// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2020 The Bitcoin Core developers // Copyright (c) 2014-2024 The Dash Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int64_t UpdateTime(CBlockHeader* pblock, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev) { int64_t nOldTime = pblock->nTime; int64_t nNewTime = std::max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime()); if (nOldTime < nNewTime) pblock->nTime = nNewTime; // Updating time can change work required on testnet: if (consensusParams.fPowAllowMinDifficultyBlocks) pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, consensusParams); return nNewTime - nOldTime; } BlockAssembler::Options::Options() { blockMinFeeRate = CFeeRate(DEFAULT_BLOCK_MIN_TX_FEE); nBlockMaxSize = DEFAULT_BLOCK_MAX_SIZE; } BlockAssembler::BlockAssembler(CChainState& chainstate, const NodeContext& node, const CTxMemPool& mempool, const CChainParams& params, const Options& options) : chainparams(params), m_mempool(mempool), m_chainstate(chainstate), m_dmnman(*Assert(node.dmnman)), m_cpoolman(*Assert(node.cpoolman)), m_chain_helper(*Assert(node.chain_helper)), m_mnhfman(*Assert(node.mnhf_manager)), m_quorum_block_processor(*Assert(Assert(node.llmq_ctx)->quorum_block_processor)), m_qman(*Assert(Assert(node.llmq_ctx)->qman)), m_clhandler(*Assert(Assert(node.llmq_ctx)->clhandler)), m_isman(*Assert(Assert(node.llmq_ctx)->isman)), m_evoDb(*Assert(node.evodb)) { blockMinFeeRate = options.blockMinFeeRate; nBlockMaxSize = options.nBlockMaxSize; } static BlockAssembler::Options DefaultOptions() { // Block resource limits BlockAssembler::Options options; options.nBlockMaxSize = DEFAULT_BLOCK_MAX_SIZE; if (gArgs.IsArgSet("-blockmaxsize")) { options.nBlockMaxSize = gArgs.GetArg("-blockmaxsize", DEFAULT_BLOCK_MAX_SIZE); } if (gArgs.IsArgSet("-blockmintxfee")) { std::optional parsed = ParseMoney(gArgs.GetArg("-blockmintxfee", "")); options.blockMinFeeRate = CFeeRate{parsed.value_or(DEFAULT_BLOCK_MIN_TX_FEE)}; } else { options.blockMinFeeRate = CFeeRate{DEFAULT_BLOCK_MIN_TX_FEE}; } return options; } BlockAssembler::BlockAssembler(CChainState& chainstate, const NodeContext& node, const CTxMemPool& mempool, const CChainParams& params) : BlockAssembler(chainstate, node, mempool, params, DefaultOptions()) {} void BlockAssembler::resetBlock() { inBlock.clear(); // Reserve space for coinbase tx nBlockSize = 1000; nBlockSigOps = 100; // These counters do not include coinbase tx nBlockTx = 0; nFees = 0; } std::unique_ptr BlockAssembler::CreateNewBlock(const CScript& scriptPubKeyIn) { int64_t nTimeStart = GetTimeMicros(); resetBlock(); pblocktemplate.reset(new CBlockTemplate()); if(!pblocktemplate.get()) return nullptr; CBlock* const pblock = &pblocktemplate->block; // pointer for convenience // Add dummy coinbase tx as first transaction pblock->vtx.emplace_back(); pblocktemplate->vTxFees.push_back(-1); // updated at end pblocktemplate->vTxSigOps.push_back(-1); // updated at end LOCK2(cs_main, m_mempool.cs); assert(std::addressof(*::ChainActive().Tip()) == std::addressof(*m_chainstate.m_chain.Tip())); CBlockIndex* pindexPrev = m_chainstate.m_chain.Tip(); assert(pindexPrev != nullptr); nHeight = pindexPrev->nHeight + 1; const bool fDIP0001Active_context{DeploymentActiveAfter(pindexPrev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_DIP0001)}; const bool fDIP0003Active_context{DeploymentActiveAfter(pindexPrev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_DIP0003)}; const bool fDIP0008Active_context{DeploymentActiveAfter(pindexPrev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_DIP0008)}; const bool fV20Active_context{DeploymentActiveAfter(pindexPrev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_V20)}; // Limit size to between 1K and MaxBlockSize()-1K for sanity: nBlockMaxSize = std::max(1000, std::min(MaxBlockSize(fDIP0001Active_context) - 1000, nBlockMaxSize)); nBlockMaxSigOps = MaxBlockSigOps(fDIP0001Active_context); pblock->nVersion = g_versionbitscache.ComputeBlockVersion(pindexPrev, chainparams.GetConsensus()); // Non-mainnet only: allow overriding block.nVersion with // -blockversion=N to test forking scenarios if (Params().NetworkIDString() != CBaseChainParams::MAIN) pblock->nVersion = gArgs.GetArg("-blockversion", pblock->nVersion); pblock->nTime = GetAdjustedTime(); const int64_t nMedianTimePast = pindexPrev->GetMedianTimePast(); nLockTimeCutoff = (STANDARD_LOCKTIME_VERIFY_FLAGS & LOCKTIME_MEDIAN_TIME_PAST) ? nMedianTimePast : pblock->GetBlockTime(); if (fDIP0003Active_context) { for (const Consensus::LLMQParams& params : llmq::GetEnabledQuorumParams(pindexPrev)) { std::vector vqcTx; if (m_quorum_block_processor.GetMineableCommitmentsTx(params, nHeight, vqcTx)) { for (const auto& qcTx : vqcTx) { pblock->vtx.emplace_back(qcTx); pblocktemplate->vTxFees.emplace_back(0); pblocktemplate->vTxSigOps.emplace_back(0); nBlockSize += qcTx->GetTotalSize(); ++nBlockTx; } } } } int nPackagesSelected = 0; int nDescendantsUpdated = 0; addPackageTxs(nPackagesSelected, nDescendantsUpdated, pindexPrev); int64_t nTime1 = GetTimeMicros(); m_last_block_num_txs = nBlockTx; m_last_block_size = nBlockSize; LogPrintf("CreateNewBlock(): total size %u txs: %u fees: %ld sigops %d\n", nBlockSize, nBlockTx, nFees, nBlockSigOps); // Create coinbase transaction. CMutableTransaction coinbaseTx; coinbaseTx.vin.resize(1); coinbaseTx.vin[0].prevout.SetNull(); coinbaseTx.vout.resize(1); coinbaseTx.vout[0].scriptPubKey = scriptPubKeyIn; // NOTE: unlike in bitcoin, we need to pass PREVIOUS block height here CAmount blockSubsidy = GetBlockSubsidyInner(pindexPrev->nBits, pindexPrev->nHeight, Params().GetConsensus(), fV20Active_context); CAmount blockReward = blockSubsidy + nFees; // Compute regular coinbase transaction. coinbaseTx.vout[0].nValue = blockReward; if (!fDIP0003Active_context) { coinbaseTx.vin[0].scriptSig = CScript() << nHeight << OP_0; } else { coinbaseTx.vin[0].scriptSig = CScript() << OP_RETURN; coinbaseTx.nVersion = 3; coinbaseTx.nType = TRANSACTION_COINBASE; CCbTx cbTx; if (fV20Active_context) { cbTx.nVersion = CCbTx::Version::CLSIG_AND_BALANCE; } else if (fDIP0008Active_context) { cbTx.nVersion = CCbTx::Version::MERKLE_ROOT_QUORUMS; } else { cbTx.nVersion = CCbTx::Version::MERKLE_ROOT_MNLIST; } cbTx.nHeight = nHeight; BlockValidationState state; if (!CalcCbTxMerkleRootMNList(*pblock, pindexPrev, cbTx.merkleRootMNList, m_dmnman, state, ::ChainstateActive().CoinsTip())) { throw std::runtime_error(strprintf("%s: CalcCbTxMerkleRootMNList failed: %s", __func__, state.ToString())); } if (fDIP0008Active_context) { if (!CalcCbTxMerkleRootQuorums(*pblock, pindexPrev, m_quorum_block_processor, cbTx.merkleRootQuorums, state)) { throw std::runtime_error(strprintf("%s: CalcCbTxMerkleRootQuorums failed: %s", __func__, state.ToString())); } if (fV20Active_context) { if (CalcCbTxBestChainlock(m_clhandler, pindexPrev, cbTx.bestCLHeightDiff, cbTx.bestCLSignature)) { LogPrintf("CreateNewBlock() h[%d] CbTx bestCLHeightDiff[%d] CLSig[%s]\n", nHeight, cbTx.bestCLHeightDiff, cbTx.bestCLSignature.ToString()); } else { // not an error LogPrintf("CreateNewBlock() h[%d] CbTx failed to find best CL. Inserting null CL\n", nHeight); } BlockValidationState state; const auto creditPoolDiff = GetCreditPoolDiffForBlock(m_cpoolman, m_qman, *pblock, pindexPrev, chainparams.GetConsensus(), blockSubsidy, state); if (creditPoolDiff == std::nullopt) { throw std::runtime_error(strprintf("%s: GetCreditPoolDiffForBlock failed: %s", __func__, state.ToString())); } cbTx.creditPoolBalance = creditPoolDiff->GetTotalLocked(); } } SetTxPayload(coinbaseTx, cbTx); } // Update coinbase transaction with additional info about masternode and governance payments, // get some info back to pass to getblocktemplate m_chain_helper.mn_payments->FillBlockPayments(coinbaseTx, pindexPrev, blockSubsidy, nFees, pblocktemplate->voutMasternodePayments, pblocktemplate->voutSuperblockPayments); pblock->vtx[0] = MakeTransactionRef(std::move(coinbaseTx)); pblocktemplate->vTxFees[0] = -nFees; // Fill in header pblock->hashPrevBlock = pindexPrev->GetBlockHash(); UpdateTime(pblock, chainparams.GetConsensus(), pindexPrev); pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, chainparams.GetConsensus()); pblock->nNonce = 0; pblocktemplate->nPrevBits = pindexPrev->nBits; pblocktemplate->vTxSigOps[0] = GetLegacySigOpCount(*pblock->vtx[0]); BlockValidationState state; assert(std::addressof(::ChainstateActive()) == std::addressof(m_chainstate)); if (!TestBlockValidity(state, m_clhandler, m_evoDb, chainparams, m_chainstate, *pblock, pindexPrev, false, false)) { throw std::runtime_error(strprintf("%s: TestBlockValidity failed: %s", __func__, state.ToString())); } int64_t nTime2 = GetTimeMicros(); LogPrint(BCLog::BENCHMARK, "CreateNewBlock() packages: %.2fms (%d packages, %d updated descendants), validity: %.2fms (total %.2fms)\n", 0.001 * (nTime1 - nTimeStart), nPackagesSelected, nDescendantsUpdated, 0.001 * (nTime2 - nTime1), 0.001 * (nTime2 - nTimeStart)); return std::move(pblocktemplate); } void BlockAssembler::onlyUnconfirmed(CTxMemPool::setEntries& testSet) { for (CTxMemPool::setEntries::iterator iit = testSet.begin(); iit != testSet.end(); ) { // Only test txs not already in the block if (inBlock.count(*iit)) { testSet.erase(iit++); } else { iit++; } } } bool BlockAssembler::TestPackage(uint64_t packageSize, unsigned int packageSigOps) const { if (nBlockSize + packageSize >= nBlockMaxSize) return false; if (nBlockSigOps + packageSigOps >= nBlockMaxSigOps) return false; return true; } // Perform transaction-level checks before adding to block: // - transaction finality (locktime) // - safe TXs in regard to ChainLocks bool BlockAssembler::TestPackageTransactions(const CTxMemPool::setEntries& package) const { for (CTxMemPool::txiter it : package) { if (!IsFinalTx(it->GetTx(), nHeight, nLockTimeCutoff)) return false; const auto& txid = it->GetTx().GetHash(); if (!m_isman.RejectConflictingBlocks() || !m_isman.IsInstantSendEnabled() || m_isman.IsLocked(txid)) continue; if (!it->GetTx().vin.empty() && !m_clhandler.IsTxSafeForMining(txid)) { return false; } } return true; } void BlockAssembler::AddToBlock(CTxMemPool::txiter iter) { pblocktemplate->block.vtx.emplace_back(iter->GetSharedTx()); pblocktemplate->vTxFees.push_back(iter->GetFee()); pblocktemplate->vTxSigOps.push_back(iter->GetSigOpCount()); nBlockSize += iter->GetTxSize(); ++nBlockTx; nBlockSigOps += iter->GetSigOpCount(); nFees += iter->GetFee(); inBlock.insert(iter); bool fPrintPriority = gArgs.GetBoolArg("-printpriority", DEFAULT_PRINTPRIORITY); if (fPrintPriority) { LogPrintf("fee %s txid %s\n", CFeeRate(iter->GetModifiedFee(), iter->GetTxSize()).ToString(), iter->GetTx().GetHash().ToString()); } } int BlockAssembler::UpdatePackagesForAdded(const CTxMemPool::setEntries& alreadyAdded, indexed_modified_transaction_set &mapModifiedTx) { AssertLockHeld(m_mempool.cs); int nDescendantsUpdated = 0; for (CTxMemPool::txiter it : alreadyAdded) { CTxMemPool::setEntries descendants; m_mempool.CalculateDescendants(it, descendants); // Insert all descendants (not yet in block) into the modified set for (CTxMemPool::txiter desc : descendants) { if (alreadyAdded.count(desc)) continue; ++nDescendantsUpdated; modtxiter mit = mapModifiedTx.find(desc); if (mit == mapModifiedTx.end()) { CTxMemPoolModifiedEntry modEntry(desc); modEntry.nSizeWithAncestors -= it->GetTxSize(); modEntry.nModFeesWithAncestors -= it->GetModifiedFee(); modEntry.nSigOpCountWithAncestors -= it->GetSigOpCount(); mapModifiedTx.insert(modEntry); } else { mapModifiedTx.modify(mit, update_for_parent_inclusion(it)); } } } return nDescendantsUpdated; } // Skip entries in mapTx that are already in a block or are present // in mapModifiedTx (which implies that the mapTx ancestor state is // stale due to ancestor inclusion in the block) // Also skip transactions that we've already failed to add. This can happen if // we consider a transaction in mapModifiedTx and it fails: we can then // potentially consider it again while walking mapTx. It's currently // guaranteed to fail again, but as a belt-and-suspenders check we put it in // failedTx and avoid re-evaluation, since the re-evaluation would be using // cached size/sigops/fee values that are not actually correct. bool BlockAssembler::SkipMapTxEntry(CTxMemPool::txiter it, indexed_modified_transaction_set &mapModifiedTx, CTxMemPool::setEntries &failedTx) { AssertLockHeld(m_mempool.cs); assert(it != m_mempool.mapTx.end()); return mapModifiedTx.count(it) || inBlock.count(it) || failedTx.count(it); } void BlockAssembler::SortForBlock(const CTxMemPool::setEntries& package, std::vector& sortedEntries) { // Sort package by ancestor count // If a transaction A depends on transaction B, then A's ancestor count // must be greater than B's. So this is sufficient to validly order the // transactions for block inclusion. sortedEntries.clear(); sortedEntries.insert(sortedEntries.begin(), package.begin(), package.end()); std::sort(sortedEntries.begin(), sortedEntries.end(), CompareTxIterByAncestorCount()); } // This transaction selection algorithm orders the mempool based // on feerate of a transaction including all unconfirmed ancestors. // Since we don't remove transactions from the mempool as we select them // for block inclusion, we need an alternate method of updating the feerate // of a transaction with its not-yet-selected ancestors as we go. // This is accomplished by walking the in-mempool descendants of selected // transactions and storing a temporary modified state in mapModifiedTxs. // Each time through the loop, we compare the best transaction in // mapModifiedTxs with the next transaction in the mempool to decide what // transaction package to work on next. void BlockAssembler::addPackageTxs(int &nPackagesSelected, int &nDescendantsUpdated, const CBlockIndex* const pindexPrev) { AssertLockHeld(m_mempool.cs); // This credit pool is used only to check withdrawal limits and to find // duplicates of indexes. There's used `BlockSubsidy` equaled to 0 std::optional creditPoolDiff; if (DeploymentActiveAfter(pindexPrev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_V20)) { CCreditPool creditPool = m_cpoolman.GetCreditPool(pindexPrev, chainparams.GetConsensus()); creditPoolDiff.emplace(std::move(creditPool), pindexPrev, chainparams.GetConsensus(), 0); } // This map with signals is used only to find duplicates std::unordered_map signals = m_mnhfman.GetSignalsStage(pindexPrev); // mapModifiedTx will store sorted packages after they are modified // because some of their txs are already in the block indexed_modified_transaction_set mapModifiedTx; // Keep track of entries that failed inclusion, to avoid duplicate work CTxMemPool::setEntries failedTx; CTxMemPool::indexed_transaction_set::index::type::iterator mi = m_mempool.mapTx.get().begin(); CTxMemPool::txiter iter; // Limit the number of attempts to add transactions to the block when it is // close to full; this is just a simple heuristic to finish quickly if the // mempool has a lot of entries. const int64_t MAX_CONSECUTIVE_FAILURES = 1000; int64_t nConsecutiveFailed = 0; while (mi != m_mempool.mapTx.get().end() || !mapModifiedTx.empty()) { // First try to find a new transaction in mapTx to evaluate. if (mi != m_mempool.mapTx.get().end() && SkipMapTxEntry(m_mempool.mapTx.project<0>(mi), mapModifiedTx, failedTx)) { ++mi; continue; } // Now that mi is not stale, determine which transaction to evaluate: // the next entry from mapTx, or the best from mapModifiedTx? bool fUsingModified = false; modtxscoreiter modit = mapModifiedTx.get().begin(); if (mi == m_mempool.mapTx.get().end()) { // We're out of entries in mapTx; use the entry from mapModifiedTx iter = modit->iter; fUsingModified = true; } else { // Try to compare the mapTx entry to the mapModifiedTx entry iter = m_mempool.mapTx.project<0>(mi); if (modit != mapModifiedTx.get().end() && CompareTxMemPoolEntryByAncestorFee()(*modit, CTxMemPoolModifiedEntry(iter))) { // The best entry in mapModifiedTx has higher score // than the one from mapTx. // Switch which transaction (package) to consider iter = modit->iter; fUsingModified = true; } else { // Either no entry in mapModifiedTx, or it's worse than mapTx. // Increment mi for the next loop iteration. ++mi; } } if (creditPoolDiff != std::nullopt) { // If one transaction is skipped due to limits, it is not a reason to interrupt // whole process of adding transactions. // `state` is local here because used only to log info about this specific tx TxValidationState state; if (!creditPoolDiff->ProcessLockUnlockTransaction(m_qman, iter->GetTx(), state)) { if (fUsingModified) { mapModifiedTx.get().erase(modit); failedTx.insert(iter); } LogPrintf("%s: asset-locks tx %s skipped due %s\n", __func__, iter->GetTx().GetHash().ToString(), state.ToString()); continue; } } if (std::optional signal = extractEHFSignal(iter->GetTx()); signal != std::nullopt) { if (signals.find(*signal) != signals.end()) { if (fUsingModified) { mapModifiedTx.get().erase(modit); failedTx.insert(iter); } LogPrintf("%s: ehf signal tx %s skipped due to duplicate %d\n", __func__, iter->GetTx().GetHash().ToString(), *signal); continue; } signals.insert({*signal, 0}); } // We skip mapTx entries that are inBlock, and mapModifiedTx shouldn't // contain anything that is inBlock. assert(!inBlock.count(iter)); uint64_t packageSize = iter->GetSizeWithAncestors(); CAmount packageFees = iter->GetModFeesWithAncestors(); unsigned int packageSigOps = iter->GetSigOpCountWithAncestors(); if (fUsingModified) { packageSize = modit->nSizeWithAncestors; packageFees = modit->nModFeesWithAncestors; packageSigOps = modit->nSigOpCountWithAncestors; } if (packageFees < blockMinFeeRate.GetFee(packageSize)) { // Everything else we might consider has a lower fee rate return; } if (!TestPackage(packageSize, packageSigOps)) { if (fUsingModified) { // Since we always look at the best entry in mapModifiedTx, // we must erase failed entries so that we can consider the // next best entry on the next loop iteration mapModifiedTx.get().erase(modit); failedTx.insert(iter); } ++nConsecutiveFailed; if (nConsecutiveFailed > MAX_CONSECUTIVE_FAILURES && nBlockSize > nBlockMaxSize - 1000) { // Give up if we're close to full and haven't succeeded in a while break; } continue; } CTxMemPool::setEntries ancestors; uint64_t nNoLimit = std::numeric_limits::max(); std::string dummy; m_mempool.CalculateMemPoolAncestors(*iter, ancestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false); onlyUnconfirmed(ancestors); ancestors.insert(iter); // Test if all tx's are Final and safe if (!TestPackageTransactions(ancestors)) { if (fUsingModified) { mapModifiedTx.get().erase(modit); failedTx.insert(iter); } continue; } // This transaction will make it in; reset the failed counter. nConsecutiveFailed = 0; // Package can be added. Sort the entries in a valid order. std::vector sortedEntries; SortForBlock(ancestors, sortedEntries); for (size_t i=0; ihashPrevBlock) { nExtraNonce = 0; hashPrevBlock = pblock->hashPrevBlock; } ++nExtraNonce; unsigned int nHeight = pindexPrev->nHeight+1; // Height first in coinbase required for block.version=2 CMutableTransaction txCoinbase(*pblock->vtx[0]); txCoinbase.vin[0].scriptSig = (CScript() << nHeight << CScriptNum(nExtraNonce)); assert(txCoinbase.vin[0].scriptSig.size() <= 100); pblock->vtx[0] = MakeTransactionRef(std::move(txCoinbase)); pblock->hashMerkleRoot = BlockMerkleRoot(*pblock); }