// Copyright (c) 2012-2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include BOOST_AUTO_TEST_SUITE(scheduler_tests) static void microTask(CScheduler& s, boost::mutex& mutex, int& counter, int delta, boost::chrono::system_clock::time_point rescheduleTime) { { boost::unique_lock lock(mutex); counter += delta; } boost::chrono::system_clock::time_point noTime = boost::chrono::system_clock::time_point::min(); if (rescheduleTime != noTime) { CScheduler::Function f = boost::bind(µTask, boost::ref(s), boost::ref(mutex), boost::ref(counter), -delta + 1, noTime); s.schedule(f, rescheduleTime); } } static void MicroSleep(uint64_t n) { #if defined(HAVE_WORKING_BOOST_SLEEP_FOR) boost::this_thread::sleep_for(boost::chrono::microseconds(n)); #elif defined(HAVE_WORKING_BOOST_SLEEP) boost::this_thread::sleep(boost::posix_time::microseconds(n)); #else //should never get here #error missing boost sleep implementation #endif } BOOST_AUTO_TEST_CASE(manythreads) { // Stress test: hundreds of microsecond-scheduled tasks, // serviced by 10 threads. // // So... ten shared counters, which if all the tasks execute // properly will sum to the number of tasks done. // Each task adds or subtracts a random amount from one of the // counters, and then schedules another task 0-1000 // microseconds in the future to subtract or add from // the counter -random_amount+1, so in the end the shared // counters should sum to the number of initial tasks performed. CScheduler microTasks; boost::mutex counterMutex[10]; int counter[10] = { 0 }; FastRandomContext rng{/* fDeterministic */ true}; auto zeroToNine = [](FastRandomContext& rc) -> int { return rc.randrange(10); }; // [0, 9] auto randomMsec = [](FastRandomContext& rc) -> int { return -11 + (int)rc.randrange(1012); }; // [-11, 1000] auto randomDelta = [](FastRandomContext& rc) -> int { return -1000 + (int)rc.randrange(2001); }; // [-1000, 1000] boost::chrono::system_clock::time_point start = boost::chrono::system_clock::now(); boost::chrono::system_clock::time_point now = start; boost::chrono::system_clock::time_point first, last; size_t nTasks = microTasks.getQueueInfo(first, last); BOOST_CHECK(nTasks == 0); for (int i = 0; i < 100; ++i) { boost::chrono::system_clock::time_point t = now + boost::chrono::microseconds(randomMsec(rng)); boost::chrono::system_clock::time_point tReschedule = now + boost::chrono::microseconds(500 + randomMsec(rng)); int whichCounter = zeroToNine(rng); CScheduler::Function f = boost::bind(µTask, boost::ref(microTasks), boost::ref(counterMutex[whichCounter]), boost::ref(counter[whichCounter]), randomDelta(rng), tReschedule); microTasks.schedule(f, t); } nTasks = microTasks.getQueueInfo(first, last); BOOST_CHECK(nTasks == 100); BOOST_CHECK(first < last); BOOST_CHECK(last > now); // As soon as these are created they will start running and servicing the queue boost::thread_group microThreads; for (int i = 0; i < 5; i++) microThreads.create_thread(boost::bind(&CScheduler::serviceQueue, µTasks)); MicroSleep(600); now = boost::chrono::system_clock::now(); // More threads and more tasks: for (int i = 0; i < 5; i++) microThreads.create_thread(boost::bind(&CScheduler::serviceQueue, µTasks)); for (int i = 0; i < 100; i++) { boost::chrono::system_clock::time_point t = now + boost::chrono::microseconds(randomMsec(rng)); boost::chrono::system_clock::time_point tReschedule = now + boost::chrono::microseconds(500 + randomMsec(rng)); int whichCounter = zeroToNine(rng); CScheduler::Function f = boost::bind(µTask, boost::ref(microTasks), boost::ref(counterMutex[whichCounter]), boost::ref(counter[whichCounter]), randomDelta(rng), tReschedule); microTasks.schedule(f, t); } // Drain the task queue then exit threads microTasks.stop(true); microThreads.join_all(); // ... wait until all the threads are done int counterSum = 0; for (int i = 0; i < 10; i++) { BOOST_CHECK(counter[i] != 0); counterSum += counter[i]; } BOOST_CHECK_EQUAL(counterSum, 200); } BOOST_AUTO_TEST_CASE(wait_until_past) { std::condition_variable condvar; Mutex mtx; WAIT_LOCK(mtx, lock); const auto no_wait= [&](const std::chrono::seconds& d) { return condvar.wait_until(lock, std::chrono::system_clock::now() - d); }; BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::seconds{1})); BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::minutes{1})); BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{1})); BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{10})); BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{100})); BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{1000})); } BOOST_AUTO_TEST_CASE(singlethreadedscheduler_ordered) { CScheduler scheduler; // each queue should be well ordered with respect to itself but not other queues SingleThreadedSchedulerClient queue1(&scheduler); SingleThreadedSchedulerClient queue2(&scheduler); // create more threads than queues // if the queues only permit execution of one task at once then // the extra threads should effectively be doing nothing // if they don't we'll get out of order behaviour boost::thread_group threads; for (int i = 0; i < 5; ++i) { threads.create_thread(boost::bind(&CScheduler::serviceQueue, &scheduler)); } // these are not atomic, if SinglethreadedSchedulerClient prevents // parallel execution at the queue level no synchronization should be required here int counter1 = 0; int counter2 = 0; // just simply count up on each queue - if execution is properly ordered then // the callbacks should run in exactly the order in which they were enqueued for (int i = 0; i < 100; ++i) { queue1.AddToProcessQueue([i, &counter1]() { bool expectation = i == counter1++; assert(expectation); }); queue2.AddToProcessQueue([i, &counter2]() { bool expectation = i == counter2++; assert(expectation); }); } // finish up scheduler.stop(true); threads.join_all(); BOOST_CHECK_EQUAL(counter1, 100); BOOST_CHECK_EQUAL(counter2, 100); } BOOST_AUTO_TEST_SUITE_END()