (so that we don't decide we're over our desired connection limit, and then // evict some peer that has finished the handshake) int CConnman::GetExtraOutboundCount() { int nOutbound = 0; { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { // don't count outbound masternodes if (pnode->m_masternode_connection) { continue; } if (!pnode->fInbound && !pnode->m_manual_connection && !pnode->fFeeler && !pnode->fDisconnect && !pnode->fOneShot && pnode->fSuccessfullyConnected && !pnode->m_masternode_probe_connection) { ++nOutbound; } } } return std::max(nOutbound - nMaxOutbound, 0); } void CConnman::ThreadOpenConnections(const std::vector connect) { // Connect to specific addresses if (!connect.empty()) { for (int64_t nLoop = 0;; nLoop++) { ProcessOneShot(); for (const std::string& strAddr : connect) { CAddress addr(CService(), NODE_NONE); OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(), false, false, true); for (int i = 0; i < 10 && i < nLoop; i++) { if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return; } } if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return; } } // Initiate network connections int64_t nStart = GetTime(); // Minimum time before next feeler connection (in microseconds). int64_t nNextFeeler = PoissonNextSend(nStart*1000*1000, FEELER_INTERVAL); while (!interruptNet) { ProcessOneShot(); if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return; CSemaphoreGrant grant(*semOutbound); if (interruptNet) return; // Add seed nodes if DNS seeds are all down (an infrastructure attack?). if (addrman.size() == 0 && (GetTime() - nStart > 60)) { static bool done = false; if (!done) { LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n"); CNetAddr local; local.SetInternal("fixedseeds"); addrman.Add(convertSeed6(Params().FixedSeeds()), local); done = true; } } // // Choose an address to connect to based on most recently seen // CAddress addrConnect; // Only connect out to one peer per network group (/16 for IPv4). // This is only done for mainnet and testnet int nOutbound = 0; std::set > setConnected; if (!Params().AllowMultipleAddressesFromGroup()) { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (!pnode->fInbound && !pnode->m_masternode_connection && !pnode->m_manual_connection) { // Netgroups for inbound and addnode peers are not excluded because our goal here // is to not use multiple of our limited outbound slots on a single netgroup // but inbound and addnode peers do not use our outbound slots. Inbound peers // also have the added issue that they're attacker controlled and could be used // to prevent us from connecting to particular hosts if we used them here. setConnected.insert(pnode->addr.GetGroup()); nOutbound++; } } } std::set setConnectedMasternodes; { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (!pnode->verifiedProRegTxHash.IsNull()) { setConnectedMasternodes.emplace(pnode->verifiedProRegTxHash); } } } // Feeler Connections // // Design goals: // * Increase the number of connectable addresses in the tried table. // // Method: // * Choose a random address from new and attempt to connect to it if we can connect // successfully it is added to tried. // * Start attempting feeler connections only after node finishes making outbound // connections. // * Only make a feeler connection once every few minutes. // bool fFeeler = false; if (nOutbound >= nMaxOutbound && !GetTryNewOutboundPeer()) { int64_t nTime = GetTimeMicros(); // The current time right now (in microseconds). if (nTime > nNextFeeler) { nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL); fFeeler = true; } else { continue; } } addrman.ResolveCollisions(); auto mnList = deterministicMNManager->GetListAtChainTip(); int64_t nANow = GetAdjustedTime(); int nTries = 0; while (!interruptNet) { CAddrInfo addr = addrman.SelectTriedCollision(); // SelectTriedCollision returns an invalid address if it is empty. if (!fFeeler || !addr.IsValid()) { addr = addrman.Select(fFeeler); } auto dmn = mnList.GetMNByService(addr); bool isMasternode = dmn != nullptr; // if we selected an invalid address, restart if (!addr.IsValid() || setConnected.count(addr.GetGroup())) break; // don't try to connect to masternodes that we already have a connection to (most likely inbound) if (isMasternode && setConnectedMasternodes.count(dmn->proTxHash)) break; // if we selected a local address, restart (local addresses are allowed in regtest and devnet) bool fAllowLocal = Params().AllowMultiplePorts() && addrConnect.GetPort() != GetListenPort(); if (!fAllowLocal && IsLocal(addrConnect)) break; // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman, // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates // already-connected network ranges, ...) before trying new addrman addresses. nTries++; if (nTries > 100) break; if (IsLimited(addr)) continue; // only consider very recently tried nodes after 30 failed attempts if (nANow - addr.nLastTry < 600 && nTries < 30) continue; // for non-feelers, require all the services we'll want, // for feelers, only require they be a full node (only because most // SPV clients don't have a good address DB available) if (!isMasternode && !fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) { continue; } else if (!isMasternode && fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) { continue; } // do not allow non-default ports, unless after 50 invalid addresses selected already if ((!isMasternode || !Params().AllowMultiplePorts()) && addr.GetPort() != Params().GetDefaultPort() && addr.GetPort() != GetListenPort() && nTries < 50) continue; addrConnect = addr; break; } if (addrConnect.IsValid()) { if (fFeeler) { // Add small amount of random noise before connection to avoid synchronization. int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000); if (!interruptNet.sleep_for(std::chrono::milliseconds(randsleep))) return; if (fLogIPs) { LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToString()); } else { LogPrint(BCLog::NET, "Making feeler connection\n"); } } OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, nullptr, false, fFeeler); } } } std::vector CConnman::GetAddedNodeInfo() { std::vector ret; std::list lAddresses(0); { LOCK(cs_vAddedNodes); ret.reserve(vAddedNodes.size()); std::copy(vAddedNodes.cbegin(), vAddedNodes.cend(), std::back_inserter(lAddresses)); } // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService std::map mapConnected; std::map> mapConnectedByName; { LOCK(cs_vNodes); for (const CNode* pnode : vNodes) { if (pnode->addr.IsValid()) { mapConnected[pnode->addr] = pnode->fInbound; } std::string addrName = pnode->GetAddrName(); if (!addrName.empty()) { mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->fInbound, static_cast(pnode->addr)); } } } for (const std::string& strAddNode : lAddresses) { CService service(LookupNumeric(strAddNode.c_str(), Params().GetDefaultPort())); AddedNodeInfo addedNode{strAddNode, CService(), false, false}; if (service.IsValid()) { // strAddNode is an IP:port auto it = mapConnected.find(service); if (it != mapConnected.end()) { addedNode.resolvedAddress = service; addedNode.fConnected = true; addedNode.fInbound = it->second; } } else { // strAddNode is a name auto it = mapConnectedByName.find(strAddNode); if (it != mapConnectedByName.end()) { addedNode.resolvedAddress = it->second.second; addedNode.fConnected = true; addedNode.fInbound = it->second.first; } } ret.emplace_back(std::move(addedNode)); } return ret; } void CConnman::ThreadOpenAddedConnections() { while (true) { CSemaphoreGrant grant(*semAddnode); std::vector vInfo = GetAddedNodeInfo(); bool tried = false; for (const AddedNodeInfo& info : vInfo) { if (!info.fConnected) { if (!grant.TryAcquire()) { // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting // the addednodeinfo state might change. break; } tried = true; CAddress addr(CService(), NODE_NONE); OpenNetworkConnection(addr, false, &grant, info.strAddedNode.c_str(), false, false, true); if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return; } } // Retry every 60 seconds if a connection was attempted, otherwise two seconds if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2))) return; } } void CConnman::ThreadOpenMasternodeConnections() { // Connecting to specific addresses, no masternode connections available if (gArgs.IsArgSet("-connect") && gArgs.GetArgs("-connect").size() > 0) return; auto& chainParams = Params(); bool didConnect = false; while (!interruptNet) { int sleepTime = 1000; if (didConnect) { sleepTime = 100; } if (!interruptNet.sleep_for(std::chrono::milliseconds(sleepTime))) return; didConnect = false; if (!fNetworkActive || !masternodeSync.IsBlockchainSynced()) continue; std::set connectedNodes; std::map connectedProRegTxHashes; ForEachNode([&](const CNode* pnode) { connectedNodes.emplace(pnode->addr); if (!pnode->verifiedProRegTxHash.IsNull()) { connectedProRegTxHashes.emplace(pnode->verifiedProRegTxHash, pnode->fInbound); } }); auto mnList = deterministicMNManager->GetListAtChainTip(); if (interruptNet) return; int64_t nANow = GetAdjustedTime(); // NOTE: Process only one pending masternode at a time CDeterministicMNCPtr connectToDmn; bool isProbe = false; { // don't hold lock while calling OpenMasternodeConnection as cs_main is locked deep inside LOCK2(cs_vNodes, cs_vPendingMasternodes); if (!vPendingMasternodes.empty()) { auto dmn = mnList.GetValidMN(vPendingMasternodes.front()); vPendingMasternodes.erase(vPendingMasternodes.begin()); if (dmn && !connectedNodes.count(dmn->pdmnState->addr) && !IsMasternodeOrDisconnectRequested(dmn->pdmnState->addr)) { connectToDmn = dmn; LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- opening pending masternode connection to %s, service=%s\n", __func__, dmn->proTxHash.ToString(), dmn->pdmnState->addr.ToString(false)); } } if (!connectToDmn) { std::vector pending; for (const auto& group : masternodeQuorumNodes) { for (const auto& proRegTxHash : group.second) { auto dmn = mnList.GetMN(proRegTxHash); if (!dmn) { continue; } const auto& addr2 = dmn->pdmnState->addr; if (!connectedNodes.count(addr2) && !IsMasternodeOrDisconnectRequested(addr2) && !connectedProRegTxHashes.count(proRegTxHash)) { int64_t lastAttempt = mmetaman.GetMetaInfo(dmn->proTxHash)->GetLastOutboundAttempt(); // back off trying connecting to an address if we already tried recently if (nANow - lastAttempt < chainParams.LLMQConnectionRetryTimeout()) { continue; } pending.emplace_back(dmn); } } } if (!pending.empty()) { connectToDmn = pending[GetRandInt(pending.size())]; LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- opening quorum connection to %s, service=%s\n", __func__, connectToDmn->proTxHash.ToString(), connectToDmn->pdmnState->addr.ToString(false)); } } if (!connectToDmn) { std::vector pending; for (auto it = masternodePendingProbes.begin(); it != masternodePendingProbes.end(); ) { auto dmn = mnList.GetMN(*it); if (!dmn) { it = masternodePendingProbes.erase(it); continue; } bool connectedAndOutbound = connectedProRegTxHashes.count(dmn->proTxHash) && !connectedProRegTxHashes[dmn->proTxHash]; if (connectedAndOutbound) { // we already have an outbound connection to this MN so there is no theed to probe it again mmetaman.GetMetaInfo(dmn->proTxHash)->SetLastOutboundSuccess(nANow); it = masternodePendingProbes.erase(it); continue; } ++it; int64_t lastAttempt = mmetaman.GetMetaInfo(dmn->proTxHash)->GetLastOutboundAttempt(); // back off trying connecting to an address if we already tried recently if (nANow - lastAttempt < chainParams.LLMQConnectionRetryTimeout()) { continue; } pending.emplace_back(dmn); } if (!pending.empty()) { connectToDmn = pending[GetRandInt(pending.size())]; masternodePendingProbes.erase(connectToDmn->proTxHash); isProbe = true; LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- probing masternode %s, service=%s\n", __func__, connectToDmn->proTxHash.ToString(), connectToDmn->pdmnState->addr.ToString(false)); } } } if (!connectToDmn) { continue; } didConnect = true; mmetaman.GetMetaInfo(connectToDmn->proTxHash)->SetLastOutboundAttempt(nANow); OpenMasternodeConnection(CAddress(connectToDmn->pdmnState->addr, NODE_NETWORK), isProbe); // should be in the list now if connection was opened bool connected = ForNode(connectToDmn->pdmnState->addr, CConnman::AllNodes, [&](CNode* pnode) { if (pnode->fDisconnect) { return false; } return true; }); if (!connected) { LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- connection failed for masternode %s, service=%s\n", __func__, connectToDmn->proTxHash.ToString(), connectToDmn->pdmnState->addr.ToString(false)); // reset last outbound success mmetaman.GetMetaInfo(connectToDmn->proTxHash)->SetLastOutboundSuccess(0); } } } // if successful, this moves the passed grant to the constructed node void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler, bool manual_connection, bool masternode_connection, bool masternode_probe_connection) { // // Initiate outbound network connection // if (interruptNet) { return; } if (!fNetworkActive) { return; } if (!pszDest) { // banned or exact match? if (IsBanned(addrConnect) || FindNode(addrConnect.ToStringIPPort())) return; // local and not a connection to itself? bool fAllowLocal = Params().AllowMultiplePorts() && addrConnect.GetPort() != GetListenPort(); if (!fAllowLocal && IsLocal(addrConnect)) return; // if multiple ports for same IP are allowed, search for IP:PORT match, otherwise search for IP-only match if ((!Params().AllowMultiplePorts() && FindNode(static_cast(addrConnect))) || (Params().AllowMultiplePorts() && FindNode(static_cast(addrConnect)))) return; } else if (FindNode(std::string(pszDest))) return; auto getIpStr = [&]() { if (fLogIPs) { return addrConnect.ToString(false); } else { return std::string("new peer"); } }; LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- connecting to %s\n", __func__, getIpStr()); CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, manual_connection); if (!pnode) { LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- ConnectNode failed for %s\n", __func__, getIpStr()); return; } LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- succesfully connected to %s, sock=%d, peer=%d\n", __func__, getIpStr(), pnode->hSocket, pnode->GetId()); if (grantOutbound) grantOutbound->MoveTo(pnode->grantOutbound); if (fOneShot) pnode->fOneShot = true; if (fFeeler) pnode->fFeeler = true; if (manual_connection) pnode->m_manual_connection = true; if (masternode_connection) pnode->m_masternode_connection = true; if (masternode_probe_connection) pnode->m_masternode_probe_connection = true; { LOCK(cs_vNodes); mapSocketToNode.emplace(pnode->hSocket, pnode); } m_msgproc->InitializeNode(pnode); { LOCK(cs_vNodes); vNodes.push_back(pnode); RegisterEvents(pnode); WakeSelect(); } } void CConnman::OpenMasternodeConnection(const CAddress &addrConnect, bool probe) { OpenNetworkConnection(addrConnect, false, nullptr, nullptr, false, false, false, true, probe); } void CConnman::ThreadMessageHandler() { int64_t nLastSendMessagesTimeMasternodes = 0; while (!flagInterruptMsgProc) { std::vector vNodesCopy = CopyNodeVector(); bool fMoreWork = false; bool fSkipSendMessagesForMasternodes = true; if (GetTimeMillis() - nLastSendMessagesTimeMasternodes >= 100) { fSkipSendMessagesForMasternodes = false; nLastSendMessagesTimeMasternodes = GetTimeMillis(); } for (CNode* pnode : vNodesCopy) { if (pnode->fDisconnect) continue; // Receive messages bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc); fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend); if (flagInterruptMsgProc) return; // Send messages if (!fSkipSendMessagesForMasternodes || !pnode->m_masternode_connection) { LOCK(pnode->cs_sendProcessing); m_msgproc->SendMessages(pnode); } if (flagInterruptMsgProc) return; } ReleaseNodeVector(vNodesCopy); std::unique_lock lock(mutexMsgProc); if (!fMoreWork) { condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this] { return fMsgProcWake; }); } fMsgProcWake = false; } } bool CConnman::BindListenPort(const CService &addrBind, std::string& strError, bool fWhitelisted) { strError = ""; int nOne = 1; // Create socket for listening for incoming connections struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len)) { strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString()); LogPrintf("%s\n", strError); return false; } SOCKET hListenSocket = CreateSocket(addrBind); if (hListenSocket == INVALID_SOCKET) { strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } // Allow binding if the port is still in TIME_WAIT state after // the program was closed and restarted. setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)); // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option // and enable it by default or not. Try to enable it, if possible. if (addrBind.IsIPv6()) { #ifdef IPV6_V6ONLY setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)); #endif #ifdef WIN32 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED; setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)); #endif } if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); if (nErr == WSAEADDRINUSE) strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToString(), _(PACKAGE_NAME)); else strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr)); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } LogPrintf("Bound to %s\n", addrBind.ToString()); // Listen for incoming connections if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) { strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } #ifdef USE_KQUEUE if (socketEventsMode == SOCKETEVENTS_KQUEUE) { struct kevent event; EV_SET(&event, hListenSocket, EVFILT_READ, EV_ADD, 0, 0, nullptr); if (kevent(kqueuefd, &event, 1, nullptr, 0, nullptr) != 0) { strError = strprintf(_("Error: failed to add socket to kqueuefd (kevent returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } } #endif #ifdef USE_EPOLL if (socketEventsMode == SOCKETEVENTS_EPOLL) { epoll_event event; event.data.fd = hListenSocket; event.events = EPOLLIN; if (epoll_ctl(epollfd, EPOLL_CTL_ADD, hListenSocket, &event) != 0) { strError = strprintf(_("Error: failed to add socket to epollfd (epoll_ctl returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } } #endif vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted)); if (addrBind.IsRoutable() && fDiscover && !fWhitelisted) AddLocal(addrBind, LOCAL_BIND); return true; } void Discover() { if (!fDiscover) return; #ifdef WIN32 // Get local host IP char pszHostName[256] = ""; if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) { std::vector vaddr; if (LookupHost(pszHostName, vaddr, 0, true)) { for (const CNetAddr &addr : vaddr) { if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString()); } } } #else // Get local host ip struct ifaddrs* myaddrs; if (getifaddrs(&myaddrs) == 0) { for (struct ifaddrs* ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next) { if (ifa->ifa_addr == nullptr) continue; if ((ifa->ifa_flags & IFF_UP) == 0) continue; if (strcmp(ifa->ifa_name, "lo") == 0) continue; if (strcmp(ifa->ifa_name, "lo0") == 0) continue; if (ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr); CNetAddr addr(s4->sin_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } else if (ifa->ifa_addr->sa_family == AF_INET6) { struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr); CNetAddr addr(s6->sin6_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } freeifaddrs(myaddrs); } #endif } void CConnman::SetNetworkActive(bool active) { LogPrint(BCLog::NET, "SetNetworkActive: %s\n", active); if (fNetworkActive == active) { return; } fNetworkActive = active; // Always call the Reset() if the network gets enabled/disabled to make sure the sync process // gets a reset if its outdated.. masternodeSync.Reset(); uiInterface.NotifyNetworkActiveChanged(fNetworkActive); } CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In) : addrman(Params().AllowMultiplePorts()), nSeed0(nSeed0In), nSeed1(nSeed1In) { fNetworkActive = true; setBannedIsDirty = false; fAddressesInitialized = false; nLastNodeId = 0; nPrevNodeCount = 0; nSendBufferMaxSize = 0; nReceiveFloodSize = 0; flagInterruptMsgProc = false; SetTryNewOutboundPeer(false); Options connOptions; Init(connOptions); } NodeId CConnman::GetNewNodeId() { return nLastNodeId.fetch_add(1, std::memory_order_relaxed); } bool CConnman::Bind(const CService &addr, unsigned int flags) { if (!(flags & BF_EXPLICIT) && IsLimited(addr)) return false; std::string strError; if (!BindListenPort(addr, strError, (flags & BF_WHITELIST) != 0)) { if ((flags & BF_REPORT_ERROR) && clientInterface) { clientInterface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR); } return false; } return true; } bool CConnman::InitBinds(const std::vector& binds, const std::vector& whiteBinds) { bool fBound = false; for (const auto& addrBind : binds) { fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR)); } for (const auto& addrBind : whiteBinds) { fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR | BF_WHITELIST)); } if (binds.empty() && whiteBinds.empty()) { struct in_addr inaddr_any; inaddr_any.s_addr = INADDR_ANY; struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT; fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE); fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE); } return fBound; } bool CConnman::Start(CScheduler& scheduler, const Options& connOptions) { Init(connOptions); { LOCK(cs_totalBytesRecv); nTotalBytesRecv = 0; } { LOCK(cs_totalBytesSent); nTotalBytesSent = 0; nMaxOutboundTotalBytesSentInCycle = 0; nMaxOutboundCycleStartTime = 0; } #ifdef USE_KQUEUE if (socketEventsMode == SOCKETEVENTS_KQUEUE) { kqueuefd = kqueue(); if (kqueuefd == -1) { LogPrintf("kqueue failed\n"); return false; } } #endif #ifdef USE_EPOLL if (socketEventsMode == SOCKETEVENTS_EPOLL) { epollfd = epoll_create1(0); if (epollfd == -1) { LogPrintf("epoll_create1 failed\n"); return false; } } #endif if (fListen && !InitBinds(connOptions.vBinds, connOptions.vWhiteBinds)) { if (clientInterface) { clientInterface->ThreadSafeMessageBox( _("Failed to listen on any port. Use -listen=0 if you want this."), "", CClientUIInterface::MSG_ERROR); } return false; } for (const auto& strDest : connOptions.vSeedNodes) { AddOneShot(strDest); } if (clientInterface) { clientInterface->InitMessage(_("Loading P2P addresses...")); } // Load addresses from peers.dat int64_t nStart = GetTimeMillis(); { CAddrDB adb; if (adb.Read(addrman)) LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); else { addrman.Clear(); // Addrman can be in an inconsistent state after failure, reset it LogPrintf("Invalid or missing peers.dat; recreating\n"); DumpAddresses(); } } if (clientInterface) clientInterface->InitMessage(_("Loading banlist...")); // Load addresses from banlist.dat nStart = GetTimeMillis(); CBanDB bandb; banmap_t banmap; if (bandb.Read(banmap)) { SetBanned(banmap); // thread save setter SetBannedSetDirty(false); // no need to write down, just read data SweepBanned(); // sweep out unused entries LogPrint(BCLog::NET, "Loaded %d banned node ips/subnets from banlist.dat %dms\n", banmap.size(), GetTimeMillis() - nStart); } else { LogPrintf("Invalid or missing banlist.dat; recreating\n"); SetBannedSetDirty(true); // force write DumpBanlist(); } uiInterface.InitMessage(_("Starting network threads...")); fAddressesInitialized = true; if (semOutbound == nullptr) { // initialize semaphore semOutbound = MakeUnique(std::min((nMaxOutbound + nMaxFeeler), nMaxConnections)); } if (semAddnode == nullptr) { // initialize semaphore semAddnode = MakeUnique(nMaxAddnode); } // // Start threads // assert(m_msgproc); InterruptSocks5(false); interruptNet.reset(); flagInterruptMsgProc = false; { std::unique_lock lock(mutexMsgProc); fMsgProcWake = false; } #ifdef USE_WAKEUP_PIPE if (pipe(wakeupPipe) != 0) { wakeupPipe[0] = wakeupPipe[1] = -1; LogPrint(BCLog::NET, "pipe() for wakeupPipe failed\n"); } else { int fFlags = fcntl(wakeupPipe[0], F_GETFL, 0); if (fcntl(wakeupPipe[0], F_SETFL, fFlags | O_NONBLOCK) == -1) { LogPrint(BCLog::NET, "fcntl for O_NONBLOCK on wakeupPipe failed\n"); } fFlags = fcntl(wakeupPipe[1], F_GETFL, 0); if (fcntl(wakeupPipe[1], F_SETFL, fFlags | O_NONBLOCK) == -1) { LogPrint(BCLog::NET, "fcntl for O_NONBLOCK on wakeupPipe failed\n"); } #ifdef USE_KQUEUE if (socketEventsMode == SOCKETEVENTS_KQUEUE) { struct kevent event; EV_SET(&event, wakeupPipe[0], EVFILT_READ, EV_ADD, 0, 0, nullptr); int r = kevent(kqueuefd, &event, 1, nullptr, 0, nullptr); if (r != 0) { LogPrint(BCLog::NET, "%s -- kevent(%d, %d, %d, ...) failed. error: %s\n", __func__, kqueuefd, EV_ADD, wakeupPipe[0], NetworkErrorString(WSAGetLastError())); return false; } } #endif #ifdef USE_EPOLL if (socketEventsMode == SOCKETEVENTS_EPOLL) { epoll_event event; event.events = EPOLLIN; event.data.fd = wakeupPipe[0]; int r = epoll_ctl(epollfd, EPOLL_CTL_ADD, wakeupPipe[0], &event); if (r != 0) { LogPrint(BCLog::NET, "%s -- epoll_ctl(%d, %d, %d, ...) failed. error: %s\n", __func__, epollfd, EPOLL_CTL_ADD, wakeupPipe[0], NetworkErrorString(WSAGetLastError())); return false; } } #endif } #endif // Send and receive from sockets, accept connections threadSocketHandler = std::thread(&TraceThread >, "net", std::function(std::bind(&CConnman::ThreadSocketHandler, this))); if (!gArgs.GetBoolArg("-dnsseed", true)) LogPrintf("DNS seeding disabled\n"); else threadDNSAddressSeed = std::thread(&TraceThread >, "dnsseed", std::function(std::bind(&CConnman::ThreadDNSAddressSeed, this))); // Initiate outbound connections from -addnode threadOpenAddedConnections = std::thread(&TraceThread >, "addcon", std::function(std::bind(&CConnman::ThreadOpenAddedConnections, this))); if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) { if (clientInterface) { clientInterface->ThreadSafeMessageBox( _("Cannot provide specific connections and have addrman find outgoing connections at the same."), "", CClientUIInterface::MSG_ERROR); } return false; } if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) threadOpenConnections = std::thread(&TraceThread >, "opencon", std::function(std::bind(&CConnman::ThreadOpenConnections, this, connOptions.m_specified_outgoing))); // Initiate masternode connections threadOpenMasternodeConnections = std::thread(&TraceThread >, "mncon", std::function(std::bind(&CConnman::ThreadOpenMasternodeConnections, this))); // Process messages threadMessageHandler = std::thread(&TraceThread >, "msghand", std::function(std::bind(&CConnman::ThreadMessageHandler, this))); // Dump network addresses scheduler.scheduleEvery(std::bind(&CConnman::DumpData, this), DUMP_ADDRESSES_INTERVAL * 1000); return true; } class CNetCleanup { public: CNetCleanup() {} ~CNetCleanup() { #ifdef WIN32 // Shutdown Windows Sockets WSACleanup(); #endif } } instance_of_cnetcleanup; void CExplicitNetCleanup::callCleanup() { // Explicit call to destructor of CNetCleanup because it's not implicitly called // when the wallet is restarted from within the wallet itself. CNetCleanup *tmp = new CNetCleanup(); delete tmp; // Stroustrup's gonna kill me for that } void CConnman::Interrupt() { { std::lock_guard lock(mutexMsgProc); flagInterruptMsgProc = true; } condMsgProc.notify_all(); interruptNet(); InterruptSocks5(true); if (semOutbound) { for (int i=0; i<(nMaxOutbound + nMaxFeeler); i++) { semOutbound->post(); } } if (semAddnode) { for (int i=0; ipost(); } } } void CConnman::Stop() { if (threadMessageHandler.joinable()) threadMessageHandler.join(); if (threadOpenMasternodeConnections.joinable()) threadOpenMasternodeConnections.join(); if (threadOpenConnections.joinable()) threadOpenConnections.join(); if (threadOpenAddedConnections.joinable()) threadOpenAddedConnections.join(); if (threadDNSAddressSeed.joinable()) threadDNSAddressSeed.join(); if (threadSocketHandler.joinable()) threadSocketHandler.join(); if (fAddressesInitialized) { DumpData(); fAddressesInitialized = false; } { LOCK(cs_vNodes); // Close sockets for (CNode *pnode : vNodes) pnode->CloseSocketDisconnect(this); } for (ListenSocket& hListenSocket : vhListenSocket) if (hListenSocket.socket != INVALID_SOCKET) { #ifdef USE_KQUEUE if (socketEventsMode == SOCKETEVENTS_KQUEUE) { struct kevent event; EV_SET(&event, hListenSocket.socket, EVFILT_READ, EV_DELETE, 0, 0, nullptr); kevent(kqueuefd, &event, 1, nullptr, 0, nullptr); } #endif #ifdef USE_EPOLL if (socketEventsMode == SOCKETEVENTS_EPOLL) { epoll_ctl(epollfd, EPOLL_CTL_DEL, hListenSocket.socket, nullptr); } #endif if (!CloseSocket(hListenSocket.socket)) LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError())); } // clean up some globals (to help leak detection) for (CNode *pnode : vNodes) { DeleteNode(pnode); } for (CNode *pnode : vNodesDisconnected) { DeleteNode(pnode); } vNodes.clear(); mapSocketToNode.clear(); mapReceivableNodes.clear(); { LOCK(cs_mapNodesWithDataToSend); mapNodesWithDataToSend.clear(); } vNodesDisconnected.clear(); vhListenSocket.clear(); semOutbound.reset(); semAddnode.reset(); #ifdef USE_KQUEUE if (socketEventsMode == SOCKETEVENTS_KQUEUE && kqueuefd != -1) { #ifdef USE_WAKEUP_PIPE struct kevent event; EV_SET(&event, wakeupPipe[0], EVFILT_READ, EV_DELETE, 0, 0, nullptr); kevent(kqueuefd, &event, 1, nullptr, 0, nullptr); #endif close(kqueuefd); } kqueuefd = -1; #endif #ifdef USE_EPOLL if (socketEventsMode == SOCKETEVENTS_EPOLL && epollfd != -1) { #ifdef USE_WAKEUP_PIPE epoll_ctl(epollfd, EPOLL_CTL_DEL, wakeupPipe[0], nullptr); #endif close(epollfd); } epollfd = -1; #endif #ifdef USE_WAKEUP_PIPE if (wakeupPipe[0] != -1) close(wakeupPipe[0]); if (wakeupPipe[1] != -1) close(wakeupPipe[1]); wakeupPipe[0] = wakeupPipe[1] = -1; #endif } void CConnman::DeleteNode(CNode* pnode) { assert(pnode); bool fUpdateConnectionTime = false; m_msgproc->FinalizeNode(pnode->GetId(), fUpdateConnectionTime); if(fUpdateConnectionTime) { addrman.Connected(pnode->addr); } delete pnode; } CConnman::~CConnman() { Interrupt(); Stop(); } size_t CConnman::GetAddressCount() const { return addrman.size(); } void CConnman::SetServices(const CService &addr, ServiceFlags nServices) { addrman.SetServices(addr, nServices); } void CConnman::MarkAddressGood(const CAddress& addr) { addrman.Good(addr); } void CConnman::AddNewAddresses(const std::vector& vAddr, const CAddress& addrFrom, int64_t nTimePenalty) { addrman.Add(vAddr, addrFrom, nTimePenalty); } std::vector CConnman::GetAddresses() { return addrman.GetAddr(); } bool CConnman::AddNode(const std::string& strNode) { LOCK(cs_vAddedNodes); for (const std::string& it : vAddedNodes) { if (strNode == it) return false; } vAddedNodes.push_back(strNode); return true; } bool CConnman::RemoveAddedNode(const std::string& strNode) { LOCK(cs_vAddedNodes); for(std::vector::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) { if (strNode == *it) { vAddedNodes.erase(it); return true; } } return false; } bool CConnman::AddPendingMasternode(const uint256& proTxHash) { LOCK(cs_vPendingMasternodes); if (std::find(vPendingMasternodes.begin(), vPendingMasternodes.end(), proTxHash) != vPendingMasternodes.end()) { return false; } vPendingMasternodes.push_back(proTxHash); return true; } void CConnman::SetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set& proTxHashes) { LOCK(cs_vPendingMasternodes); auto it = masternodeQuorumNodes.emplace(std::make_pair(llmqType, quorumHash), proTxHashes); if (!it.second) { it.first->second = proTxHashes; } } void CConnman::SetMasternodeQuorumRelayMembers(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set& proTxHashes) { { LOCK(cs_vPendingMasternodes); auto it = masternodeQuorumRelayMembers.emplace(std::make_pair(llmqType, quorumHash), proTxHashes); if (!it.second) { it.first->second = proTxHashes; } } // Update existing connections ForEachNode([&](CNode* pnode) { if (!pnode->verifiedProRegTxHash.IsNull() && !pnode->m_masternode_iqr_connection && IsMasternodeQuorumRelayMember(pnode->verifiedProRegTxHash)) { // Tell our peer that we're interested in plain LLMQ recovered signatures. // Otherwise the peer would only announce/send messages resulting from QRECSIG, // e.g. InstantSend locks or ChainLocks. SPV and regular full nodes should not send // this message as they are usually only interested in the higher level messages. const CNetMsgMaker msgMaker(pnode->GetSendVersion()); PushMessage(pnode, msgMaker.Make(NetMsgType::QSENDRECSIGS, true)); pnode->m_masternode_iqr_connection = true; } }); } bool CConnman::HasMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash) { LOCK(cs_vPendingMasternodes); return masternodeQuorumNodes.count(std::make_pair(llmqType, quorumHash)); } std::set CConnman::GetMasternodeQuorums(Consensus::LLMQType llmqType) { LOCK(cs_vPendingMasternodes); std::set result; for (const auto& p : masternodeQuorumNodes) { if (p.first.first != llmqType) { continue; } result.emplace(p.first.second); } return result; } std::set CConnman::GetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash) const { LOCK2(cs_vNodes, cs_vPendingMasternodes); auto it = masternodeQuorumNodes.find(std::make_pair(llmqType, quorumHash)); if (it == masternodeQuorumNodes.end()) { return {}; } const auto& proRegTxHashes = it->second; std::set nodes; for (const auto pnode : vNodes) { if (pnode->fDisconnect) { continue; } if (!pnode->qwatch && (pnode->verifiedProRegTxHash.IsNull() || !proRegTxHashes.count(pnode->verifiedProRegTxHash))) { continue; } nodes.emplace(pnode->GetId()); } return nodes; } void CConnman::RemoveMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash) { LOCK(cs_vPendingMasternodes); masternodeQuorumNodes.erase(std::make_pair(llmqType, quorumHash)); masternodeQuorumRelayMembers.erase(std::make_pair(llmqType, quorumHash)); } bool CConnman::IsMasternodeQuorumNode(const CNode* pnode) { // Let's see if this is an outgoing connection to an address that is known to be a masternode // We however only need to know this if the node did not authenticate itself as a MN yet uint256 assumedProTxHash; if (pnode->verifiedProRegTxHash.IsNull() && !pnode->fInbound) { auto mnList = deterministicMNManager->GetListAtChainTip(); auto dmn = mnList.GetMNByService(pnode->addr); if (dmn == nullptr) { // This is definitely not a masternode return false; } assumedProTxHash = dmn->proTxHash; } LOCK(cs_vPendingMasternodes); for (const auto& p : masternodeQuorumNodes) { if (!pnode->verifiedProRegTxHash.IsNull()) { if (p.second.count(pnode->verifiedProRegTxHash)) { return true; } } else if (!assumedProTxHash.IsNull()) { if (p.second.count(assumedProTxHash)) { return true; } } } return false; } bool CConnman::IsMasternodeQuorumRelayMember(const uint256& protxHash) { if (protxHash.IsNull()) { return false; } LOCK(cs_vPendingMasternodes); for (const auto& p : masternodeQuorumRelayMembers) { if (p.second.count(protxHash)) { return true; } } return false; } void CConnman::AddPendingProbeConnections(const std::set &proTxHashes) { LOCK(cs_vPendingMasternodes); masternodePendingProbes.insert(proTxHashes.begin(), proTxHashes.end()); } size_t CConnman::GetNodeCount(NumConnections flags) { LOCK(cs_vNodes); int nNum = 0; for (const auto& pnode : vNodes) { if (pnode->fDisconnect) { continue; } if (flags & (pnode->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT)) { nNum++; } } return nNum; } size_t CConnman::GetMaxOutboundNodeCount() { return nMaxOutbound; } void CConnman::GetNodeStats(std::vector& vstats) { vstats.clear(); LOCK(cs_vNodes); vstats.reserve(vNodes.size()); for (CNode* pnode : vNodes) { if (pnode->fDisconnect) { continue; } vstats.emplace_back(); pnode->copyStats(vstats.back()); } } bool CConnman::DisconnectNode(const std::string& strNode) { LOCK(cs_vNodes); if (CNode* pnode = FindNode(strNode)) { pnode->fDisconnect = true; return true; } return false; } bool CConnman::DisconnectNode(NodeId id) { LOCK(cs_vNodes); for(CNode* pnode : vNodes) { if (id == pnode->GetId()) { pnode->fDisconnect = true; return true; } } return false; } void CConnman::RelayTransaction(const CTransaction& tx) { uint256 hash = tx.GetHash(); int nInv = MSG_TX; if (CCoinJoin::GetDSTX(hash)) { nInv = MSG_DSTX; } CInv inv(nInv, hash); RelayInv(inv); } void CConnman::RelayInv(CInv &inv, const int minProtoVersion) { LOCK(cs_vNodes); for (const auto& pnode : vNodes) { if (pnode->nVersion < minProtoVersion || !pnode->CanRelay()) continue; pnode->PushInventory(inv); } } void CConnman::RelayInvFiltered(CInv &inv, const CTransaction& relatedTx, const int minProtoVersion) { LOCK(cs_vNodes); for (const auto& pnode : vNodes) { if (pnode->nVersion < minProtoVersion || !pnode->CanRelay()) continue; { LOCK(pnode->cs_filter); if(pnode->pfilter && !pnode->pfilter->IsRelevantAndUpdate(relatedTx)) continue; } pnode->PushInventory(inv); } } void CConnman::RelayInvFiltered(CInv &inv, const uint256& relatedTxHash, const int minProtoVersion) { LOCK(cs_vNodes); for (const auto& pnode : vNodes) { if (pnode->nVersion < minProtoVersion || !pnode->CanRelay()) continue; { LOCK(pnode->cs_filter); if(pnode->pfilter && !pnode->pfilter->contains(relatedTxHash)) continue; } pnode->PushInventory(inv); } } void CConnman::RecordBytesRecv(uint64_t bytes) { LOCK(cs_totalBytesRecv); nTotalBytesRecv += bytes; statsClient.count("bandwidth.bytesReceived", bytes, 0.1f); statsClient.gauge("bandwidth.totalBytesReceived", nTotalBytesRecv, 0.01f); } void CConnman::RecordBytesSent(uint64_t bytes) { LOCK(cs_totalBytesSent); nTotalBytesSent += bytes; statsClient.count("bandwidth.bytesSent", bytes, 0.01f); statsClient.gauge("bandwidth.totalBytesSent", nTotalBytesSent, 0.01f); uint64_t now = GetTime(); if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now) { // timeframe expired, reset cycle nMaxOutboundCycleStartTime = now; nMaxOutboundTotalBytesSentInCycle = 0; } // TODO, exclude whitebind peers nMaxOutboundTotalBytesSentInCycle += bytes; } void CConnman::SetMaxOutboundTarget(uint64_t limit) { LOCK(cs_totalBytesSent); nMaxOutboundLimit = limit; } uint64_t CConnman::GetMaxOutboundTarget() { LOCK(cs_totalBytesSent); return nMaxOutboundLimit; } uint64_t CConnman::GetMaxOutboundTimeframe() { LOCK(cs_totalBytesSent); return nMaxOutboundTimeframe; } uint64_t CConnman::GetMaxOutboundTimeLeftInCycle() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) return 0; if (nMaxOutboundCycleStartTime == 0) return nMaxOutboundTimeframe; uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe; uint64_t now = GetTime(); return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime(); } void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe) { LOCK(cs_totalBytesSent); if (nMaxOutboundTimeframe != timeframe) { // reset measure-cycle in case of changing // the timeframe nMaxOutboundCycleStartTime = GetTime(); } nMaxOutboundTimeframe = timeframe; } bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) return false; if (historicalBlockServingLimit) { // keep a large enough buffer to at least relay each block once uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle(); uint64_t buffer = timeLeftInCycle / 600 * MaxBlockSize(fDIP0001ActiveAtTip); if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer) return true; } else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) return true; return false; } uint64_t CConnman::GetOutboundTargetBytesLeft() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) return 0; return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle; } uint64_t CConnman::GetTotalBytesRecv() { LOCK(cs_totalBytesRecv); return nTotalBytesRecv; } uint64_t CConnman::GetTotalBytesSent() { LOCK(cs_totalBytesSent); return nTotalBytesSent; } ServiceFlags CConnman::GetLocalServices() const { return nLocalServices; } void CConnman::SetBestHeight(int height) { nBestHeight.store(height, std::memory_order_release); } int CConnman::GetBestHeight() const { return nBestHeight.load(std::memory_order_acquire); } unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; } CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress& addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string& addrNameIn, bool fInboundIn) : nTimeConnected(GetSystemTimeInSeconds()), nTimeFirstMessageReceived(0), fFirstMessageIsMNAUTH(false), addr(addrIn), addrBind(addrBindIn), fInbound(fInboundIn), nKeyedNetGroup(nKeyedNetGroupIn), addrKnown(5000, 0.001), filterInventoryKnown(50000, 0.000001), id(idIn), nLocalHostNonce(nLocalHostNonceIn), nLocalServices(nLocalServicesIn), nMyStartingHeight(nMyStartingHeightIn), nSendVersion(0) { nServices = NODE_NONE; hSocket = hSocketIn; nRecvVersion = INIT_PROTO_VERSION; nLastSend = 0; nLastRecv = 0; nSendBytes = 0; nRecvBytes = 0; nTimeOffset = 0; addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn; nVersion = 0; nNumWarningsSkipped = 0; nLastWarningTime = 0; strSubVer = ""; fWhitelisted = false; fOneShot = false; m_manual_connection = false; fClient = false; // set by version message m_limited_node = false; // set by version message fFeeler = false; fSuccessfullyConnected = false; fDisconnect = false; nRefCount = 0; nSendSize = 0; nSendOffset = 0; hashContinue = uint256(); nStartingHeight = -1; filterInventoryKnown.reset(); fSendMempool = false; fGetAddr = false; nNextLocalAddrSend = 0; nNextAddrSend = 0; fRelayTxes = false; fSentAddr = false; timeLastMempoolReq = 0; nLastBlockTime = 0; nLastTXTime = 0; nPingNonceSent = 0; nPingUsecStart = 0; nPingUsecTime = 0; fPingQueued = false; m_masternode_connection = false; m_masternode_probe_connection = false; nMinPingUsecTime = std::numeric_limits::max(); fPauseRecv = false; fPauseSend = false; fHasRecvData = false; fCanSendData = false; nProcessQueueSize = 0; nSendMsgSize = 0; for (const std::string &msg : getAllNetMessageTypes()) mapRecvBytesPerMsgCmd[msg] = 0; mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0; if (fLogIPs) { LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id); } else { LogPrint(BCLog::NET, "Added connection peer=%d\n", id); } } CNode::~CNode() { CloseSocket(hSocket); } bool CConnman::NodeFullyConnected(const CNode* pnode) { return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect; } void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg) { size_t nMessageSize = msg.data.size(); size_t nTotalSize = nMessageSize + CMessageHeader::HEADER_SIZE; LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.command.c_str()), nMessageSize, pnode->GetId()); statsClient.count("bandwidth.message." + SanitizeString(msg.command.c_str()) + ".bytesSent", nTotalSize, 1.0f); statsClient.inc("message.sent." + SanitizeString(msg.command.c_str()), 1.0f); std::vector serializedHeader; serializedHeader.reserve(CMessageHeader::HEADER_SIZE); uint256 hash = Hash(msg.data.data(), msg.data.data() + nMessageSize); CMessageHeader hdr(Params().MessageStart(), msg.command.c_str(), nMessageSize); memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE); CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, serializedHeader, 0, hdr}; size_t nBytesSent = 0; { LOCK(pnode->cs_vSend); bool hasPendingData = !pnode->vSendMsg.empty(); //log total amount of bytes per command pnode->mapSendBytesPerMsgCmd[msg.command] += nTotalSize; pnode->nSendSize += nTotalSize; if (pnode->nSendSize > nSendBufferMaxSize) pnode->fPauseSend = true; pnode->vSendMsg.push_back(std::move(serializedHeader)); if (nMessageSize) pnode->vSendMsg.push_back(std::move(msg.data)); pnode->nSendMsgSize = pnode->vSendMsg.size(); { LOCK(cs_mapNodesWithDataToSend); // we're not holding cs_vNodes here, so there is a chance of this node being disconnected shortly before // we get here. Whoever called PushMessage still has a ref to CNode*, but will later Release() it, so we // might end up having an entry in mapNodesWithDataToSend that is not in vNodes anymore. We need to // Add/Release refs when adding/erasing mapNodesWithDataToSend. if (mapNodesWithDataToSend.emplace(pnode->GetId(), pnode).second) { pnode->AddRef(); } } // wake up select() call in case there was no pending data before (so it was not selecting this socket for sending) if (!hasPendingData && wakeupSelectNeeded) WakeSelect(); } if (nBytesSent) RecordBytesSent(nBytesSent); } bool CConnman::ForNode(const CService& addr, std::function cond, std::function func) { CNode* found = nullptr; LOCK(cs_vNodes); for (auto&& pnode : vNodes) { if((CService)pnode->addr == addr) { found = pnode; break; } } return found != nullptr && cond(found) && func(found); } bool CConnman::ForNode(NodeId id, std::function cond, std::function func) { CNode* found = nullptr; LOCK(cs_vNodes); for (auto&& pnode : vNodes) { if(pnode->GetId() == id) { found = pnode; break; } } return found != nullptr && cond(found) && func(found); } bool CConnman::IsMasternodeOrDisconnectRequested(const CService& addr) { return ForNode(addr, AllNodes, [](CNode* pnode){ return pnode->m_masternode_connection || pnode->fDisconnect; }); } int64_t CConnman::PoissonNextSendInbound(int64_t now, int average_interval_seconds) { if (m_next_send_inv_to_incoming < now) { // If this function were called from multiple threads simultaneously // it would possible that both update the next send variable, and return a different result to their caller. // This is not possible in practice as only the net processing thread invokes this function. m_next_send_inv_to_incoming = PoissonNextSend(now, average_interval_seconds); } return m_next_send_inv_to_incoming; } int64_t PoissonNextSend(int64_t now, int average_interval_seconds) { return now + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5); } std::vector CConnman::CopyNodeVector(std::function cond) { std::vector vecNodesCopy; LOCK(cs_vNodes); vecNodesCopy.reserve(vNodes.size()); for(size_t i = 0; i < vNodes.size(); ++i) { CNode* pnode = vNodes[i]; if (!cond(pnode)) continue; pnode->AddRef(); vecNodesCopy.push_back(pnode); } return vecNodesCopy; } std::vector CConnman::CopyNodeVector() { return CopyNodeVector(AllNodes); } void CConnman::ReleaseNodeVector(const std::vector& vecNodes) { for(size_t i = 0; i < vecNodes.size(); ++i) { CNode* pnode = vecNodes[i]; pnode->Release(); } } CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const { return CSipHasher(nSeed0, nSeed1).Write(id); } uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& ad) const { std::vector vchNetGroup(ad.GetGroup()); return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup.data(), vchNetGroup.size()).Finalize(); } void CConnman::RegisterEvents(CNode *pnode) { #ifdef USE_KQUEUE if (socketEventsMode != SOCKETEVENTS_KQUEUE) { return; } LOCK(pnode->cs_hSocket); assert(pnode->hSocket != INVALID_SOCKET); struct kevent events[2]; EV_SET(&events[0], pnode->hSocket, EVFILT_READ, EV_ADD, 0, 0, nullptr); EV_SET(&events[1], pnode->hSocket, EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, nullptr); int r = kevent(kqueuefd, events, 2, nullptr, 0, nullptr); if (r != 0) { LogPrint(BCLog::NET, "%s -- kevent(%d, %d, %d, ...) failed. error: %s\n", __func__, kqueuefd, EV_ADD, pnode->hSocket, NetworkErrorString(WSAGetLastError())); } #endif #ifdef USE_EPOLL if (socketEventsMode != SOCKETEVENTS_EPOLL) { return; } LOCK(pnode->cs_hSocket); assert(pnode->hSocket != INVALID_SOCKET); epoll_event e; // We're using edge-triggered mode, so it's important that we drain sockets even if no signals come in e.events = EPOLLIN | EPOLLOUT | EPOLLET | EPOLLERR | EPOLLHUP; e.data.fd = pnode->hSocket; int r = epoll_ctl(epollfd, EPOLL_CTL_ADD, pnode->hSocket, &e); if (r != 0) { LogPrint(BCLog::NET, "%s -- epoll_ctl(%d, %d, %d, ...) failed. error: %s\n", __func__, epollfd, EPOLL_CTL_ADD, pnode->hSocket, NetworkErrorString(WSAGetLastError())); } #endif } void CConnman::UnregisterEvents(CNode *pnode) { #ifdef USE_KQUEUE if (socketEventsMode != SOCKETEVENTS_KQUEUE) { return; } LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { return; } struct kevent events[2]; EV_SET(&events[0], pnode->hSocket, EVFILT_READ, EV_DELETE, 0, 0, nullptr); EV_SET(&events[1], pnode->hSocket, EVFILT_WRITE, EV_DELETE, 0, 0, nullptr); int r = kevent(kqueuefd, events, 2, nullptr, 0, nullptr); if (r != 0) { LogPrint(BCLog::NET, "%s -- kevent(%d, %d, %d, ...) failed. error: %s\n", __func__, kqueuefd, EV_DELETE, pnode->hSocket, NetworkErrorString(WSAGetLastError())); } #endif #ifdef USE_EPOLL if (socketEventsMode != SOCKETEVENTS_EPOLL) { return; } LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { return; } int r = epoll_ctl(epollfd, EPOLL_CTL_DEL, pnode->hSocket, nullptr); if (r != 0) { LogPrint(BCLog::NET, "%s -- epoll_ctl(%d, %d, %d, ...) failed. error: %s\n", __func__, epollfd, EPOLL_CTL_DEL, pnode->hSocket, NetworkErrorString(WSAGetLastError())); } #endif }