// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifdef HAVE_CONFIG_H #include "config/dash-config.h" #endif #include "netbase.h" #include "hash.h" #include "sync.h" #include "uint256.h" #include "random.h" #include "util.h" #include "utilstrencodings.h" #include #ifndef WIN32 #include #endif #include // for to_lower() #include // for startswith() and endswith() #if !defined(HAVE_MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif // Settings static proxyType proxyInfo[NET_MAX]; static proxyType nameProxy; static CCriticalSection cs_proxyInfos; int nConnectTimeout = DEFAULT_CONNECT_TIMEOUT; bool fNameLookup = DEFAULT_NAME_LOOKUP; // Need ample time for negotiation for very slow proxies such as Tor (milliseconds) static const int SOCKS5_RECV_TIMEOUT = 20 * 1000; static std::atomic interruptSocks5Recv(false); enum Network ParseNetwork(std::string net) { boost::to_lower(net); if (net == "ipv4") return NET_IPV4; if (net == "ipv6") return NET_IPV6; if (net == "tor" || net == "onion") return NET_TOR; return NET_UNROUTABLE; } std::string GetNetworkName(enum Network net) { switch(net) { case NET_IPV4: return "ipv4"; case NET_IPV6: return "ipv6"; case NET_TOR: return "onion"; default: return ""; } } void SplitHostPort(std::string in, int &portOut, std::string &hostOut) { size_t colon = in.find_last_of(':'); // if a : is found, and it either follows a [...], or no other : is in the string, treat it as port separator bool fHaveColon = colon != in.npos; bool fBracketed = fHaveColon && (in[0]=='[' && in[colon-1]==']'); // if there is a colon, and in[0]=='[', colon is not 0, so in[colon-1] is safe bool fMultiColon = fHaveColon && (in.find_last_of(':',colon-1) != in.npos); if (fHaveColon && (colon==0 || fBracketed || !fMultiColon)) { int32_t n; if (ParseInt32(in.substr(colon + 1), &n) && n > 0 && n < 0x10000) { in = in.substr(0, colon); portOut = n; } } if (in.size()>0 && in[0] == '[' && in[in.size()-1] == ']') hostOut = in.substr(1, in.size()-2); else hostOut = in; } bool static LookupIntern(const char *pszName, std::vector& vIP, unsigned int nMaxSolutions, bool fAllowLookup) { vIP.clear(); { CNetAddr addr; if (addr.SetSpecial(std::string(pszName))) { vIP.push_back(addr); return true; } } struct addrinfo aiHint; memset(&aiHint, 0, sizeof(struct addrinfo)); aiHint.ai_socktype = SOCK_STREAM; aiHint.ai_protocol = IPPROTO_TCP; aiHint.ai_family = AF_UNSPEC; #ifdef WIN32 aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST; #else aiHint.ai_flags = fAllowLookup ? AI_ADDRCONFIG : AI_NUMERICHOST; #endif struct addrinfo *aiRes = NULL; int nErr = getaddrinfo(pszName, NULL, &aiHint, &aiRes); if (nErr) return false; struct addrinfo *aiTrav = aiRes; while (aiTrav != NULL && (nMaxSolutions == 0 || vIP.size() < nMaxSolutions)) { if (aiTrav->ai_family == AF_INET) { assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in)); vIP.push_back(CNetAddr(((struct sockaddr_in*)(aiTrav->ai_addr))->sin_addr)); } if (aiTrav->ai_family == AF_INET6) { assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in6)); struct sockaddr_in6* s6 = (struct sockaddr_in6*) aiTrav->ai_addr; vIP.push_back(CNetAddr(s6->sin6_addr, s6->sin6_scope_id)); } aiTrav = aiTrav->ai_next; } freeaddrinfo(aiRes); return (vIP.size() > 0); } bool LookupHost(const char *pszName, std::vector& vIP, unsigned int nMaxSolutions, bool fAllowLookup) { std::string strHost(pszName); if (strHost.empty()) return false; if (boost::algorithm::starts_with(strHost, "[") && boost::algorithm::ends_with(strHost, "]")) { strHost = strHost.substr(1, strHost.size() - 2); } return LookupIntern(strHost.c_str(), vIP, nMaxSolutions, fAllowLookup); } bool LookupHost(const char *pszName, CNetAddr& addr, bool fAllowLookup) { std::vector vIP; LookupHost(pszName, vIP, 1, fAllowLookup); if(vIP.empty()) return false; addr = vIP.front(); return true; } bool Lookup(const char *pszName, std::vector& vAddr, int portDefault, bool fAllowLookup, unsigned int nMaxSolutions) { if (pszName[0] == 0) return false; int port = portDefault; std::string hostname = ""; SplitHostPort(std::string(pszName), port, hostname); std::vector vIP; bool fRet = LookupIntern(hostname.c_str(), vIP, nMaxSolutions, fAllowLookup); if (!fRet) return false; vAddr.resize(vIP.size()); for (unsigned int i = 0; i < vIP.size(); i++) vAddr[i] = CService(vIP[i], port); return true; } bool Lookup(const char *pszName, CService& addr, int portDefault, bool fAllowLookup) { std::vector vService; bool fRet = Lookup(pszName, vService, portDefault, fAllowLookup, 1); if (!fRet) return false; addr = vService[0]; return true; } CService LookupNumeric(const char *pszName, int portDefault) { CService addr; // "1.2:345" will fail to resolve the ip, but will still set the port. // If the ip fails to resolve, re-init the result. if(!Lookup(pszName, addr, portDefault, false)) addr = CService(); return addr; } struct timeval MillisToTimeval(int64_t nTimeout) { struct timeval timeout; timeout.tv_sec = nTimeout / 1000; timeout.tv_usec = (nTimeout % 1000) * 1000; return timeout; } enum class IntrRecvError { OK, Timeout, Disconnected, NetworkError, Interrupted }; /** * Read bytes from socket. This will either read the full number of bytes requested * or return False on error or timeout. * This function can be interrupted by calling InterruptSocks5() * * @param data Buffer to receive into * @param len Length of data to receive * @param timeout Timeout in milliseconds for receive operation * * @note This function requires that hSocket is in non-blocking mode. */ static IntrRecvError InterruptibleRecv(char* data, size_t len, int timeout, SOCKET& hSocket) { int64_t curTime = GetTimeMillis(); int64_t endTime = curTime + timeout; // Maximum time to wait in one select call. It will take up until this time (in millis) // to break off in case of an interruption. const int64_t maxWait = 1000; while (len > 0 && curTime < endTime) { ssize_t ret = recv(hSocket, data, len, 0); // Optimistically try the recv first if (ret > 0) { len -= ret; data += ret; } else if (ret == 0) { // Unexpected disconnection return IntrRecvError::Disconnected; } else { // Other error or blocking int nErr = WSAGetLastError(); if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL) { if (!IsSelectableSocket(hSocket)) { return IntrRecvError::NetworkError; } struct timeval tval = MillisToTimeval(std::min(endTime - curTime, maxWait)); fd_set fdset; FD_ZERO(&fdset); FD_SET(hSocket, &fdset); int nRet = select(hSocket + 1, &fdset, NULL, NULL, &tval); if (nRet == SOCKET_ERROR) { return IntrRecvError::NetworkError; } } else { return IntrRecvError::NetworkError; } } if (interruptSocks5Recv) return IntrRecvError::Interrupted; curTime = GetTimeMillis(); } return len == 0 ? IntrRecvError::OK : IntrRecvError::Timeout; } struct ProxyCredentials { std::string username; std::string password; }; std::string Socks5ErrorString(int err) { switch(err) { case 0x01: return "general failure"; case 0x02: return "connection not allowed"; case 0x03: return "network unreachable"; case 0x04: return "host unreachable"; case 0x05: return "connection refused"; case 0x06: return "TTL expired"; case 0x07: return "protocol error"; case 0x08: return "address type not supported"; default: return "unknown"; } } /** Connect using SOCKS5 (as described in RFC1928) */ static bool Socks5(const std::string& strDest, int port, const ProxyCredentials *auth, SOCKET& hSocket) { IntrRecvError recvr; LogPrint(BCLog::NET, "SOCKS5 connecting %s\n", strDest); if (strDest.size() > 255) { CloseSocket(hSocket); return error("Hostname too long"); } // Accepted authentication methods std::vector vSocks5Init; vSocks5Init.push_back(0x05); if (auth) { vSocks5Init.push_back(0x02); // # METHODS vSocks5Init.push_back(0x00); // X'00' NO AUTHENTICATION REQUIRED vSocks5Init.push_back(0x02); // X'02' USERNAME/PASSWORD (RFC1929) } else { vSocks5Init.push_back(0x01); // # METHODS vSocks5Init.push_back(0x00); // X'00' NO AUTHENTICATION REQUIRED } ssize_t ret = send(hSocket, (const char*)vSocks5Init.data(), vSocks5Init.size(), MSG_NOSIGNAL); if (ret != (ssize_t)vSocks5Init.size()) { CloseSocket(hSocket); return error("Error sending to proxy"); } char pchRet1[2]; if ((recvr = InterruptibleRecv(pchRet1, 2, SOCKS5_RECV_TIMEOUT, hSocket)) != IntrRecvError::OK) { CloseSocket(hSocket); LogPrintf("Socks5() connect to %s:%d failed: InterruptibleRecv() timeout or other failure\n", strDest, port); return false; } if (pchRet1[0] != 0x05) { CloseSocket(hSocket); return error("Proxy failed to initialize"); } if (pchRet1[1] == 0x02 && auth) { // Perform username/password authentication (as described in RFC1929) std::vector vAuth; vAuth.push_back(0x01); if (auth->username.size() > 255 || auth->password.size() > 255) return error("Proxy username or password too long"); vAuth.push_back(auth->username.size()); vAuth.insert(vAuth.end(), auth->username.begin(), auth->username.end()); vAuth.push_back(auth->password.size()); vAuth.insert(vAuth.end(), auth->password.begin(), auth->password.end()); ret = send(hSocket, (const char*)vAuth.data(), vAuth.size(), MSG_NOSIGNAL); if (ret != (ssize_t)vAuth.size()) { CloseSocket(hSocket); return error("Error sending authentication to proxy"); } LogPrint(BCLog::PROXY, "SOCKS5 sending proxy authentication %s:%s\n", auth->username, auth->password); char pchRetA[2]; if ((recvr = InterruptibleRecv(pchRetA, 2, SOCKS5_RECV_TIMEOUT, hSocket)) != IntrRecvError::OK) { CloseSocket(hSocket); return error("Error reading proxy authentication response"); } if (pchRetA[0] != 0x01 || pchRetA[1] != 0x00) { CloseSocket(hSocket); return error("Proxy authentication unsuccessful"); } } else if (pchRet1[1] == 0x00) { // Perform no authentication } else { CloseSocket(hSocket); return error("Proxy requested wrong authentication method %02x", pchRet1[1]); } std::vector vSocks5; vSocks5.push_back(0x05); // VER protocol version vSocks5.push_back(0x01); // CMD CONNECT vSocks5.push_back(0x00); // RSV Reserved vSocks5.push_back(0x03); // ATYP DOMAINNAME vSocks5.push_back(strDest.size()); // Length<=255 is checked at beginning of function vSocks5.insert(vSocks5.end(), strDest.begin(), strDest.end()); vSocks5.push_back((port >> 8) & 0xFF); vSocks5.push_back((port >> 0) & 0xFF); ret = send(hSocket, (const char*)vSocks5.data(), vSocks5.size(), MSG_NOSIGNAL); if (ret != (ssize_t)vSocks5.size()) { CloseSocket(hSocket); return error("Error sending to proxy"); } char pchRet2[4]; if ((recvr = InterruptibleRecv(pchRet2, 4, SOCKS5_RECV_TIMEOUT, hSocket)) != IntrRecvError::OK) { CloseSocket(hSocket); if (recvr == IntrRecvError::Timeout) { /* If a timeout happens here, this effectively means we timed out while connecting * to the remote node. This is very common for Tor, so do not print an * error message. */ return false; } else { return error("Error while reading proxy response"); } } if (pchRet2[0] != 0x05) { CloseSocket(hSocket); return error("Proxy failed to accept request"); } if (pchRet2[1] != 0x00) { // Failures to connect to a peer that are not proxy errors CloseSocket(hSocket); LogPrintf("Socks5() connect to %s:%d failed: %s\n", strDest, port, Socks5ErrorString(pchRet2[1])); return false; } if (pchRet2[2] != 0x00) { CloseSocket(hSocket); return error("Error: malformed proxy response"); } char pchRet3[256]; switch (pchRet2[3]) { case 0x01: recvr = InterruptibleRecv(pchRet3, 4, SOCKS5_RECV_TIMEOUT, hSocket); break; case 0x04: recvr = InterruptibleRecv(pchRet3, 16, SOCKS5_RECV_TIMEOUT, hSocket); break; case 0x03: { recvr = InterruptibleRecv(pchRet3, 1, SOCKS5_RECV_TIMEOUT, hSocket); if (recvr != IntrRecvError::OK) { CloseSocket(hSocket); return error("Error reading from proxy"); } int nRecv = pchRet3[0]; recvr = InterruptibleRecv(pchRet3, nRecv, SOCKS5_RECV_TIMEOUT, hSocket); break; } default: CloseSocket(hSocket); return error("Error: malformed proxy response"); } if (recvr != IntrRecvError::OK) { CloseSocket(hSocket); return error("Error reading from proxy"); } if ((recvr = InterruptibleRecv(pchRet3, 2, SOCKS5_RECV_TIMEOUT, hSocket)) != IntrRecvError::OK) { CloseSocket(hSocket); return error("Error reading from proxy"); } LogPrint(BCLog::NET, "SOCKS5 connected %s\n", strDest); return true; } bool static ConnectSocketDirectly(const CService &addrConnect, SOCKET& hSocketRet, int nTimeout) { hSocketRet = INVALID_SOCKET; struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrConnect.GetSockAddr((struct sockaddr*)&sockaddr, &len)) { LogPrintf("Cannot connect to %s: unsupported network\n", addrConnect.ToString()); return false; } SOCKET hSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP); if (hSocket == INVALID_SOCKET) return false; int set = 1; #ifdef SO_NOSIGPIPE // Different way of disabling SIGPIPE on BSD setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int)); #endif //Disable Nagle's algorithm #ifdef WIN32 setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int)); #else setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&set, sizeof(int)); #endif // Set to non-blocking if (!SetSocketNonBlocking(hSocket, true)) return error("ConnectSocketDirectly: Setting socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError())); if (connect(hSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); // WSAEINVAL is here because some legacy version of winsock uses it if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL) { struct timeval timeout = MillisToTimeval(nTimeout); fd_set fdset; FD_ZERO(&fdset); FD_SET(hSocket, &fdset); int nRet = select(hSocket + 1, NULL, &fdset, NULL, &timeout); if (nRet == 0) { LogPrint(BCLog::NET, "connection to %s timeout\n", addrConnect.ToString()); CloseSocket(hSocket); return false; } if (nRet == SOCKET_ERROR) { LogPrintf("select() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError())); CloseSocket(hSocket); return false; } socklen_t nRetSize = sizeof(nRet); #ifdef WIN32 if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, (char*)(&nRet), &nRetSize) == SOCKET_ERROR) #else if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, &nRet, &nRetSize) == SOCKET_ERROR) #endif { LogPrintf("getsockopt() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError())); CloseSocket(hSocket); return false; } if (nRet != 0) { LogPrintf("connect() to %s failed after select(): %s\n", addrConnect.ToString(), NetworkErrorString(nRet)); CloseSocket(hSocket); return false; } } #ifdef WIN32 else if (WSAGetLastError() != WSAEISCONN) #else else #endif { LogPrintf("connect() to %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError())); CloseSocket(hSocket); return false; } } hSocketRet = hSocket; return true; } bool SetProxy(enum Network net, const proxyType &addrProxy) { assert(net >= 0 && net < NET_MAX); if (!addrProxy.IsValid()) return false; LOCK(cs_proxyInfos); proxyInfo[net] = addrProxy; return true; } bool GetProxy(enum Network net, proxyType &proxyInfoOut) { assert(net >= 0 && net < NET_MAX); LOCK(cs_proxyInfos); if (!proxyInfo[net].IsValid()) return false; proxyInfoOut = proxyInfo[net]; return true; } bool SetNameProxy(const proxyType &addrProxy) { if (!addrProxy.IsValid()) return false; LOCK(cs_proxyInfos); nameProxy = addrProxy; return true; } bool GetNameProxy(proxyType &nameProxyOut) { LOCK(cs_proxyInfos); if(!nameProxy.IsValid()) return false; nameProxyOut = nameProxy; return true; } bool HaveNameProxy() { LOCK(cs_proxyInfos); return nameProxy.IsValid(); } bool IsProxy(const CNetAddr &addr) { LOCK(cs_proxyInfos); for (int i = 0; i < NET_MAX; i++) { if (addr == (CNetAddr)proxyInfo[i].proxy) return true; } return false; } static bool ConnectThroughProxy(const proxyType &proxy, const std::string& strDest, int port, SOCKET& hSocketRet, int nTimeout, bool *outProxyConnectionFailed) { SOCKET hSocket = INVALID_SOCKET; // first connect to proxy server if (!ConnectSocketDirectly(proxy.proxy, hSocket, nTimeout)) { if (outProxyConnectionFailed) *outProxyConnectionFailed = true; return false; } // do socks negotiation if (proxy.randomize_credentials) { ProxyCredentials random_auth; static std::atomic_int counter; random_auth.username = random_auth.password = strprintf("%i", counter++); if (!Socks5(strDest, (unsigned short)port, &random_auth, hSocket)) return false; } else { if (!Socks5(strDest, (unsigned short)port, 0, hSocket)) return false; } hSocketRet = hSocket; return true; } bool ConnectSocket(const CService &addrDest, SOCKET& hSocketRet, int nTimeout, bool *outProxyConnectionFailed) { proxyType proxy; if (outProxyConnectionFailed) *outProxyConnectionFailed = false; if (GetProxy(addrDest.GetNetwork(), proxy)) return ConnectThroughProxy(proxy, addrDest.ToStringIP(), addrDest.GetPort(), hSocketRet, nTimeout, outProxyConnectionFailed); else // no proxy needed (none set for target network) return ConnectSocketDirectly(addrDest, hSocketRet, nTimeout); } bool ConnectSocketByName(CService &addr, SOCKET& hSocketRet, const char *pszDest, int portDefault, int nTimeout, bool *outProxyConnectionFailed) { std::string strDest; int port = portDefault; if (outProxyConnectionFailed) *outProxyConnectionFailed = false; SplitHostPort(std::string(pszDest), port, strDest); proxyType proxy; GetNameProxy(proxy); std::vector addrResolved; if (Lookup(strDest.c_str(), addrResolved, port, fNameLookup && !HaveNameProxy(), 256)) { if (addrResolved.size() > 0) { addr = addrResolved[GetRand(addrResolved.size())]; return ConnectSocket(addr, hSocketRet, nTimeout); } } addr = CService(); if (!HaveNameProxy()) return false; return ConnectThroughProxy(proxy, strDest, port, hSocketRet, nTimeout, outProxyConnectionFailed); } bool LookupSubNet(const char* pszName, CSubNet& ret) { std::string strSubnet(pszName); size_t slash = strSubnet.find_last_of('/'); std::vector vIP; std::string strAddress = strSubnet.substr(0, slash); if (LookupHost(strAddress.c_str(), vIP, 1, false)) { CNetAddr network = vIP[0]; if (slash != strSubnet.npos) { std::string strNetmask = strSubnet.substr(slash + 1); int32_t n; // IPv4 addresses start at offset 12, and first 12 bytes must match, so just offset n if (ParseInt32(strNetmask, &n)) { // If valid number, assume /24 syntax ret = CSubNet(network, n); return ret.IsValid(); } else // If not a valid number, try full netmask syntax { // Never allow lookup for netmask if (LookupHost(strNetmask.c_str(), vIP, 1, false)) { ret = CSubNet(network, vIP[0]); return ret.IsValid(); } } } else { ret = CSubNet(network); return ret.IsValid(); } } return false; } #ifdef WIN32 std::string NetworkErrorString(int err) { char buf[256]; buf[0] = 0; if(FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_MAX_WIDTH_MASK, NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), buf, sizeof(buf), NULL)) { return strprintf("%s (%d)", buf, err); } else { return strprintf("Unknown error (%d)", err); } } #else std::string NetworkErrorString(int err) { char buf[256]; const char *s = buf; buf[0] = 0; /* Too bad there are two incompatible implementations of the * thread-safe strerror. */ #ifdef STRERROR_R_CHAR_P /* GNU variant can return a pointer outside the passed buffer */ s = strerror_r(err, buf, sizeof(buf)); #else /* POSIX variant always returns message in buffer */ if (strerror_r(err, buf, sizeof(buf))) buf[0] = 0; #endif return strprintf("%s (%d)", s, err); } #endif bool CloseSocket(SOCKET& hSocket) { if (hSocket == INVALID_SOCKET) return false; #ifdef WIN32 int ret = closesocket(hSocket); #else int ret = close(hSocket); #endif hSocket = INVALID_SOCKET; return ret != SOCKET_ERROR; } bool SetSocketNonBlocking(SOCKET& hSocket, bool fNonBlocking) { if (fNonBlocking) { #ifdef WIN32 u_long nOne = 1; if (ioctlsocket(hSocket, FIONBIO, &nOne) == SOCKET_ERROR) { #else int fFlags = fcntl(hSocket, F_GETFL, 0); if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == SOCKET_ERROR) { #endif CloseSocket(hSocket); return false; } } else { #ifdef WIN32 u_long nZero = 0; if (ioctlsocket(hSocket, FIONBIO, &nZero) == SOCKET_ERROR) { #else int fFlags = fcntl(hSocket, F_GETFL, 0); if (fcntl(hSocket, F_SETFL, fFlags & ~O_NONBLOCK) == SOCKET_ERROR) { #endif CloseSocket(hSocket); return false; } } return true; } void InterruptSocks5(bool interrupt) { interruptSocks5Recv = interrupt; }