// Copyright (c) 2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include /** Expiration time for orphan transactions in seconds */ static constexpr int64_t ORPHAN_TX_EXPIRE_TIME = 20 * 60; /** Minimum time between orphan transactions expire time checks in seconds */ static constexpr int64_t ORPHAN_TX_EXPIRE_INTERVAL = 5 * 60; RecursiveMutex g_cs_orphans; bool TxOrphanage::AddTx(const CTransactionRef& tx, NodeId peer) { AssertLockHeld(g_cs_orphans); const uint256& hash = tx->GetHash(); if (m_orphans.count(hash)) return false; // Ignore big transactions, to avoid a // send-big-orphans memory exhaustion attack. If a peer has a legitimate // large transaction with a missing parent then we assume // it will rebroadcast it later, after the parent transaction(s) // have been mined or received. // 100 orphans, each of which is at most 99,999 bytes big is // at most 10 megabytes of orphans and somewhat more byprev index (in the worst case): unsigned int sz = GetSerializeSize(*tx, CTransaction::CURRENT_VERSION); if (sz > MAX_STANDARD_TX_SIZE) { LogPrint(BCLog::MEMPOOL, "ignoring large orphan tx (size: %u, hash: %s)\n", sz, hash.ToString()); return false; } auto ret = m_orphans.emplace(hash, OrphanTx{tx, peer, GetTime() + ORPHAN_TX_EXPIRE_TIME, m_orphan_list.size(), sz}); assert(ret.second); m_orphan_list.push_back(ret.first); for (const CTxIn& txin : tx->vin) { m_outpoint_to_orphan_it[txin.prevout].insert(ret.first); } m_orphan_tx_size += sz; LogPrint(BCLog::MEMPOOL, "stored orphan tx %s (mapsz %u outsz %u)\n", hash.ToString(), m_orphans.size(), m_outpoint_to_orphan_it.size()); ::g_stats_client->inc("transactions.orphans.add", 1.0f); ::g_stats_client->gauge("transactions.orphans", m_orphans.size()); return true; } int TxOrphanage::EraseTx(const uint256& txid) { AssertLockHeld(g_cs_orphans); std::map::iterator it = m_orphans.find(txid); if (it == m_orphans.end()) return 0; for (const CTxIn& txin : it->second.tx->vin) { auto itPrev = m_outpoint_to_orphan_it.find(txin.prevout); if (itPrev == m_outpoint_to_orphan_it.end()) continue; itPrev->second.erase(it); if (itPrev->second.empty()) m_outpoint_to_orphan_it.erase(itPrev); } size_t old_pos = it->second.list_pos; assert(m_orphan_list[old_pos] == it); if (old_pos + 1 != m_orphan_list.size()) { // Unless we're deleting the last entry in m_orphan_list, move the last // entry to the position we're deleting. auto it_last = m_orphan_list.back(); m_orphan_list[old_pos] = it_last; it_last->second.list_pos = old_pos; } m_orphan_list.pop_back(); assert(m_orphan_tx_size >= it->second.nTxSize); m_orphan_tx_size -= it->second.nTxSize; m_orphans.erase(it); ::g_stats_client->inc("transactions.orphans.remove", 1.0f); ::g_stats_client->gauge("transactions.orphans", m_orphans.size()); return 1; } void TxOrphanage::EraseForPeer(NodeId peer) { AssertLockHeld(g_cs_orphans); int nErased = 0; std::map::iterator iter = m_orphans.begin(); while (iter != m_orphans.end()) { std::map::iterator maybeErase = iter++; // increment to avoid iterator becoming invalid if (maybeErase->second.fromPeer == peer) { nErased += EraseTx(maybeErase->second.tx->GetHash()); } } if (nErased > 0) LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx from peer=%d\n", nErased, peer); } unsigned int TxOrphanage::LimitOrphans(unsigned int max_orphans_size) { AssertLockHeld(g_cs_orphans); unsigned int nEvicted = 0; static int64_t nNextSweep; int64_t nNow = GetTime(); if (nNextSweep <= nNow) { // Sweep out expired orphan pool entries: int nErased = 0; int64_t nMinExpTime = nNow + ORPHAN_TX_EXPIRE_TIME - ORPHAN_TX_EXPIRE_INTERVAL; std::map::iterator iter = m_orphans.begin(); while (iter != m_orphans.end()) { std::map::iterator maybeErase = iter++; if (maybeErase->second.nTimeExpire <= nNow) { nErased += EraseTx(maybeErase->second.tx->GetHash()); } else { nMinExpTime = std::min(maybeErase->second.nTimeExpire, nMinExpTime); } } // Sweep again 5 minutes after the next entry that expires in order to batch the linear scan. nNextSweep = nMinExpTime + ORPHAN_TX_EXPIRE_INTERVAL; if (nErased > 0) LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx due to expiration\n", nErased); } FastRandomContext rng; while (!m_orphans.empty() && m_orphan_tx_size > max_orphans_size) { // Evict a random orphan: size_t randompos = rng.randrange(m_orphan_list.size()); EraseTx(m_orphan_list[randompos]->first); ++nEvicted; } return nEvicted; } void TxOrphanage::AddChildrenToWorkSet(const CTransaction& tx, std::set& orphan_work_set) const { AssertLockHeld(g_cs_orphans); for (unsigned int i = 0; i < tx.vout.size(); i++) { const auto it_by_prev = m_outpoint_to_orphan_it.find(COutPoint(tx.GetHash(), i)); if (it_by_prev != m_outpoint_to_orphan_it.end()) { for (const auto& elem : it_by_prev->second) { orphan_work_set.insert(elem->first); } } } } bool TxOrphanage::HaveTx(const uint256& txid) const { LOCK(g_cs_orphans); return m_orphans.count(txid); } std::pair TxOrphanage::GetTx(const uint256& txid) const { AssertLockHeld(g_cs_orphans); const auto it = m_orphans.find(txid); if (it == m_orphans.end()) return {nullptr, -1}; return {it->second.tx, it->second.fromPeer}; } std::set TxOrphanage::GetCandidatesForBlock(const CBlock& block) { AssertLockHeld(g_cs_orphans); std::set orphanWorkSet; for (const CTransactionRef& ptx : block.vtx) { const CTransaction& tx = *ptx; // Which orphan pool entries we should reprocess and potentially try to accept into mempool again? for (size_t i = 0; i < tx.vin.size(); i++) { auto itByPrev = m_outpoint_to_orphan_it.find(COutPoint(tx.GetHash(), (uint32_t)i)); if (itByPrev == m_outpoint_to_orphan_it.end()) continue; for (const auto& elem : itByPrev->second) { orphanWorkSet.insert(elem->first); } } } return orphanWorkSet; } void TxOrphanage::EraseForBlock(const CBlock& block) { AssertLockHeld(g_cs_orphans); std::vector vOrphanErase; for (const CTransactionRef& ptx : block.vtx) { const CTransaction& tx = *ptx; // Which orphan pool entries must we evict? for (const auto& txin : tx.vin) { auto itByPrev = m_outpoint_to_orphan_it.find(txin.prevout); if (itByPrev == m_outpoint_to_orphan_it.end()) continue; for (auto mi = itByPrev->second.begin(); mi != itByPrev->second.end(); ++mi) { const CTransaction& orphanTx = *(*mi)->second.tx; const uint256& orphanHash = orphanTx.GetHash(); vOrphanErase.push_back(orphanHash); } } } // Erase orphan transactions included or precluded by this block if (vOrphanErase.size()) { int nErased = 0; for (const uint256& orphanHash : vOrphanErase) { nErased += EraseTx(orphanHash); } LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx included or conflicted by block\n", nErased); } }