// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifdef HAVE_CONFIG_H #include "config/bitcoin-config.h" #endif #include "netbase.h" #include "hash.h" #include "sync.h" #include "uint256.h" #include "random.h" #include "util.h" #include "utilstrencodings.h" #ifdef HAVE_GETADDRINFO_A #include #endif #ifndef WIN32 #if HAVE_INET_PTON #include #endif #include #endif #include // for to_lower() #include // for startswith() and endswith() #include #if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif using namespace std; // Settings static proxyType proxyInfo[NET_MAX]; static proxyType nameProxy; static CCriticalSection cs_proxyInfos; int nConnectTimeout = DEFAULT_CONNECT_TIMEOUT; bool fNameLookup = false; static const unsigned char pchIPv4[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff }; // Need ample time for negotiation for very slow proxies such as Tor (milliseconds) static const int SOCKS5_RECV_TIMEOUT = 20 * 1000; enum Network ParseNetwork(std::string net) { boost::to_lower(net); if (net == "ipv4") return NET_IPV4; if (net == "ipv6") return NET_IPV6; if (net == "tor" || net == "onion") return NET_TOR; return NET_UNROUTABLE; } std::string GetNetworkName(enum Network net) { switch(net) { case NET_IPV4: return "ipv4"; case NET_IPV6: return "ipv6"; case NET_TOR: return "onion"; default: return ""; } } void SplitHostPort(std::string in, int &portOut, std::string &hostOut) { size_t colon = in.find_last_of(':'); // if a : is found, and it either follows a [...], or no other : is in the string, treat it as port separator bool fHaveColon = colon != in.npos; bool fBracketed = fHaveColon && (in[0]=='[' && in[colon-1]==']'); // if there is a colon, and in[0]=='[', colon is not 0, so in[colon-1] is safe bool fMultiColon = fHaveColon && (in.find_last_of(':',colon-1) != in.npos); if (fHaveColon && (colon==0 || fBracketed || !fMultiColon)) { int32_t n; if (ParseInt32(in.substr(colon + 1), &n) && n > 0 && n < 0x10000) { in = in.substr(0, colon); portOut = n; } } if (in.size()>0 && in[0] == '[' && in[in.size()-1] == ']') hostOut = in.substr(1, in.size()-2); else hostOut = in; } bool static LookupIntern(const char *pszName, std::vector& vIP, unsigned int nMaxSolutions, bool fAllowLookup) { vIP.clear(); { CNetAddr addr; if (addr.SetSpecial(std::string(pszName))) { vIP.push_back(addr); return true; } } #ifdef HAVE_GETADDRINFO_A struct in_addr ipv4_addr; #ifdef HAVE_INET_PTON if (inet_pton(AF_INET, pszName, &ipv4_addr) > 0) { vIP.push_back(CNetAddr(ipv4_addr)); return true; } struct in6_addr ipv6_addr; if (inet_pton(AF_INET6, pszName, &ipv6_addr) > 0) { vIP.push_back(CNetAddr(ipv6_addr)); return true; } #else ipv4_addr.s_addr = inet_addr(pszName); if (ipv4_addr.s_addr != INADDR_NONE) { vIP.push_back(CNetAddr(ipv4_addr)); return true; } #endif #endif struct addrinfo aiHint; memset(&aiHint, 0, sizeof(struct addrinfo)); aiHint.ai_socktype = SOCK_STREAM; aiHint.ai_protocol = IPPROTO_TCP; aiHint.ai_family = AF_UNSPEC; #ifdef WIN32 aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST; #else aiHint.ai_flags = fAllowLookup ? AI_ADDRCONFIG : AI_NUMERICHOST; #endif struct addrinfo *aiRes = NULL; #ifdef HAVE_GETADDRINFO_A struct gaicb gcb, *query = &gcb; memset(query, 0, sizeof(struct gaicb)); gcb.ar_name = pszName; gcb.ar_request = &aiHint; int nErr = getaddrinfo_a(GAI_NOWAIT, &query, 1, NULL); if (nErr) return false; do { // Should set the timeout limit to a resonable value to avoid // generating unnecessary checking call during the polling loop, // while it can still response to stop request quick enough. // 2 seconds looks fine in our situation. struct timespec ts = { 2, 0 }; gai_suspend(&query, 1, &ts); boost::this_thread::interruption_point(); nErr = gai_error(query); if (0 == nErr) aiRes = query->ar_result; } while (nErr == EAI_INPROGRESS); #else int nErr = getaddrinfo(pszName, NULL, &aiHint, &aiRes); #endif if (nErr) return false; struct addrinfo *aiTrav = aiRes; while (aiTrav != NULL && (nMaxSolutions == 0 || vIP.size() < nMaxSolutions)) { if (aiTrav->ai_family == AF_INET) { assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in)); vIP.push_back(CNetAddr(((struct sockaddr_in*)(aiTrav->ai_addr))->sin_addr)); } if (aiTrav->ai_family == AF_INET6) { assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in6)); vIP.push_back(CNetAddr(((struct sockaddr_in6*)(aiTrav->ai_addr))->sin6_addr)); } aiTrav = aiTrav->ai_next; } freeaddrinfo(aiRes); return (vIP.size() > 0); } bool LookupHost(const char *pszName, std::vector& vIP, unsigned int nMaxSolutions, bool fAllowLookup) { std::string strHost(pszName); if (strHost.empty()) return false; if (boost::algorithm::starts_with(strHost, "[") && boost::algorithm::ends_with(strHost, "]")) { strHost = strHost.substr(1, strHost.size() - 2); } return LookupIntern(strHost.c_str(), vIP, nMaxSolutions, fAllowLookup); } bool Lookup(const char *pszName, std::vector& vAddr, int portDefault, bool fAllowLookup, unsigned int nMaxSolutions) { if (pszName[0] == 0) return false; int port = portDefault; std::string hostname = ""; SplitHostPort(std::string(pszName), port, hostname); std::vector vIP; bool fRet = LookupIntern(hostname.c_str(), vIP, nMaxSolutions, fAllowLookup); if (!fRet) return false; vAddr.resize(vIP.size()); for (unsigned int i = 0; i < vIP.size(); i++) vAddr[i] = CService(vIP[i], port); return true; } bool Lookup(const char *pszName, CService& addr, int portDefault, bool fAllowLookup) { std::vector vService; bool fRet = Lookup(pszName, vService, portDefault, fAllowLookup, 1); if (!fRet) return false; addr = vService[0]; return true; } bool LookupNumeric(const char *pszName, CService& addr, int portDefault) { return Lookup(pszName, addr, portDefault, false); } /** * Convert milliseconds to a struct timeval for select. */ struct timeval static MillisToTimeval(int64_t nTimeout) { struct timeval timeout; timeout.tv_sec = nTimeout / 1000; timeout.tv_usec = (nTimeout % 1000) * 1000; return timeout; } /** * Read bytes from socket. This will either read the full number of bytes requested * or return False on error or timeout. * This function can be interrupted by boost thread interrupt. * * @param data Buffer to receive into * @param len Length of data to receive * @param timeout Timeout in milliseconds for receive operation * * @note This function requires that hSocket is in non-blocking mode. */ bool static InterruptibleRecv(char* data, size_t len, int timeout, SOCKET& hSocket) { int64_t curTime = GetTimeMillis(); int64_t endTime = curTime + timeout; // Maximum time to wait in one select call. It will take up until this time (in millis) // to break off in case of an interruption. const int64_t maxWait = 1000; while (len > 0 && curTime < endTime) { ssize_t ret = recv(hSocket, data, len, 0); // Optimistically try the recv first if (ret > 0) { len -= ret; data += ret; } else if (ret == 0) { // Unexpected disconnection return false; } else { // Other error or blocking int nErr = WSAGetLastError(); if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL) { struct timeval tval = MillisToTimeval(std::min(endTime - curTime, maxWait)); fd_set fdset; FD_ZERO(&fdset); FD_SET(hSocket, &fdset); int nRet = select(hSocket + 1, &fdset, NULL, NULL, &tval); if (nRet == SOCKET_ERROR) { return false; } } else { return false; } } boost::this_thread::interruption_point(); curTime = GetTimeMillis(); } return len == 0; } struct ProxyCredentials { std::string username; std::string password; }; /** Connect using SOCKS5 (as described in RFC1928) */ static bool Socks5(const std::string& strDest, int port, const ProxyCredentials *auth, SOCKET& hSocket) { LogPrintf("SOCKS5 connecting %s\n", strDest); if (strDest.size() > 255) { CloseSocket(hSocket); return error("Hostname too long"); } // Accepted authentication methods std::vector vSocks5Init; vSocks5Init.push_back(0x05); if (auth) { vSocks5Init.push_back(0x02); // # METHODS vSocks5Init.push_back(0x00); // X'00' NO AUTHENTICATION REQUIRED vSocks5Init.push_back(0x02); // X'02' USERNAME/PASSWORD (RFC1929) } else { vSocks5Init.push_back(0x01); // # METHODS vSocks5Init.push_back(0x00); // X'00' NO AUTHENTICATION REQUIRED } ssize_t ret = send(hSocket, (const char*)begin_ptr(vSocks5Init), vSocks5Init.size(), MSG_NOSIGNAL); if (ret != (ssize_t)vSocks5Init.size()) { CloseSocket(hSocket); return error("Error sending to proxy"); } char pchRet1[2]; if (!InterruptibleRecv(pchRet1, 2, SOCKS5_RECV_TIMEOUT, hSocket)) { CloseSocket(hSocket); return error("Error reading proxy response"); } if (pchRet1[0] != 0x05) { CloseSocket(hSocket); return error("Proxy failed to initialize"); } if (pchRet1[1] == 0x02 && auth) { // Perform username/password authentication (as described in RFC1929) std::vector vAuth; vAuth.push_back(0x01); if (auth->username.size() > 255 || auth->password.size() > 255) return error("Proxy username or password too long"); vAuth.push_back(auth->username.size()); vAuth.insert(vAuth.end(), auth->username.begin(), auth->username.end()); vAuth.push_back(auth->password.size()); vAuth.insert(vAuth.end(), auth->password.begin(), auth->password.end()); ret = send(hSocket, (const char*)begin_ptr(vAuth), vAuth.size(), MSG_NOSIGNAL); if (ret != (ssize_t)vAuth.size()) { CloseSocket(hSocket); return error("Error sending authentication to proxy"); } LogPrint("proxy", "SOCKS5 sending proxy authentication %s:%s\n", auth->username, auth->password); char pchRetA[2]; if (!InterruptibleRecv(pchRetA, 2, SOCKS5_RECV_TIMEOUT, hSocket)) { CloseSocket(hSocket); return error("Error reading proxy authentication response"); } if (pchRetA[0] != 0x01 || pchRetA[1] != 0x00) { CloseSocket(hSocket); return error("Proxy authentication unsuccesful"); } } else if (pchRet1[1] == 0x00) { // Perform no authentication } else { CloseSocket(hSocket); return error("Proxy requested wrong authentication method %02x", pchRet1[1]); } std::vector vSocks5; vSocks5.push_back(0x05); // VER protocol version vSocks5.push_back(0x01); // CMD CONNECT vSocks5.push_back(0x00); // RSV Reserved vSocks5.push_back(0x03); // ATYP DOMAINNAME vSocks5.push_back(strDest.size()); // Length<=255 is checked at beginning of function vSocks5.insert(vSocks5.end(), strDest.begin(), strDest.end()); vSocks5.push_back((port >> 8) & 0xFF); vSocks5.push_back((port >> 0) & 0xFF); ret = send(hSocket, (const char*)begin_ptr(vSocks5), vSocks5.size(), MSG_NOSIGNAL); if (ret != (ssize_t)vSocks5.size()) { CloseSocket(hSocket); return error("Error sending to proxy"); } char pchRet2[4]; if (!InterruptibleRecv(pchRet2, 4, SOCKS5_RECV_TIMEOUT, hSocket)) { CloseSocket(hSocket); return error("Error reading proxy response"); } if (pchRet2[0] != 0x05) { CloseSocket(hSocket); return error("Proxy failed to accept request"); } if (pchRet2[1] != 0x00) { CloseSocket(hSocket); switch (pchRet2[1]) { case 0x01: return error("Proxy error: general failure"); case 0x02: return error("Proxy error: connection not allowed"); case 0x03: return error("Proxy error: network unreachable"); case 0x04: return error("Proxy error: host unreachable"); case 0x05: return error("Proxy error: connection refused"); case 0x06: return error("Proxy error: TTL expired"); case 0x07: return error("Proxy error: protocol error"); case 0x08: return error("Proxy error: address type not supported"); default: return error("Proxy error: unknown"); } } if (pchRet2[2] != 0x00) { CloseSocket(hSocket); return error("Error: malformed proxy response"); } char pchRet3[256]; switch (pchRet2[3]) { case 0x01: ret = InterruptibleRecv(pchRet3, 4, SOCKS5_RECV_TIMEOUT, hSocket); break; case 0x04: ret = InterruptibleRecv(pchRet3, 16, SOCKS5_RECV_TIMEOUT, hSocket); break; case 0x03: { ret = InterruptibleRecv(pchRet3, 1, SOCKS5_RECV_TIMEOUT, hSocket); if (!ret) { CloseSocket(hSocket); return error("Error reading from proxy"); } int nRecv = pchRet3[0]; ret = InterruptibleRecv(pchRet3, nRecv, SOCKS5_RECV_TIMEOUT, hSocket); break; } default: CloseSocket(hSocket); return error("Error: malformed proxy response"); } if (!ret) { CloseSocket(hSocket); return error("Error reading from proxy"); } if (!InterruptibleRecv(pchRet3, 2, SOCKS5_RECV_TIMEOUT, hSocket)) { CloseSocket(hSocket); return error("Error reading from proxy"); } LogPrintf("SOCKS5 connected %s\n", strDest); return true; } bool static ConnectSocketDirectly(const CService &addrConnect, SOCKET& hSocketRet, int nTimeout) { hSocketRet = INVALID_SOCKET; struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrConnect.GetSockAddr((struct sockaddr*)&sockaddr, &len)) { LogPrintf("Cannot connect to %s: unsupported network\n", addrConnect.ToString()); return false; } SOCKET hSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP); if (hSocket == INVALID_SOCKET) return false; #ifdef SO_NOSIGPIPE int set = 1; // Different way of disabling SIGPIPE on BSD setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int)); #endif // Set to non-blocking if (!SetSocketNonBlocking(hSocket, true)) return error("ConnectSocketDirectly: Setting socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError())); if (connect(hSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); // WSAEINVAL is here because some legacy version of winsock uses it if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL) { struct timeval timeout = MillisToTimeval(nTimeout); fd_set fdset; FD_ZERO(&fdset); FD_SET(hSocket, &fdset); int nRet = select(hSocket + 1, NULL, &fdset, NULL, &timeout); if (nRet == 0) { LogPrint("net", "connection to %s timeout\n", addrConnect.ToString()); CloseSocket(hSocket); return false; } if (nRet == SOCKET_ERROR) { LogPrintf("select() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError())); CloseSocket(hSocket); return false; } socklen_t nRetSize = sizeof(nRet); #ifdef WIN32 if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, (char*)(&nRet), &nRetSize) == SOCKET_ERROR) #else if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, &nRet, &nRetSize) == SOCKET_ERROR) #endif { LogPrintf("getsockopt() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError())); CloseSocket(hSocket); return false; } if (nRet != 0) { LogPrintf("connect() to %s failed after select(): %s\n", addrConnect.ToString(), NetworkErrorString(nRet)); CloseSocket(hSocket); return false; } } #ifdef WIN32 else if (WSAGetLastError() != WSAEISCONN) #else else #endif { LogPrintf("connect() to %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError())); CloseSocket(hSocket); return false; } } hSocketRet = hSocket; return true; } bool SetProxy(enum Network net, const proxyType &addrProxy) { assert(net >= 0 && net < NET_MAX); if (!addrProxy.IsValid()) return false; LOCK(cs_proxyInfos); proxyInfo[net] = addrProxy; return true; } bool GetProxy(enum Network net, proxyType &proxyInfoOut) { assert(net >= 0 && net < NET_MAX); LOCK(cs_proxyInfos); if (!proxyInfo[net].IsValid()) return false; proxyInfoOut = proxyInfo[net]; return true; } bool SetNameProxy(const proxyType &addrProxy) { if (!addrProxy.IsValid()) return false; LOCK(cs_proxyInfos); nameProxy = addrProxy; return true; } bool GetNameProxy(proxyType &nameProxyOut) { LOCK(cs_proxyInfos); if(!nameProxy.IsValid()) return false; nameProxyOut = nameProxy; return true; } bool HaveNameProxy() { LOCK(cs_proxyInfos); return nameProxy.IsValid(); } bool IsProxy(const CNetAddr &addr) { LOCK(cs_proxyInfos); for (int i = 0; i < NET_MAX; i++) { if (addr == (CNetAddr)proxyInfo[i].proxy) return true; } return false; } static bool ConnectThroughProxy(const proxyType &proxy, const std::string& strDest, int port, SOCKET& hSocketRet, int nTimeout, bool *outProxyConnectionFailed) { SOCKET hSocket = INVALID_SOCKET; // first connect to proxy server if (!ConnectSocketDirectly(proxy.proxy, hSocket, nTimeout)) { if (outProxyConnectionFailed) *outProxyConnectionFailed = true; return false; } // do socks negotiation if (proxy.randomize_credentials) { ProxyCredentials random_auth; random_auth.username = strprintf("%i", insecure_rand()); random_auth.password = strprintf("%i", insecure_rand()); if (!Socks5(strDest, (unsigned short)port, &random_auth, hSocket)) return false; } else { if (!Socks5(strDest, (unsigned short)port, 0, hSocket)) return false; } hSocketRet = hSocket; return true; } bool ConnectSocket(const CService &addrDest, SOCKET& hSocketRet, int nTimeout, bool *outProxyConnectionFailed) { proxyType proxy; if (outProxyConnectionFailed) *outProxyConnectionFailed = false; if (GetProxy(addrDest.GetNetwork(), proxy)) return ConnectThroughProxy(proxy, addrDest.ToStringIP(), addrDest.GetPort(), hSocketRet, nTimeout, outProxyConnectionFailed); else // no proxy needed (none set for target network) return ConnectSocketDirectly(addrDest, hSocketRet, nTimeout); } bool ConnectSocketByName(CService &addr, SOCKET& hSocketRet, const char *pszDest, int portDefault, int nTimeout, bool *outProxyConnectionFailed) { string strDest; int port = portDefault; if (outProxyConnectionFailed) *outProxyConnectionFailed = false; SplitHostPort(string(pszDest), port, strDest); proxyType nameProxy; GetNameProxy(nameProxy); CService addrResolved(CNetAddr(strDest, fNameLookup && !HaveNameProxy()), port); if (addrResolved.IsValid()) { addr = addrResolved; return ConnectSocket(addr, hSocketRet, nTimeout); } addr = CService("0.0.0.0:0"); if (!HaveNameProxy()) return false; return ConnectThroughProxy(nameProxy, strDest, port, hSocketRet, nTimeout, outProxyConnectionFailed); } void CNetAddr::Init() { memset(ip, 0, sizeof(ip)); } void CNetAddr::SetIP(const CNetAddr& ipIn) { memcpy(ip, ipIn.ip, sizeof(ip)); } void CNetAddr::SetRaw(Network network, const uint8_t *ip_in) { switch(network) { case NET_IPV4: memcpy(ip, pchIPv4, 12); memcpy(ip+12, ip_in, 4); break; case NET_IPV6: memcpy(ip, ip_in, 16); break; default: assert(!"invalid network"); } } static const unsigned char pchOnionCat[] = {0xFD,0x87,0xD8,0x7E,0xEB,0x43}; bool CNetAddr::SetSpecial(const std::string &strName) { if (strName.size()>6 && strName.substr(strName.size() - 6, 6) == ".onion") { std::vector vchAddr = DecodeBase32(strName.substr(0, strName.size() - 6).c_str()); if (vchAddr.size() != 16-sizeof(pchOnionCat)) return false; memcpy(ip, pchOnionCat, sizeof(pchOnionCat)); for (unsigned int i=0; i<16-sizeof(pchOnionCat); i++) ip[i + sizeof(pchOnionCat)] = vchAddr[i]; return true; } return false; } CNetAddr::CNetAddr() { Init(); } CNetAddr::CNetAddr(const struct in_addr& ipv4Addr) { SetRaw(NET_IPV4, (const uint8_t*)&ipv4Addr); } CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr) { SetRaw(NET_IPV6, (const uint8_t*)&ipv6Addr); } CNetAddr::CNetAddr(const char *pszIp, bool fAllowLookup) { Init(); std::vector vIP; if (LookupHost(pszIp, vIP, 1, fAllowLookup)) *this = vIP[0]; } CNetAddr::CNetAddr(const std::string &strIp, bool fAllowLookup) { Init(); std::vector vIP; if (LookupHost(strIp.c_str(), vIP, 1, fAllowLookup)) *this = vIP[0]; } unsigned int CNetAddr::GetByte(int n) const { return ip[15-n]; } bool CNetAddr::IsIPv4() const { return (memcmp(ip, pchIPv4, sizeof(pchIPv4)) == 0); } bool CNetAddr::IsIPv6() const { return (!IsIPv4() && !IsTor()); } bool CNetAddr::IsRFC1918() const { return IsIPv4() && ( GetByte(3) == 10 || (GetByte(3) == 192 && GetByte(2) == 168) || (GetByte(3) == 172 && (GetByte(2) >= 16 && GetByte(2) <= 31))); } bool CNetAddr::IsRFC2544() const { return IsIPv4() && GetByte(3) == 198 && (GetByte(2) == 18 || GetByte(2) == 19); } bool CNetAddr::IsRFC3927() const { return IsIPv4() && (GetByte(3) == 169 && GetByte(2) == 254); } bool CNetAddr::IsRFC6598() const { return IsIPv4() && GetByte(3) == 100 && GetByte(2) >= 64 && GetByte(2) <= 127; } bool CNetAddr::IsRFC5737() const { return IsIPv4() && ((GetByte(3) == 192 && GetByte(2) == 0 && GetByte(1) == 2) || (GetByte(3) == 198 && GetByte(2) == 51 && GetByte(1) == 100) || (GetByte(3) == 203 && GetByte(2) == 0 && GetByte(1) == 113)); } bool CNetAddr::IsRFC3849() const { return GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x0D && GetByte(12) == 0xB8; } bool CNetAddr::IsRFC3964() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x02); } bool CNetAddr::IsRFC6052() const { static const unsigned char pchRFC6052[] = {0,0x64,0xFF,0x9B,0,0,0,0,0,0,0,0}; return (memcmp(ip, pchRFC6052, sizeof(pchRFC6052)) == 0); } bool CNetAddr::IsRFC4380() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0 && GetByte(12) == 0); } bool CNetAddr::IsRFC4862() const { static const unsigned char pchRFC4862[] = {0xFE,0x80,0,0,0,0,0,0}; return (memcmp(ip, pchRFC4862, sizeof(pchRFC4862)) == 0); } bool CNetAddr::IsRFC4193() const { return ((GetByte(15) & 0xFE) == 0xFC); } bool CNetAddr::IsRFC6145() const { static const unsigned char pchRFC6145[] = {0,0,0,0,0,0,0,0,0xFF,0xFF,0,0}; return (memcmp(ip, pchRFC6145, sizeof(pchRFC6145)) == 0); } bool CNetAddr::IsRFC4843() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && (GetByte(12) & 0xF0) == 0x10); } bool CNetAddr::IsTor() const { return (memcmp(ip, pchOnionCat, sizeof(pchOnionCat)) == 0); } bool CNetAddr::IsLocal() const { // IPv4 loopback if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0)) return true; // IPv6 loopback (::1/128) static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; if (memcmp(ip, pchLocal, 16) == 0) return true; return false; } bool CNetAddr::IsMulticast() const { return (IsIPv4() && (GetByte(3) & 0xF0) == 0xE0) || (GetByte(15) == 0xFF); } bool CNetAddr::IsValid() const { // Cleanup 3-byte shifted addresses caused by garbage in size field // of addr messages from versions before 0.2.9 checksum. // Two consecutive addr messages look like this: // header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 addr26 addr26... // so if the first length field is garbled, it reads the second batch // of addr misaligned by 3 bytes. if (memcmp(ip, pchIPv4+3, sizeof(pchIPv4)-3) == 0) return false; // unspecified IPv6 address (::/128) unsigned char ipNone[16] = {}; if (memcmp(ip, ipNone, 16) == 0) return false; // documentation IPv6 address if (IsRFC3849()) return false; if (IsIPv4()) { // INADDR_NONE uint32_t ipNone = INADDR_NONE; if (memcmp(ip+12, &ipNone, 4) == 0) return false; // 0 ipNone = 0; if (memcmp(ip+12, &ipNone, 4) == 0) return false; } return true; } bool CNetAddr::IsRoutable() const { return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || (IsRFC4193() && !IsTor()) || IsRFC4843() || IsLocal()); } enum Network CNetAddr::GetNetwork() const { if (!IsRoutable()) return NET_UNROUTABLE; if (IsIPv4()) return NET_IPV4; if (IsTor()) return NET_TOR; return NET_IPV6; } std::string CNetAddr::ToStringIP() const { if (IsTor()) return EncodeBase32(&ip[6], 10) + ".onion"; CService serv(*this, 0); struct sockaddr_storage sockaddr; socklen_t socklen = sizeof(sockaddr); if (serv.GetSockAddr((struct sockaddr*)&sockaddr, &socklen)) { char name[1025] = ""; if (!getnameinfo((const struct sockaddr*)&sockaddr, socklen, name, sizeof(name), NULL, 0, NI_NUMERICHOST)) return std::string(name); } if (IsIPv4()) return strprintf("%u.%u.%u.%u", GetByte(3), GetByte(2), GetByte(1), GetByte(0)); else return strprintf("%x:%x:%x:%x:%x:%x:%x:%x", GetByte(15) << 8 | GetByte(14), GetByte(13) << 8 | GetByte(12), GetByte(11) << 8 | GetByte(10), GetByte(9) << 8 | GetByte(8), GetByte(7) << 8 | GetByte(6), GetByte(5) << 8 | GetByte(4), GetByte(3) << 8 | GetByte(2), GetByte(1) << 8 | GetByte(0)); } std::string CNetAddr::ToString() const { return ToStringIP(); } bool operator==(const CNetAddr& a, const CNetAddr& b) { return (memcmp(a.ip, b.ip, 16) == 0); } bool operator!=(const CNetAddr& a, const CNetAddr& b) { return (memcmp(a.ip, b.ip, 16) != 0); } bool operator<(const CNetAddr& a, const CNetAddr& b) { return (memcmp(a.ip, b.ip, 16) < 0); } bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const { if (!IsIPv4()) return false; memcpy(pipv4Addr, ip+12, 4); return true; } bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const { memcpy(pipv6Addr, ip, 16); return true; } // get canonical identifier of an address' group // no two connections will be attempted to addresses with the same group std::vector CNetAddr::GetGroup() const { std::vector vchRet; int nClass = NET_IPV6; int nStartByte = 0; int nBits = 16; // all local addresses belong to the same group if (IsLocal()) { nClass = 255; nBits = 0; } // all unroutable addresses belong to the same group if (!IsRoutable()) { nClass = NET_UNROUTABLE; nBits = 0; } // for IPv4 addresses, '1' + the 16 higher-order bits of the IP // includes mapped IPv4, SIIT translated IPv4, and the well-known prefix else if (IsIPv4() || IsRFC6145() || IsRFC6052()) { nClass = NET_IPV4; nStartByte = 12; } // for 6to4 tunnelled addresses, use the encapsulated IPv4 address else if (IsRFC3964()) { nClass = NET_IPV4; nStartByte = 2; } // for Teredo-tunnelled IPv6 addresses, use the encapsulated IPv4 address else if (IsRFC4380()) { vchRet.push_back(NET_IPV4); vchRet.push_back(GetByte(3) ^ 0xFF); vchRet.push_back(GetByte(2) ^ 0xFF); return vchRet; } else if (IsTor()) { nClass = NET_TOR; nStartByte = 6; nBits = 4; } // for he.net, use /36 groups else if (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x04 && GetByte(12) == 0x70) nBits = 36; // for the rest of the IPv6 network, use /32 groups else nBits = 32; vchRet.push_back(nClass); while (nBits >= 8) { vchRet.push_back(GetByte(15 - nStartByte)); nStartByte++; nBits -= 8; } if (nBits > 0) vchRet.push_back(GetByte(15 - nStartByte) | ((1 << nBits) - 1)); return vchRet; } uint64_t CNetAddr::GetHash() const { uint256 hash = Hash(&ip[0], &ip[16]); uint64_t nRet; memcpy(&nRet, &hash, sizeof(nRet)); return nRet; } // private extensions to enum Network, only returned by GetExtNetwork, // and only used in GetReachabilityFrom static const int NET_UNKNOWN = NET_MAX + 0; static const int NET_TEREDO = NET_MAX + 1; int static GetExtNetwork(const CNetAddr *addr) { if (addr == NULL) return NET_UNKNOWN; if (addr->IsRFC4380()) return NET_TEREDO; return addr->GetNetwork(); } /** Calculates a metric for how reachable (*this) is from a given partner */ int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const { enum Reachability { REACH_UNREACHABLE, REACH_DEFAULT, REACH_TEREDO, REACH_IPV6_WEAK, REACH_IPV4, REACH_IPV6_STRONG, REACH_PRIVATE }; if (!IsRoutable()) return REACH_UNREACHABLE; int ourNet = GetExtNetwork(this); int theirNet = GetExtNetwork(paddrPartner); bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145(); switch(theirNet) { case NET_IPV4: switch(ourNet) { default: return REACH_DEFAULT; case NET_IPV4: return REACH_IPV4; } case NET_IPV6: switch(ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV4: return REACH_IPV4; case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled } case NET_TOR: switch(ourNet) { default: return REACH_DEFAULT; case NET_IPV4: return REACH_IPV4; // Tor users can connect to IPv4 as well case NET_TOR: return REACH_PRIVATE; } case NET_TEREDO: switch(ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV6: return REACH_IPV6_WEAK; case NET_IPV4: return REACH_IPV4; } case NET_UNKNOWN: case NET_UNROUTABLE: default: switch(ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV6: return REACH_IPV6_WEAK; case NET_IPV4: return REACH_IPV4; case NET_TOR: return REACH_PRIVATE; // either from Tor, or don't care about our address } } } void CService::Init() { port = 0; } CService::CService() { Init(); } CService::CService(const CNetAddr& cip, unsigned short portIn) : CNetAddr(cip), port(portIn) { } CService::CService(const struct in_addr& ipv4Addr, unsigned short portIn) : CNetAddr(ipv4Addr), port(portIn) { } CService::CService(const struct in6_addr& ipv6Addr, unsigned short portIn) : CNetAddr(ipv6Addr), port(portIn) { } CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port)) { assert(addr.sin_family == AF_INET); } CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr), port(ntohs(addr.sin6_port)) { assert(addr.sin6_family == AF_INET6); } bool CService::SetSockAddr(const struct sockaddr *paddr) { switch (paddr->sa_family) { case AF_INET: *this = CService(*(const struct sockaddr_in*)paddr); return true; case AF_INET6: *this = CService(*(const struct sockaddr_in6*)paddr); return true; default: return false; } } CService::CService(const char *pszIpPort, bool fAllowLookup) { Init(); CService ip; if (Lookup(pszIpPort, ip, 0, fAllowLookup)) *this = ip; } CService::CService(const char *pszIpPort, int portDefault, bool fAllowLookup) { Init(); CService ip; if (Lookup(pszIpPort, ip, portDefault, fAllowLookup)) *this = ip; } CService::CService(const std::string &strIpPort, bool fAllowLookup) { Init(); CService ip; if (Lookup(strIpPort.c_str(), ip, 0, fAllowLookup)) *this = ip; } CService::CService(const std::string &strIpPort, int portDefault, bool fAllowLookup) { Init(); CService ip; if (Lookup(strIpPort.c_str(), ip, portDefault, fAllowLookup)) *this = ip; } unsigned short CService::GetPort() const { return port; } bool operator==(const CService& a, const CService& b) { return (CNetAddr)a == (CNetAddr)b && a.port == b.port; } bool operator!=(const CService& a, const CService& b) { return (CNetAddr)a != (CNetAddr)b || a.port != b.port; } bool operator<(const CService& a, const CService& b) { return (CNetAddr)a < (CNetAddr)b || ((CNetAddr)a == (CNetAddr)b && a.port < b.port); } bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const { if (IsIPv4()) { if (*addrlen < (socklen_t)sizeof(struct sockaddr_in)) return false; *addrlen = sizeof(struct sockaddr_in); struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr; memset(paddrin, 0, *addrlen); if (!GetInAddr(&paddrin->sin_addr)) return false; paddrin->sin_family = AF_INET; paddrin->sin_port = htons(port); return true; } if (IsIPv6()) { if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6)) return false; *addrlen = sizeof(struct sockaddr_in6); struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr; memset(paddrin6, 0, *addrlen); if (!GetIn6Addr(&paddrin6->sin6_addr)) return false; paddrin6->sin6_family = AF_INET6; paddrin6->sin6_port = htons(port); return true; } return false; } std::vector CService::GetKey() const { std::vector vKey; vKey.resize(18); memcpy(&vKey[0], ip, 16); vKey[16] = port / 0x100; vKey[17] = port & 0x0FF; return vKey; } std::string CService::ToStringPort() const { return strprintf("%u", port); } std::string CService::ToStringIPPort() const { if (IsIPv4() || IsTor()) { return ToStringIP() + ":" + ToStringPort(); } else { return "[" + ToStringIP() + "]:" + ToStringPort(); } } std::string CService::ToString() const { return ToStringIPPort(); } void CService::SetPort(unsigned short portIn) { port = portIn; } CSubNet::CSubNet(): valid(false) { memset(netmask, 0, sizeof(netmask)); } CSubNet::CSubNet(const std::string &strSubnet, bool fAllowLookup) { size_t slash = strSubnet.find_last_of('/'); std::vector vIP; valid = true; // Default to /32 (IPv4) or /128 (IPv6), i.e. match single address memset(netmask, 255, sizeof(netmask)); std::string strAddress = strSubnet.substr(0, slash); if (LookupHost(strAddress.c_str(), vIP, 1, fAllowLookup)) { network = vIP[0]; if (slash != strSubnet.npos) { std::string strNetmask = strSubnet.substr(slash + 1); int32_t n; // IPv4 addresses start at offset 12, and first 12 bytes must match, so just offset n const int astartofs = network.IsIPv4() ? 12 : 0; if (ParseInt32(strNetmask, &n)) // If valid number, assume /24 symtex { if(n >= 0 && n <= (128 - astartofs*8)) // Only valid if in range of bits of address { n += astartofs*8; // Clear bits [n..127] for (; n < 128; ++n) netmask[n>>3] &= ~(1<<(n&7)); } else { valid = false; } } else // If not a valid number, try full netmask syntax { if (LookupHost(strNetmask.c_str(), vIP, 1, false)) // Never allow lookup for netmask { // Copy only the *last* four bytes in case of IPv4, the rest of the mask should stay 1's as // we don't want pchIPv4 to be part of the mask. for(int x=astartofs; x<16; ++x) netmask[x] = vIP[0].ip[x]; } else { valid = false; } } } } else { valid = false; } } bool CSubNet::Match(const CNetAddr &addr) const { if (!valid || !addr.IsValid()) return false; for(int x=0; x<16; ++x) if ((addr.ip[x] & netmask[x]) != network.ip[x]) return false; return true; } std::string CSubNet::ToString() const { std::string strNetmask; if (network.IsIPv4()) strNetmask = strprintf("%u.%u.%u.%u", netmask[12], netmask[13], netmask[14], netmask[15]); else strNetmask = strprintf("%x:%x:%x:%x:%x:%x:%x:%x", netmask[0] << 8 | netmask[1], netmask[2] << 8 | netmask[3], netmask[4] << 8 | netmask[5], netmask[6] << 8 | netmask[7], netmask[8] << 8 | netmask[9], netmask[10] << 8 | netmask[11], netmask[12] << 8 | netmask[13], netmask[14] << 8 | netmask[15]); return network.ToString() + "/" + strNetmask; } bool CSubNet::IsValid() const { return valid; } bool operator==(const CSubNet& a, const CSubNet& b) { return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16); } bool operator!=(const CSubNet& a, const CSubNet& b) { return !(a==b); } #ifdef WIN32 std::string NetworkErrorString(int err) { char buf[256]; buf[0] = 0; if(FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_MAX_WIDTH_MASK, NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), buf, sizeof(buf), NULL)) { return strprintf("%s (%d)", buf, err); } else { return strprintf("Unknown error (%d)", err); } } #else std::string NetworkErrorString(int err) { char buf[256]; const char *s = buf; buf[0] = 0; /* Too bad there are two incompatible implementations of the * thread-safe strerror. */ #ifdef STRERROR_R_CHAR_P /* GNU variant can return a pointer outside the passed buffer */ s = strerror_r(err, buf, sizeof(buf)); #else /* POSIX variant always returns message in buffer */ if (strerror_r(err, buf, sizeof(buf))) buf[0] = 0; #endif return strprintf("%s (%d)", s, err); } #endif bool CloseSocket(SOCKET& hSocket) { if (hSocket == INVALID_SOCKET) return false; #ifdef WIN32 int ret = closesocket(hSocket); #else int ret = close(hSocket); #endif hSocket = INVALID_SOCKET; return ret != SOCKET_ERROR; } bool SetSocketNonBlocking(SOCKET& hSocket, bool fNonBlocking) { if (fNonBlocking) { #ifdef WIN32 u_long nOne = 1; if (ioctlsocket(hSocket, FIONBIO, &nOne) == SOCKET_ERROR) { #else int fFlags = fcntl(hSocket, F_GETFL, 0); if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == SOCKET_ERROR) { #endif CloseSocket(hSocket); return false; } } else { #ifdef WIN32 u_long nZero = 0; if (ioctlsocket(hSocket, FIONBIO, &nZero) == SOCKET_ERROR) { #else int fFlags = fcntl(hSocket, F_GETFL, 0); if (fcntl(hSocket, F_SETFL, fFlags & ~O_NONBLOCK) == SOCKET_ERROR) { #endif CloseSocket(hSocket); return false; } } return true; }