// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include std::vector BitsToBytes(const std::vector& bits) { std::vector ret((bits.size() + 7) / 8); for (unsigned int p = 0; p < bits.size(); p++) { ret[p / 8] |= bits[p] << (p % 8); } return ret; } std::vector BytesToBits(const std::vector& bytes) { std::vector ret(bytes.size() * 8); for (unsigned int p = 0; p < ret.size(); p++) { ret[p] = (bytes[p / 8] & (1 << (p % 8))) != 0; } return ret; } CMerkleBlock::CMerkleBlock(const CBlock& block, CBloomFilter* filter, const std::set* txids) { header = block.GetBlockHeader(); std::vector vMatch; std::vector vHashes; vMatch.reserve(block.vtx.size()); vHashes.reserve(block.vtx.size()); const static std::set allowedTxTypes = { TRANSACTION_NORMAL, TRANSACTION_PROVIDER_REGISTER, TRANSACTION_PROVIDER_UPDATE_SERVICE, TRANSACTION_PROVIDER_UPDATE_REGISTRAR, TRANSACTION_PROVIDER_UPDATE_REVOKE, TRANSACTION_COINBASE, TRANSACTION_ASSET_LOCK, TRANSACTION_ASSET_UNLOCK, }; for (unsigned int i = 0; i < block.vtx.size(); i++) { const auto& tx = *block.vtx[i]; const uint256& hash = tx.GetHash(); bool isAllowedType = tx.nVersion != 3 || allowedTxTypes.count(tx.nType) != 0; if (txids && txids->count(hash)) { vMatch.push_back(true); } else if (isAllowedType && filter && filter->IsRelevantAndUpdate(*block.vtx[i])) { vMatch.push_back(true); vMatchedTxn.emplace_back(i, hash); } else { vMatch.push_back(false); } vHashes.push_back(hash); } txn = CPartialMerkleTree(vHashes, vMatch); } uint256 CPartialMerkleTree::CalcHash(int height, unsigned int pos, const std::vector &vTxid) { //we can never have zero txs in a merkle block, we always need the coinbase tx //if we do not have this assert, we can hit a memory access violation when indexing into vTxid assert(vTxid.size() != 0); if (height == 0) { // hash at height 0 is the txids themself return vTxid[pos]; } else { // calculate left hash uint256 left = CalcHash(height-1, pos*2, vTxid), right; // calculate right hash if not beyond the end of the array - copy left hash otherwise if (pos*2+1 < CalcTreeWidth(height-1)) right = CalcHash(height-1, pos*2+1, vTxid); else right = left; // combine subhashes return Hash(left, right); } } void CPartialMerkleTree::TraverseAndBuild(int height, unsigned int pos, const std::vector &vTxid, const std::vector &vMatch) { // determine whether this node is the parent of at least one matched txid bool fParentOfMatch = false; for (unsigned int p = pos << height; p < (pos+1) << height && p < nTransactions; p++) fParentOfMatch |= vMatch[p]; // store as flag bit vBits.push_back(fParentOfMatch); if (height==0 || !fParentOfMatch) { // if at height 0, or nothing interesting below, store hash and stop vHash.push_back(CalcHash(height, pos, vTxid)); } else { // otherwise, don't store any hash, but descend into the subtrees TraverseAndBuild(height-1, pos*2, vTxid, vMatch); if (pos*2+1 < CalcTreeWidth(height-1)) TraverseAndBuild(height-1, pos*2+1, vTxid, vMatch); } } uint256 CPartialMerkleTree::TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector &vMatch, std::vector &vnIndex) { if (nBitsUsed >= vBits.size()) { // overflowed the bits array - failure fBad = true; return uint256(); } bool fParentOfMatch = vBits[nBitsUsed++]; if (height==0 || !fParentOfMatch) { // if at height 0, or nothing interesting below, use stored hash and do not descend if (nHashUsed >= vHash.size()) { // overflowed the hash array - failure fBad = true; return uint256(); } const uint256 &hash = vHash[nHashUsed++]; if (height==0 && fParentOfMatch) { // in case of height 0, we have a matched txid vMatch.push_back(hash); vnIndex.push_back(pos); } return hash; } else { // otherwise, descend into the subtrees to extract matched txids and hashes uint256 left = TraverseAndExtract(height-1, pos*2, nBitsUsed, nHashUsed, vMatch, vnIndex), right; if (pos*2+1 < CalcTreeWidth(height-1)) { right = TraverseAndExtract(height-1, pos*2+1, nBitsUsed, nHashUsed, vMatch, vnIndex); if (right == left) { // The left and right branches should never be identical, as the transaction // hashes covered by them must each be unique. fBad = true; } } else { right = left; } // and combine them before returning return Hash(left, right); } } CPartialMerkleTree::CPartialMerkleTree(const std::vector &vTxid, const std::vector &vMatch) : nTransactions(vTxid.size()), fBad(false) { // reset state vBits.clear(); vHash.clear(); // calculate height of tree int nHeight = 0; while (CalcTreeWidth(nHeight) > 1) nHeight++; // traverse the partial tree TraverseAndBuild(nHeight, 0, vTxid, vMatch); } CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {} uint256 CPartialMerkleTree::ExtractMatches(std::vector &vMatch, std::vector &vnIndex) { vMatch.clear(); // An empty set will not work if (nTransactions == 0) return uint256(); // check for excessively high numbers of transactions if (nTransactions > MaxBlockSize() / 60) // 60 is the lower bound for the size of a serialized CTransaction return uint256(); // there can never be more hashes provided than one for every txid if (vHash.size() > nTransactions) return uint256(); // there must be at least one bit per node in the partial tree, and at least one node per hash if (vBits.size() < vHash.size()) return uint256(); // calculate height of tree int nHeight = 0; while (CalcTreeWidth(nHeight) > 1) nHeight++; // traverse the partial tree unsigned int nBitsUsed = 0, nHashUsed = 0; uint256 hashMerkleRoot = TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch, vnIndex); // verify that no problems occurred during the tree traversal if (fBad) return uint256(); // verify that all bits were consumed (except for the padding caused by serializing it as a byte sequence) if ((nBitsUsed+7)/8 != (vBits.size()+7)/8) return uint256(); // verify that all hashes were consumed if (nHashUsed != vHash.size()) return uint256(); return hashMerkleRoot; }