// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef __cplusplus #error This header can only be compiled as C++. #endif #ifndef BITCOIN_PROTOCOL_H #define BITCOIN_PROTOCOL_H #include #include #include #include #include #include /** Message header. * (4) message start. * (12) command. * (4) size. * (4) checksum. */ class CMessageHeader { public: static constexpr size_t MESSAGE_START_SIZE = 4; static constexpr size_t COMMAND_SIZE = 12; static constexpr size_t MESSAGE_SIZE_SIZE = 4; static constexpr size_t CHECKSUM_SIZE = 4; static constexpr size_t MESSAGE_SIZE_OFFSET = MESSAGE_START_SIZE + COMMAND_SIZE; static constexpr size_t CHECKSUM_OFFSET = MESSAGE_SIZE_OFFSET + MESSAGE_SIZE_SIZE; static constexpr size_t HEADER_SIZE = MESSAGE_START_SIZE + COMMAND_SIZE + MESSAGE_SIZE_SIZE + CHECKSUM_SIZE; typedef unsigned char MessageStartChars[MESSAGE_START_SIZE]; explicit CMessageHeader(); /** Construct a P2P message header from message-start characters, a command and the size of the message. * @note Passing in a `pszCommand` longer than COMMAND_SIZE will result in a run-time assertion error. */ CMessageHeader(const MessageStartChars& pchMessageStartIn, const char* pszCommand, unsigned int nMessageSizeIn); std::string GetCommand() const; bool IsCommandValid() const; SERIALIZE_METHODS(CMessageHeader, obj) { READWRITE(obj.pchMessageStart, obj.pchCommand, obj.nMessageSize, obj.pchChecksum); } char pchMessageStart[MESSAGE_START_SIZE]; char pchCommand[COMMAND_SIZE]; uint32_t nMessageSize; uint8_t pchChecksum[CHECKSUM_SIZE]; }; /** * Bitcoin protocol message types. When adding new message types, don't forget * to update allNetMessageTypes in protocol.cpp. */ namespace NetMsgType { /** * The version message provides information about the transmitting node to the * receiving node at the beginning of a connection. */ extern const char *VERSION; /** * The verack message acknowledges a previously-received version message, * informing the connecting node that it can begin to send other messages. */ extern const char *VERACK; /** * The addr (IP address) message relays connection information for peers on the * network. */ extern const char *ADDR; /** * The addrv2 message relays connection information for peers on the network just * like the addr message, but is extended to allow gossiping of longer node * addresses (see BIP155). */ extern const char *ADDRV2; /** * The sendaddrv2 message signals support for receiving ADDRV2 messages (BIP155). * It also implies that its sender can encode as ADDRV2 and would send ADDRV2 * instead of ADDR to a peer that has signaled ADDRV2 support by sending SENDADDRV2. */ extern const char *SENDADDRV2; /** * The inv message (inventory message) transmits one or more inventories of * objects known to the transmitting peer. */ extern const char *INV; /** * The getdata message requests one or more data objects from another node. */ extern const char *GETDATA; /** * The merkleblock message is a reply to a getdata message which requested a * block using the inventory type MSG_MERKLEBLOCK. * @since protocol version 70001 as described by BIP37. */ extern const char *MERKLEBLOCK; /** * The getblocks message requests an inv message that provides block header * hashes starting from a particular point in the block chain. */ extern const char *GETBLOCKS; /** * The getheaders message requests a headers message that provides block * headers starting from a particular point in the block chain. * @since protocol version 31800. */ extern const char *GETHEADERS; /** * The tx message transmits a single transaction. */ extern const char *TX; /** * The headers message sends one or more block headers to a node which * previously requested certain headers with a getheaders message. * @since protocol version 31800. */ extern const char *HEADERS; /** * The block message transmits a single serialized block. */ extern const char *BLOCK; /** * The getaddr message requests an addr message from the receiving node, * preferably one with lots of IP addresses of other receiving nodes. */ extern const char *GETADDR; /** * The mempool message requests the TXIDs of transactions that the receiving * node has verified as valid but which have not yet appeared in a block. * @since protocol version 60002. */ extern const char *MEMPOOL; /** * The ping message is sent periodically to help confirm that the receiving * peer is still connected. */ extern const char *PING; /** * The pong message replies to a ping message, proving to the pinging node that * the ponging node is still alive. * @since protocol version 60001 as described by BIP31. */ extern const char *PONG; /** * The notfound message is a reply to a getdata message which requested an * object the receiving node does not have available for relay. * @since protocol version 70001. */ extern const char *NOTFOUND; /** * The filterload message tells the receiving peer to filter all relayed * transactions and requested merkle blocks through the provided filter. * @since protocol version 70001 as described by BIP37. * Only available with service bit NODE_BLOOM since protocol version * 70011 as described by BIP111. */ extern const char *FILTERLOAD; /** * The filteradd message tells the receiving peer to add a single element to a * previously-set bloom filter, such as a new public key. * @since protocol version 70001 as described by BIP37. * Only available with service bit NODE_BLOOM since protocol version * 70011 as described by BIP111. */ extern const char *FILTERADD; /** * The filterclear message tells the receiving peer to remove a previously-set * bloom filter. * @since protocol version 70001 as described by BIP37. * Only available with service bit NODE_BLOOM since protocol version * 70011 as described by BIP111. */ extern const char *FILTERCLEAR; /** * Indicates that a node prefers to receive new block announcements via a * "headers" message rather than an "inv". * @since protocol version 70012 as described by BIP130. */ extern const char *SENDHEADERS; /** * Contains a 1-byte bool and 8-byte LE version number. * Indicates that a node is willing to provide blocks via "cmpctblock" messages. * May indicate that a node prefers to receive new block announcements via a * "cmpctblock" message rather than an "inv", depending on message contents. * @since protocol version 70209 as described by BIP 152 */ extern const char *SENDCMPCT; /** * Contains a CBlockHeaderAndShortTxIDs object - providing a header and * list of "short txids". * @since protocol version 70209 as described by BIP 152 */ extern const char *CMPCTBLOCK; /** * Contains a BlockTransactionsRequest * Peer should respond with "blocktxn" message. * @since protocol version 70209 as described by BIP 152 */ extern const char *GETBLOCKTXN; /** * Contains a BlockTransactions. * Sent in response to a "getblocktxn" message. * @since protocol version 70209 as described by BIP 152 */ extern const char *BLOCKTXN; /** * getcfilters requests compact filters for a range of blocks. * Only available with service bit NODE_COMPACT_FILTERS as described by * BIP 157 & 158. */ extern const char* GETCFILTERS; /** * cfilter is a response to a getcfilters request containing a single compact * filter. */ extern const char* CFILTER; /** * getcfheaders requests a compact filter header and the filter hashes for a * range of blocks, which can then be used to reconstruct the filter headers * for those blocks. * Only available with service bit NODE_COMPACT_FILTERS as described by * BIP 157 & 158. */ extern const char* GETCFHEADERS; /** * cfheaders is a response to a getcfheaders request containing a filter header * and a vector of filter hashes for each subsequent block in the requested range. */ extern const char* CFHEADERS; /** * getcfcheckpt requests evenly spaced compact filter headers, enabling * parallelized download and validation of the headers between them. * Only available with service bit NODE_COMPACT_FILTERS as described by * BIP 157 & 158. */ extern const char *GETCFCHECKPT; /** * cfcheckpt is a response to a getcfcheckpt request containing a vector of * evenly spaced filter headers for blocks on the requested chain. */ extern const char *CFCHECKPT; // Dash message types // NOTE: do NOT declare non-implmented here, we don't want them to be exposed to the outside // TODO: add description extern const char *LEGACYTXLOCKREQUEST; // only present for backwards compatibility extern const char *SPORK; extern const char *GETSPORKS; extern const char *DSACCEPT; extern const char *DSVIN; extern const char *DSFINALTX; extern const char *DSSIGNFINALTX; extern const char *DSCOMPLETE; extern const char *DSSTATUSUPDATE; extern const char *DSTX; extern const char *DSQUEUE; extern const char *SENDDSQUEUE; extern const char *SYNCSTATUSCOUNT; extern const char *MNGOVERNANCESYNC; extern const char *MNGOVERNANCEOBJECT; extern const char *MNGOVERNANCEOBJECTVOTE; extern const char *GETMNLISTDIFF; extern const char *MNLISTDIFF; extern const char *QSENDRECSIGS; extern const char *QFCOMMITMENT; extern const char *QCONTRIB; extern const char *QCOMPLAINT; extern const char *QJUSTIFICATION; extern const char *QPCOMMITMENT; extern const char *QWATCH; extern const char *QSIGSESANN; extern const char *QSIGSHARESINV; extern const char *QGETSIGSHARES; extern const char *QBSIGSHARES; extern const char *QSIGREC; extern const char *QSIGSHARE; extern const char* QGETDATA; extern const char* QDATA; extern const char *CLSIG; extern const char *ISLOCK; extern const char *ISDLOCK; extern const char *MNAUTH; extern const char *GETHEADERS2; extern const char *SENDHEADERS2; extern const char *HEADERS2; extern const char *GETQUORUMROTATIONINFO; extern const char *QUORUMROTATIONINFO; }; /* Get a vector of all valid message types (see above) */ const std::vector &getAllNetMessageTypes(); /* Whether the message type violates blocks-relay-only policy */ bool NetMessageViolatesBlocksOnly(const std::string& msg_type); /** nServices flags */ enum ServiceFlags : uint64_t { // NOTE: When adding here, be sure to update serviceFlagToStr too // Nothing NODE_NONE = 0, // NODE_NETWORK means that the node is capable of serving the complete block chain. It is currently // set by all Dash Core non pruned nodes, and is unset by SPV clients or other light clients. NODE_NETWORK = (1 << 0), // NODE_GETUTXO means the node is capable of responding to the getutxo protocol request. // Dash Core does not support this but a patch set called Bitcoin XT does. // See BIP 64 for details on how this is implemented. NODE_GETUTXO = (1 << 1), // NODE_BLOOM means the node is capable and willing to handle bloom-filtered connections. // Dash Core nodes used to support this by default, without advertising this bit, // but no longer do as of protocol version 70201 (= NO_BLOOM_VERSION) NODE_BLOOM = (1 << 2), // NODE_COMPACT_FILTERS means the node will service basic block filter requests. // See BIP157 and BIP158 for details on how this is implemented. NODE_COMPACT_FILTERS = (1 << 6), // NODE_NETWORK_LIMITED means the same as NODE_NETWORK with the limitation of only // serving the last 288 blocks // See BIP159 for details on how this is implemented. NODE_NETWORK_LIMITED = (1 << 10), // description will be provided NODE_HEADERS_COMPRESSED = (1 << 11), // Bits 24-31 are reserved for temporary experiments. Just pick a bit that // isn't getting used, or one not being used much, and notify the // bitcoin-development mailing list. Remember that service bits are just // unauthenticated advertisements, so your code must be robust against // collisions and other cases where nodes may be advertising a service they // do not actually support. Other service bits should be allocated via the // BIP process. }; /** * Convert service flags (a bitmask of NODE_*) to human readable strings. * It supports unknown service flags which will be returned as "UNKNOWN[...]". * @param[in] flags multiple NODE_* bitwise-OR-ed together */ std::vector serviceFlagsToStr(uint64_t flags); /** * Gets the set of service flags which are "desirable" for a given peer. * * These are the flags which are required for a peer to support for them * to be "interesting" to us, ie for us to wish to use one of our few * outbound connection slots for or for us to wish to prioritize keeping * their connection around. * * Relevant service flags may be peer- and state-specific in that the * version of the peer may determine which flags are required (eg in the * case of NODE_NETWORK_LIMITED where we seek out NODE_NETWORK peers * unless they set NODE_NETWORK_LIMITED and we are out of IBD, in which * case NODE_NETWORK_LIMITED suffices). * * Thus, generally, avoid calling with peerServices == NODE_NONE, unless * state-specific flags must absolutely be avoided. When called with * peerServices == NODE_NONE, the returned desirable service flags are * guaranteed to not change dependent on state - ie they are suitable for * use when describing peers which we know to be desirable, but for which * we do not have a confirmed set of service flags. * * If the NODE_NONE return value is changed, contrib/seeds/makeseeds.py * should be updated appropriately to filter for the same nodes. */ ServiceFlags GetDesirableServiceFlags(ServiceFlags services); /** Set the current IBD status in order to figure out the desirable service flags */ void SetServiceFlagsIBDCache(bool status); /** * A shortcut for (services & GetDesirableServiceFlags(services)) * == GetDesirableServiceFlags(services), ie determines whether the given * set of service flags are sufficient for a peer to be "relevant". */ static inline bool HasAllDesirableServiceFlags(ServiceFlags services) { return !(GetDesirableServiceFlags(services) & (~services)); } /** * Checks if a peer with the given service flags may be capable of having a * robust address-storage DB. */ static inline bool MayHaveUsefulAddressDB(ServiceFlags services) { return (services & NODE_NETWORK) || (services & NODE_NETWORK_LIMITED); } /** A CService with information about it as peer */ class CAddress : public CService { public: CAddress(); explicit CAddress(CService ipIn, ServiceFlags nServicesIn); CAddress(CService ipIn, ServiceFlags nServicesIn, uint32_t nTimeIn); void Init(); SERIALIZE_METHODS(CAddress, obj) { SER_READ(obj, obj.Init()); int nVersion = s.GetVersion(); if (s.GetType() & SER_DISK) { READWRITE(nVersion); } if ((s.GetType() & SER_DISK) || (nVersion != INIT_PROTO_VERSION && !(s.GetType() & SER_GETHASH))) { // The only time we serialize a CAddress object without nTime is in // the initial VERSION messages which contain two CAddress records. // At that point, the serialization version is INIT_PROTO_VERSION. // After the version handshake, serialization version is >= // MIN_PEER_PROTO_VERSION and all ADDR messages are serialized with // nTime. READWRITE(obj.nTime); } if (nVersion & ADDRV2_FORMAT) { uint64_t services_tmp; SER_WRITE(obj, services_tmp = obj.nServices); READWRITE(Using>(services_tmp)); SER_READ(obj, obj.nServices = static_cast(services_tmp)); } else { READWRITE(Using>(obj.nServices)); } READWRITEAS(CService, obj); } // TODO: make private (improves encapsulation) public: ServiceFlags nServices; // disk and network only unsigned int nTime; }; /** getdata / inv message types. * These numbers are defined by the protocol. When adding a new value, be sure * to mention it in the respective BIP. */ enum GetDataMsg { UNDEFINED = 0, MSG_TX = 1, MSG_BLOCK = 2, // The following can only occur in getdata. Invs always use TX or BLOCK. MSG_FILTERED_BLOCK = 3, //!< Defined in BIP37 // Dash message types // NOTE: declare non-implmented here, we must keep this enum consistent and backwards compatible MSG_LEGACY_TXLOCK_REQUEST = 4, /* MSG_TXLOCK_VOTE = 5, Legacy InstantSend and not used anymore */ MSG_SPORK = 6, /* 7 - 15 were used in old Dash versions and were mainly budget and MN broadcast/ping related*/ MSG_DSTX = 16, MSG_GOVERNANCE_OBJECT = 17, MSG_GOVERNANCE_OBJECT_VOTE = 18, /* 19 was used for MSG_MASTERNODE_VERIFY and is not supported anymore */ // Nodes may always request a MSG_CMPCT_BLOCK in a getdata, however, // MSG_CMPCT_BLOCK should not appear in any invs except as a part of getdata. MSG_CMPCT_BLOCK = 20, //!< Defined in BIP152 MSG_QUORUM_FINAL_COMMITMENT = 21, /* MSG_QUORUM_DUMMY_COMMITMENT = 22, */ // was shortly used on testnet/devnet/regtest MSG_QUORUM_CONTRIB = 23, MSG_QUORUM_COMPLAINT = 24, MSG_QUORUM_JUSTIFICATION = 25, MSG_QUORUM_PREMATURE_COMMITMENT = 26, /* MSG_QUORUM_DEBUG_STATUS = 27, */ // was shortly used on testnet/devnet/regtest MSG_QUORUM_RECOVERED_SIG = 28, MSG_CLSIG = 29, MSG_ISLOCK = 30, MSG_ISDLOCK = 31, }; /** inv message data */ class CInv { public: CInv(); CInv(int typeIn, const uint256& hashIn); SERIALIZE_METHODS(CInv, obj) { READWRITE(obj.type, obj.hash); } friend bool operator<(const CInv& a, const CInv& b); bool IsKnownType() const; std::string GetCommand() const; std::string ToString() const; private: const char* GetCommandInternal() const; public: int type; uint256 hash; }; #endif // BITCOIN_PROTOCOL_H