#!/usr/bin/env python3 # Copyright (c) 2010 ArtForz -- public domain half-a-node # Copyright (c) 2012 Jeff Garzik # Copyright (c) 2010-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Dash P2P network half-a-node. This python code was modified from ArtForz' public domain half-a-node, as found in the mini-node branch of http://github.com/jgarzik/pynode. NodeConn: an object which manages p2p connectivity to a bitcoin node NodeConnCB: a base class that describes the interface for receiving callbacks with network messages from a NodeConn CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....: data structures that should map to corresponding structures in bitcoin/primitives msg_block, msg_tx, msg_headers, etc.: data structures that represent network messages ser_*, deser_*: functions that handle serialization/deserialization """ import struct import socket import asyncore import time import sys import random from .util import hex_str_to_bytes, bytes_to_hex_str from io import BytesIO from codecs import encode import hashlib from threading import RLock from threading import Thread import logging import copy from test_framework.siphash import siphash256 import dash_hash BIP0031_VERSION = 60000 MY_VERSION = 70213 # MIN_PEER_PROTO_VERSION MY_SUBVERSION = b"/python-mininode-tester:0.0.3/" MY_RELAY = 1 # from version 70001 onwards, fRelay should be appended to version messages (BIP37) MAX_INV_SZ = 50000 MAX_BLOCK_SIZE = 1000000 COIN = 100000000 # 1 btc in satoshis NODE_NETWORK = (1 << 0) NODE_GETUTXO = (1 << 1) NODE_BLOOM = (1 << 2) logger = logging.getLogger("TestFramework.mininode") # Keep our own socket map for asyncore, so that we can track disconnects # ourselves (to workaround an issue with closing an asyncore socket when # using select) mininode_socket_map = dict() # One lock for synchronizing all data access between the networking thread (see # NetworkThread below) and the thread running the test logic. For simplicity, # NodeConn acquires this lock whenever delivering a message to to a NodeConnCB, # and whenever adding anything to the send buffer (in send_message()). This # lock should be acquired in the thread running the test logic to synchronize # access to any data shared with the NodeConnCB or NodeConn. mininode_lock = RLock() # Serialization/deserialization tools def sha256(s): return hashlib.new('sha256', s).digest() def hash256(s): return sha256(sha256(s)) def dashhash(s): return dash_hash.getPoWHash(s) def ser_compact_size(l): r = b"" if l < 253: r = struct.pack("B", l) elif l < 0x10000: r = struct.pack(">= 32 return rs def uint256_from_str(s): r = 0 t = struct.unpack("> 24) & 0xFF v = (c & 0xFFFFFF) << (8 * (nbytes - 3)) return v def deser_vector(f, c): nit = deser_compact_size(f) r = [] for i in range(nit): t = c() t.deserialize(f) r.append(t) return r def ser_vector(l): r = ser_compact_size(len(l)) for i in l: r += i.serialize() return r def deser_uint256_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_uint256(f) r.append(t) return r def ser_uint256_vector(l): r = ser_compact_size(len(l)) for i in l: r += ser_uint256(i) return r def deser_string_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_string(f) r.append(t) return r def ser_string_vector(l): r = ser_compact_size(len(l)) for sv in l: r += ser_string(sv) return r def deser_int_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = struct.unpack("H", f.read(2))[0] def serialize(self): r = b"" r += struct.pack("H", self.port) return r def __repr__(self): return "CAddress(nServices=%i ip=%s port=%i)" % (self.nServices, self.ip, self.port) class CInv(object): typemap = { 0: "Error", 1: "TX", 2: "Block", 20: "CompactBlock" } def __init__(self, t=0, h=0): self.type = t self.hash = h def deserialize(self, f): self.type = struct.unpack("> 16) & 0xffff self.vin = deser_vector(f, CTxIn) self.vout = deser_vector(f, CTxOut) self.nLockTime = struct.unpack(" 21000000 * COIN: return False return True def __repr__(self): return "CTransaction(nVersion=%i vin=%s vout=%s nLockTime=%i)" \ % (self.nVersion, repr(self.vin), repr(self.vout), self.nLockTime) class CBlockHeader(object): def __init__(self, header=None): if header is None: self.set_null() else: self.nVersion = header.nVersion self.hashPrevBlock = header.hashPrevBlock self.hashMerkleRoot = header.hashMerkleRoot self.nTime = header.nTime self.nBits = header.nBits self.nNonce = header.nNonce self.sha256 = header.sha256 self.hash = header.hash self.calc_sha256() def set_null(self): self.nVersion = 1 self.hashPrevBlock = 0 self.hashMerkleRoot = 0 self.nTime = 0 self.nBits = 0 self.nNonce = 0 self.sha256 = None self.hash = None def deserialize(self, f): self.nVersion = struct.unpack(" 1: newhashes = [] for i in range(0, len(hashes), 2): i2 = min(i+1, len(hashes)-1) newhashes.append(hash256(hashes[i] + hashes[i2])) hashes = newhashes return uint256_from_str(hashes[0]) def calc_merkle_root(self): hashes = [] for tx in self.vtx: tx.calc_sha256() hashes.append(ser_uint256(tx.sha256)) return self.get_merkle_root(hashes) def is_valid(self): self.calc_sha256() target = uint256_from_compact(self.nBits) if self.sha256 > target: return False for tx in self.vtx: if not tx.is_valid(): return False if self.calc_merkle_root() != self.hashMerkleRoot: return False return True def solve(self): self.rehash() target = uint256_from_compact(self.nBits) while self.sha256 > target: self.nNonce += 1 self.rehash() def __repr__(self): return "CBlock(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x vtx=%s)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce, repr(self.vtx)) class CUnsignedAlert(object): def __init__(self): self.nVersion = 1 self.nRelayUntil = 0 self.nExpiration = 0 self.nID = 0 self.nCancel = 0 self.setCancel = [] self.nMinVer = 0 self.nMaxVer = 0 self.setSubVer = [] self.nPriority = 0 self.strComment = b"" self.strStatusBar = b"" self.strReserved = b"" def deserialize(self, f): self.nVersion = struct.unpack("= 106: self.addrFrom = CAddress() self.addrFrom.deserialize(f) self.nNonce = struct.unpack("= 209: self.nStartingHeight = struct.unpack("= 70001: # Relay field is optional for version 70001 onwards try: self.nRelay = struct.unpack(" class msg_headers(object): command = b"headers" def __init__(self): self.headers = [] def deserialize(self, f): # comment in dashd indicates these should be deserialized as blocks blocks = deser_vector(f, CBlock) for x in blocks: self.headers.append(CBlockHeader(x)) def serialize(self): blocks = [CBlock(x) for x in self.headers] return ser_vector(blocks) def __repr__(self): return "msg_headers(headers=%s)" % repr(self.headers) class msg_reject(object): command = b"reject" REJECT_MALFORMED = 1 def __init__(self): self.message = b"" self.code = 0 self.reason = b"" self.data = 0 def deserialize(self, f): self.message = deser_string(f) self.code = struct.unpack("= 209: conn.send_message(msg_verack()) conn.ver_send = min(MY_VERSION, message.nVersion) if message.nVersion < 209: conn.ver_recv = conn.ver_send conn.nServices = message.nServices def on_verack(self, conn, message): conn.ver_recv = conn.ver_send self.verack_received = True def on_inv(self, conn, message): want = msg_getdata() for i in message.inv: if i.type != 0: want.inv.append(i) if len(want.inv): conn.send_message(want) def on_addr(self, conn, message): pass def on_alert(self, conn, message): pass def on_getdata(self, conn, message): pass def on_getblocks(self, conn, message): pass def on_tx(self, conn, message): pass def on_block(self, conn, message): pass def on_getaddr(self, conn, message): pass def on_headers(self, conn, message): pass def on_getheaders(self, conn, message): pass def on_ping(self, conn, message): if conn.ver_send > BIP0031_VERSION: conn.send_message(msg_pong(message.nonce)) def on_reject(self, conn, message): pass def on_open(self, conn): pass def on_close(self, conn): pass def on_mempool(self, conn): pass def on_pong(self, conn, message): pass def on_sendheaders(self, conn, message): pass def on_sendcmpct(self, conn, message): pass def on_cmpctblock(self, conn, message): pass def on_getblocktxn(self, conn, message): pass def on_blocktxn(self, conn, message): pass # More useful callbacks and functions for NodeConnCB's which have a single NodeConn class SingleNodeConnCB(NodeConnCB): def __init__(self): NodeConnCB.__init__(self) self.connection = None self.ping_counter = 1 self.last_pong = msg_pong() def add_connection(self, conn): self.connection = conn # Wrapper for the NodeConn's send_message function def send_message(self, message): self.connection.send_message(message) def send_and_ping(self, message): self.send_message(message) self.sync_with_ping() def on_pong(self, conn, message): self.last_pong = message # Sync up with the node def sync_with_ping(self, timeout=30): def received_pong(): return (self.last_pong.nonce == self.ping_counter) self.send_message(msg_ping(nonce=self.ping_counter)) success = wait_until(received_pong, timeout=timeout) self.ping_counter += 1 return success # The actual NodeConn class # This class provides an interface for a p2p connection to a specified node class NodeConn(asyncore.dispatcher): messagemap = { b"version": msg_version, b"verack": msg_verack, b"addr": msg_addr, b"alert": msg_alert, b"inv": msg_inv, b"getdata": msg_getdata, b"getblocks": msg_getblocks, b"tx": msg_tx, b"block": msg_block, b"getaddr": msg_getaddr, b"ping": msg_ping, b"pong": msg_pong, b"headers": msg_headers, b"getheaders": msg_getheaders, b"reject": msg_reject, b"mempool": msg_mempool, b"sendheaders": msg_sendheaders, b"sendcmpct": msg_sendcmpct, b"cmpctblock": msg_cmpctblock, b"getblocktxn": msg_getblocktxn, b"blocktxn": msg_blocktxn } MAGIC_BYTES = { "mainnet": b"\xbf\x0c\x6b\xbd", # mainnet "testnet3": b"\xce\xe2\xca\xff", # testnet3 "regtest": b"\xfc\xc1\xb7\xdc", # regtest "devnet": b"\xe2\xca\xff\xce", # devnet } def __init__(self, dstaddr, dstport, rpc, callback, net="regtest", services=NODE_NETWORK, send_version=True): asyncore.dispatcher.__init__(self, map=mininode_socket_map) self.dstaddr = dstaddr self.dstport = dstport self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.sendbuf = b"" self.recvbuf = b"" self.ver_send = 209 self.ver_recv = 209 self.last_sent = 0 self.state = "connecting" self.network = net self.cb = callback self.disconnect = False self.nServices = 0 if send_version: # stuff version msg into sendbuf vt = msg_version() vt.nServices = services vt.addrTo.ip = self.dstaddr vt.addrTo.port = self.dstport vt.addrFrom.ip = "0.0.0.0" vt.addrFrom.port = 0 self.send_message(vt, True) logger.info('Connecting to Dash Node: %s:%d' % (self.dstaddr, self.dstport)) try: self.connect((dstaddr, dstport)) except: self.handle_close() self.rpc = rpc def handle_connect(self): if self.state != "connected": logger.debug("Connected & Listening: %s:%d" % (self.dstaddr, self.dstport)) self.state = "connected" self.cb.on_open(self) def handle_close(self): logger.debug("Closing connection to: %s:%d" % (self.dstaddr, self.dstport)) self.state = "closed" self.recvbuf = b"" self.sendbuf = b"" try: self.close() except: pass self.cb.on_close(self) def handle_read(self): try: t = self.recv(8192) if len(t) > 0: self.recvbuf += t self.got_data() except: pass def readable(self): return True def writable(self): with mininode_lock: pre_connection = self.state == "connecting" length = len(self.sendbuf) return (length > 0 or pre_connection) def handle_write(self): with mininode_lock: # asyncore does not expose socket connection, only the first read/write # event, thus we must check connection manually here to know when we # actually connect if self.state == "connecting": self.handle_connect() if not self.writable(): return try: sent = self.send(self.sendbuf) except: self.handle_close() return self.sendbuf = self.sendbuf[sent:] def got_data(self): try: while True: if len(self.recvbuf) < 4: return if self.recvbuf[:4] != self.MAGIC_BYTES[self.network]: raise ValueError("got garbage %s" % repr(self.recvbuf)) if self.ver_recv < 209: if len(self.recvbuf) < 4 + 12 + 4: return command = self.recvbuf[4:4+12].split(b"\x00", 1)[0] msglen = struct.unpack("= 209: th = sha256(data) h = sha256(th) tmsg += h[:4] tmsg += data with mininode_lock: self.sendbuf += tmsg self.last_sent = time.time() def got_message(self, message): if message.command == b"version": if message.nVersion <= BIP0031_VERSION: self.messagemap[b'ping'] = msg_ping_prebip31 if self.last_sent + 30 * 60 < time.time(): self.send_message(self.messagemap[b'ping']()) logger.debug("Received message from %s:%d: %s" % (self.dstaddr, self.dstport, repr(message))) self.cb.deliver(self, message) def disconnect_node(self): self.disconnect = True class NetworkThread(Thread): def run(self): while mininode_socket_map: # We check for whether to disconnect outside of the asyncore # loop to workaround the behavior of asyncore when using # select disconnected = [] for fd, obj in mininode_socket_map.items(): if obj.disconnect: disconnected.append(obj) [ obj.handle_close() for obj in disconnected ] asyncore.loop(0.1, use_poll=True, map=mininode_socket_map, count=1) # An exception we can raise if we detect a potential disconnect # (p2p or rpc) before the test is complete class EarlyDisconnectError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value)