// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include static constexpr uint8_t DB_COIN{'C'}; static constexpr uint8_t DB_COINS{'c'}; static constexpr uint8_t DB_BLOCK_FILES{'f'}; static constexpr uint8_t DB_ADDRESSINDEX{'a'}; static constexpr uint8_t DB_ADDRESSUNSPENTINDEX{'u'}; static constexpr uint8_t DB_TIMESTAMPINDEX{'s'}; static constexpr uint8_t DB_SPENTINDEX{'p'}; static constexpr uint8_t DB_BLOCK_INDEX{'b'}; static constexpr uint8_t DB_BEST_BLOCK{'B'}; static constexpr uint8_t DB_HEAD_BLOCKS{'H'}; static constexpr uint8_t DB_FLAG{'F'}; static constexpr uint8_t DB_REINDEX_FLAG{'R'}; static constexpr uint8_t DB_LAST_BLOCK{'l'}; namespace { struct CoinEntry { COutPoint* outpoint; uint8_t key; explicit CoinEntry(const COutPoint* ptr) : outpoint(const_cast(ptr)), key(DB_COIN) {} SERIALIZE_METHODS(CoinEntry, obj) { READWRITE(obj.key, obj.outpoint->hash, VARINT(obj.outpoint->n)); } }; } CCoinsViewDB::CCoinsViewDB(fs::path ldb_path, size_t nCacheSize, bool fMemory, bool fWipe) : m_db(std::make_unique(ldb_path, nCacheSize, fMemory, fWipe, true)), m_ldb_path(ldb_path), m_is_memory(fMemory) { } void CCoinsViewDB::ResizeCache(size_t new_cache_size) { // We can't do this operation with an in-memory DB since we'll lose all the coins upon // reset. if (!m_is_memory) { // Have to do a reset first to get the original `m_db` state to release its // filesystem lock. m_db.reset(); m_db = std::make_unique( m_ldb_path, new_cache_size, m_is_memory, /*fWipe*/ false, /*obfuscate*/ true); } } bool CCoinsViewDB::GetCoin(const COutPoint &outpoint, Coin &coin) const { return m_db->Read(CoinEntry(&outpoint), coin); } bool CCoinsViewDB::HaveCoin(const COutPoint &outpoint) const { return m_db->Exists(CoinEntry(&outpoint)); } uint256 CCoinsViewDB::GetBestBlock() const { uint256 hashBestChain; if (!m_db->Read(DB_BEST_BLOCK, hashBestChain)) return uint256(); return hashBestChain; } std::vector CCoinsViewDB::GetHeadBlocks() const { std::vector vhashHeadBlocks; if (!m_db->Read(DB_HEAD_BLOCKS, vhashHeadBlocks)) { return std::vector(); } return vhashHeadBlocks; } bool CCoinsViewDB::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock) { CDBBatch batch(*m_db); size_t count = 0; size_t changed = 0; size_t batch_size = (size_t)gArgs.GetArg("-dbbatchsize", nDefaultDbBatchSize); int crash_simulate = gArgs.GetArg("-dbcrashratio", 0); assert(!hashBlock.IsNull()); uint256 old_tip = GetBestBlock(); if (old_tip.IsNull()) { // We may be in the middle of replaying. std::vector old_heads = GetHeadBlocks(); if (old_heads.size() == 2) { assert(old_heads[0] == hashBlock); old_tip = old_heads[1]; } } // In the first batch, mark the database as being in the middle of a // transition from old_tip to hashBlock. // A vector is used for future extensibility, as we may want to support // interrupting after partial writes from multiple independent reorgs. batch.Erase(DB_BEST_BLOCK); batch.Write(DB_HEAD_BLOCKS, Vector(hashBlock, old_tip)); for (CCoinsMap::iterator it = mapCoins.begin(); it != mapCoins.end();) { if (it->second.flags & CCoinsCacheEntry::DIRTY) { CoinEntry entry(&it->first); if (it->second.coin.IsSpent()) batch.Erase(entry); else batch.Write(entry, it->second.coin); changed++; } count++; CCoinsMap::iterator itOld = it++; mapCoins.erase(itOld); if (batch.SizeEstimate() > batch_size) { LogPrint(BCLog::COINDB, "Writing partial batch of %.2f MiB\n", batch.SizeEstimate() * (1.0 / 1048576.0)); m_db->WriteBatch(batch); batch.Clear(); if (crash_simulate) { static FastRandomContext rng; if (rng.randrange(crash_simulate) == 0) { LogPrintf("Simulating a crash. Goodbye.\n"); _Exit(0); } } } } // In the last batch, mark the database as consistent with hashBlock again. batch.Erase(DB_HEAD_BLOCKS); batch.Write(DB_BEST_BLOCK, hashBlock); LogPrint(BCLog::COINDB, "Writing final batch of %.2f MiB\n", batch.SizeEstimate() * (1.0 / 1048576.0)); bool ret = m_db->WriteBatch(batch); LogPrint(BCLog::COINDB, "Committed %u changed transaction outputs (out of %u) to coin database...\n", (unsigned int)changed, (unsigned int)count); return ret; } size_t CCoinsViewDB::EstimateSize() const { return m_db->EstimateSize(DB_COIN, uint8_t(DB_COIN + 1)); } CBlockTreeDB::CBlockTreeDB(size_t nCacheSize, bool fMemory, bool fWipe) : CDBWrapper(gArgs.GetDataDirNet() / "blocks" / "index", nCacheSize, fMemory, fWipe) { } bool CBlockTreeDB::ReadBlockFileInfo(int nFile, CBlockFileInfo &info) { return Read(std::make_pair(DB_BLOCK_FILES, nFile), info); } bool CBlockTreeDB::WriteReindexing(bool fReindexing) { if (fReindexing) return Write(DB_REINDEX_FLAG, uint8_t{'1'}); else return Erase(DB_REINDEX_FLAG); } void CBlockTreeDB::ReadReindexing(bool &fReindexing) { fReindexing = Exists(DB_REINDEX_FLAG); } bool CBlockTreeDB::ReadLastBlockFile(int &nFile) { return Read(DB_LAST_BLOCK, nFile); } /** Specialization of CCoinsViewCursor to iterate over a CCoinsViewDB */ class CCoinsViewDBCursor: public CCoinsViewCursor { public: // Prefer using CCoinsViewDB::Cursor() since we want to perform some // cache warmup on instantiation. CCoinsViewDBCursor(CDBIterator* pcursorIn, const uint256&hashBlockIn): CCoinsViewCursor(hashBlockIn), pcursor(pcursorIn) {} ~CCoinsViewDBCursor() {} bool GetKey(COutPoint &key) const override; bool GetValue(Coin &coin) const override; unsigned int GetValueSize() const override; bool Valid() const override; void Next() override; private: std::unique_ptr pcursor; std::pair keyTmp; friend class CCoinsViewDB; }; std::unique_ptr CCoinsViewDB::Cursor() const { auto i = std::make_unique( const_cast(*m_db).NewIterator(), GetBestBlock()); /* It seems that there are no "const iterators" for LevelDB. Since we only need read operations on it, use a const-cast to get around that restriction. */ i->pcursor->Seek(DB_COIN); // Cache key of first record if (i->pcursor->Valid()) { CoinEntry entry(&i->keyTmp.second); i->pcursor->GetKey(entry); i->keyTmp.first = entry.key; } else { i->keyTmp.first = 0; // Make sure Valid() and GetKey() return false } return i; } bool CCoinsViewDBCursor::GetKey(COutPoint &key) const { // Return cached key if (keyTmp.first == DB_COIN) { key = keyTmp.second; return true; } return false; } bool CCoinsViewDBCursor::GetValue(Coin &coin) const { return pcursor->GetValue(coin); } unsigned int CCoinsViewDBCursor::GetValueSize() const { return pcursor->GetValueSize(); } bool CCoinsViewDBCursor::Valid() const { return keyTmp.first == DB_COIN; } void CCoinsViewDBCursor::Next() { pcursor->Next(); CoinEntry entry(&keyTmp.second); if (!pcursor->Valid() || !pcursor->GetKey(entry)) { keyTmp.first = 0; // Invalidate cached key after last record so that Valid() and GetKey() return false } else { keyTmp.first = entry.key; } } bool CBlockTreeDB::WriteBatchSync(const std::vector >& fileInfo, int nLastFile, const std::vector& blockinfo) { CDBBatch batch(*this); for (std::vector >::const_iterator it=fileInfo.begin(); it != fileInfo.end(); it++) { batch.Write(std::make_pair(DB_BLOCK_FILES, it->first), *it->second); } batch.Write(DB_LAST_BLOCK, nLastFile); for (std::vector::const_iterator it=blockinfo.begin(); it != blockinfo.end(); it++) { batch.Write(std::make_pair(DB_BLOCK_INDEX, (*it)->GetBlockHash()), CDiskBlockIndex(*it)); } return WriteBatch(batch, true); } bool CBlockTreeDB::ReadSpentIndex(const CSpentIndexKey key, CSpentIndexValue& value) { return Read(std::make_pair(DB_SPENTINDEX, key), value); } bool CBlockTreeDB::UpdateSpentIndex(const std::vector& vect) { CDBBatch batch(*this); for (std::vector>::const_iterator it=vect.begin(); it!=vect.end(); it++) { if (it->second.IsNull()) { batch.Erase(std::make_pair(DB_SPENTINDEX, it->first)); } else { batch.Write(std::make_pair(DB_SPENTINDEX, it->first), it->second); } } return WriteBatch(batch); } bool CBlockTreeDB::UpdateAddressUnspentIndex(const std::vector& vect) { CDBBatch batch(*this); for (std::vector::const_iterator it=vect.begin(); it!=vect.end(); it++) { if (it->second.IsNull()) { batch.Erase(std::make_pair(DB_ADDRESSUNSPENTINDEX, it->first)); } else { batch.Write(std::make_pair(DB_ADDRESSUNSPENTINDEX, it->first), it->second); } } return WriteBatch(batch); } bool CBlockTreeDB::ReadAddressUnspentIndex(const uint160& addressHash, const AddressType type, std::vector& unspentOutputs) { std::unique_ptr pcursor(NewIterator()); pcursor->Seek(std::make_pair(DB_ADDRESSUNSPENTINDEX, CAddressIndexIteratorKey(type, addressHash))); while (pcursor->Valid()) { std::pair key; if (pcursor->GetKey(key) && key.first == DB_ADDRESSUNSPENTINDEX && key.second.m_address_bytes == addressHash) { CAddressUnspentValue nValue; if (pcursor->GetValue(nValue)) { unspentOutputs.push_back(std::make_pair(key.second, nValue)); pcursor->Next(); } else { return error("failed to get address unspent value"); } } else { break; } } return true; } bool CBlockTreeDB::WriteAddressIndex(const std::vector& vect) { CDBBatch batch(*this); for (std::vector::const_iterator it=vect.begin(); it!=vect.end(); it++) batch.Write(std::make_pair(DB_ADDRESSINDEX, it->first), it->second); return WriteBatch(batch); } bool CBlockTreeDB::EraseAddressIndex(const std::vector& vect) { CDBBatch batch(*this); for (std::vector::const_iterator it=vect.begin(); it!=vect.end(); it++) batch.Erase(std::make_pair(DB_ADDRESSINDEX, it->first)); return WriteBatch(batch); } bool CBlockTreeDB::ReadAddressIndex(const uint160& addressHash, const AddressType type, std::vector& addressIndex, const int32_t start, const int32_t end) { std::unique_ptr pcursor(NewIterator()); if (start > 0 && end > 0) { pcursor->Seek(std::make_pair(DB_ADDRESSINDEX, CAddressIndexIteratorHeightKey(type, addressHash, start))); } else { pcursor->Seek(std::make_pair(DB_ADDRESSINDEX, CAddressIndexIteratorKey(type, addressHash))); } while (pcursor->Valid()) { std::pair key; if (pcursor->GetKey(key) && key.first == DB_ADDRESSINDEX && key.second.m_address_bytes == addressHash) { if (end > 0 && key.second.m_block_height > end) { break; } CAmount nValue; if (pcursor->GetValue(nValue)) { addressIndex.push_back(std::make_pair(key.second, nValue)); pcursor->Next(); } else { return error("failed to get address index value"); } } else { break; } } return true; } bool CBlockTreeDB::WriteTimestampIndex(const CTimestampIndexKey& timestampIndex) { CDBBatch batch(*this); batch.Write(std::make_pair(DB_TIMESTAMPINDEX, timestampIndex), 0); return WriteBatch(batch); } bool CBlockTreeDB::EraseTimestampIndex(const CTimestampIndexKey& timestampIndex) { CDBBatch batch(*this); batch.Erase(std::make_pair(DB_TIMESTAMPINDEX, timestampIndex)); return WriteBatch(batch); } bool CBlockTreeDB::ReadTimestampIndex(const uint32_t high, const uint32_t low, std::vector& hashes) { std::unique_ptr pcursor(NewIterator()); pcursor->Seek(std::make_pair(DB_TIMESTAMPINDEX, CTimestampIndexIteratorKey(low))); while (pcursor->Valid()) { std::pair key; if (pcursor->GetKey(key) && key.first == DB_TIMESTAMPINDEX && key.second.m_block_time <= high) { hashes.push_back(key.second.m_block_hash); pcursor->Next(); } else { break; } } return true; } bool CBlockTreeDB::WriteFlag(const std::string &name, bool fValue) { return Write(std::make_pair(DB_FLAG, name), fValue ? uint8_t{'1'} : uint8_t{'0'}); } bool CBlockTreeDB::ReadFlag(const std::string &name, bool &fValue) { uint8_t ch; if (!Read(std::make_pair(DB_FLAG, name), ch)) return false; fValue = ch == uint8_t{'1'}; return true; } bool CBlockTreeDB::LoadBlockIndexGuts(const Consensus::Params& consensusParams, std::function insertBlockIndex) { AssertLockHeld(::cs_main); std::unique_ptr pcursor(NewIterator()); pcursor->Seek(std::make_pair(DB_BLOCK_INDEX, uint256())); // Load m_block_index while (pcursor->Valid()) { if (ShutdownRequested()) return false; std::pair key; if (pcursor->GetKey(key) && key.first == DB_BLOCK_INDEX) { CDiskBlockIndex diskindex; if (pcursor->GetValue(diskindex)) { // Construct block index object CBlockIndex* pindexNew = insertBlockIndex(diskindex.ConstructBlockHash()); pindexNew->pprev = insertBlockIndex(diskindex.hashPrev); pindexNew->nHeight = diskindex.nHeight; pindexNew->nFile = diskindex.nFile; pindexNew->nDataPos = diskindex.nDataPos; pindexNew->nUndoPos = diskindex.nUndoPos; pindexNew->nVersion = diskindex.nVersion; pindexNew->hashMerkleRoot = diskindex.hashMerkleRoot; pindexNew->nTime = diskindex.nTime; pindexNew->nBits = diskindex.nBits; pindexNew->nNonce = diskindex.nNonce; pindexNew->nStatus = diskindex.nStatus; pindexNew->nTx = diskindex.nTx; if (!CheckProofOfWork(pindexNew->GetBlockHash(), pindexNew->nBits, consensusParams)) { return error("%s: CheckProofOfWork failed: %s", __func__, pindexNew->ToString()); } pcursor->Next(); } else { return error("%s: failed to read value", __func__); } } else { break; } } return true; } namespace { //! Legacy class to deserialize pre-pertxout database entries without reindex. class CCoins { public: //! whether transaction is a coinbase bool fCoinBase; //! unspent transaction outputs; spent outputs are .IsNull(); spent outputs at the end of the array are dropped std::vector vout; //! at which height this transaction was included in the active block chain int nHeight; //! empty constructor CCoins() : fCoinBase(false), vout(0), nHeight(0) { } template void Unserialize(Stream &s) { unsigned int nCode = 0; // version unsigned int nVersionDummy; ::Unserialize(s, VARINT(nVersionDummy)); // header code ::Unserialize(s, VARINT(nCode)); fCoinBase = nCode & 1; std::vector vAvail(2, false); vAvail[0] = (nCode & 2) != 0; vAvail[1] = (nCode & 4) != 0; unsigned int nMaskCode = (nCode / 8) + ((nCode & 6) != 0 ? 0 : 1); // spentness bitmask while (nMaskCode > 0) { unsigned char chAvail = 0; ::Unserialize(s, chAvail); for (unsigned int p = 0; p < 8; p++) { bool f = (chAvail & (1 << p)) != 0; vAvail.push_back(f); } if (chAvail != 0) nMaskCode--; } // txouts themself vout.assign(vAvail.size(), CTxOut()); for (unsigned int i = 0; i < vAvail.size(); i++) { if (vAvail[i]) ::Unserialize(s, Using(vout[i])); } // coinbase height ::Unserialize(s, VARINT_MODE(nHeight, VarIntMode::NONNEGATIVE_SIGNED)); } }; } /** Upgrade the database from older formats. * * Currently implemented: from the per-tx utxo model (0.8..0.14.x) to per-txout. */ bool CCoinsViewDB::Upgrade() { std::unique_ptr pcursor(m_db->NewIterator()); pcursor->Seek(std::make_pair(DB_COINS, uint256())); if (!pcursor->Valid()) { return true; } int64_t count = 0; LogPrintf("Upgrading utxo-set database...\n"); LogPrintf("[0%%]..."); /* Continued */ uiInterface.ShowProgress(_("Upgrading UTXO database").translated, 0, true); size_t batch_size = 1 << 24; CDBBatch batch(*m_db); int reportDone = 0; std::pair key; std::pair prev_key = {DB_COINS, uint256()}; while (pcursor->Valid()) { if (ShutdownRequested()) { break; } if (pcursor->GetKey(key) && key.first == DB_COINS) { if (count++ % 256 == 0) { uint32_t high = 0x100 * *key.second.begin() + *(key.second.begin() + 1); int percentageDone = (int)(high * 100.0 / 65536.0 + 0.5); uiInterface.ShowProgress(_("Upgrading UTXO database").translated, percentageDone, true); if (reportDone < percentageDone/10) { // report max. every 10% step LogPrintf("[%d%%]...", percentageDone); /* Continued */ reportDone = percentageDone/10; } } CCoins old_coins; if (!pcursor->GetValue(old_coins)) { return error("%s: cannot parse CCoins record", __func__); } COutPoint outpoint(key.second, 0); for (size_t i = 0; i < old_coins.vout.size(); ++i) { if (!old_coins.vout[i].IsNull() && !old_coins.vout[i].scriptPubKey.IsUnspendable()) { Coin newcoin(std::move(old_coins.vout[i]), old_coins.nHeight, old_coins.fCoinBase); outpoint.n = i; CoinEntry entry(&outpoint); batch.Write(entry, newcoin); } } batch.Erase(key); if (batch.SizeEstimate() > batch_size) { m_db->WriteBatch(batch); batch.Clear(); m_db->CompactRange(prev_key, key); prev_key = key; } pcursor->Next(); } else { break; } } m_db->WriteBatch(batch); m_db->CompactRange({DB_COINS, uint256()}, key); uiInterface.ShowProgress("", 100, false); LogPrintf("[%s].\n", ShutdownRequested() ? "CANCELLED" : "DONE"); return !ShutdownRequested(); }