// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "pow.h" #include "arith_uint256.h" #include "chain.h" #include "chainparams.h" #include "primitives/block.h" #include "uint256.h" #include "util.h" #include unsigned int static KimotoGravityWell(const CBlockIndex* pindexLast, const Consensus::Params& params) { const CBlockIndex *BlockLastSolved = pindexLast; const CBlockIndex *BlockReading = pindexLast; uint64_t PastBlocksMass = 0; int64_t PastRateActualSeconds = 0; int64_t PastRateTargetSeconds = 0; double PastRateAdjustmentRatio = double(1); arith_uint256 PastDifficultyAverage; arith_uint256 PastDifficultyAveragePrev; double EventHorizonDeviation; double EventHorizonDeviationFast; double EventHorizonDeviationSlow; uint64_t pastSecondsMin = params.nPowTargetTimespan * 0.025; uint64_t pastSecondsMax = params.nPowTargetTimespan * 7; uint64_t PastBlocksMin = pastSecondsMin / params.nPowTargetSpacing; uint64_t PastBlocksMax = pastSecondsMax / params.nPowTargetSpacing; if (BlockLastSolved == NULL || BlockLastSolved->nHeight == 0 || (uint64_t)BlockLastSolved->nHeight < PastBlocksMin) { return UintToArith256(params.powLimit).GetCompact(); } for (unsigned int i = 1; BlockReading && BlockReading->nHeight > 0; i++) { if (PastBlocksMax > 0 && i > PastBlocksMax) { break; } PastBlocksMass++; PastDifficultyAverage.SetCompact(BlockReading->nBits); if (i > 1) { // handle negative arith_uint256 if(PastDifficultyAverage >= PastDifficultyAveragePrev) PastDifficultyAverage = ((PastDifficultyAverage - PastDifficultyAveragePrev) / i) + PastDifficultyAveragePrev; else PastDifficultyAverage = PastDifficultyAveragePrev - ((PastDifficultyAveragePrev - PastDifficultyAverage) / i); } PastDifficultyAveragePrev = PastDifficultyAverage; PastRateActualSeconds = BlockLastSolved->GetBlockTime() - BlockReading->GetBlockTime(); PastRateTargetSeconds = params.nPowTargetSpacing * PastBlocksMass; PastRateAdjustmentRatio = double(1); if (PastRateActualSeconds < 0) { PastRateActualSeconds = 0; } if (PastRateActualSeconds != 0 && PastRateTargetSeconds != 0) { PastRateAdjustmentRatio = double(PastRateTargetSeconds) / double(PastRateActualSeconds); } EventHorizonDeviation = 1 + (0.7084 * pow((double(PastBlocksMass)/double(28.2)), -1.228)); EventHorizonDeviationFast = EventHorizonDeviation; EventHorizonDeviationSlow = 1 / EventHorizonDeviation; if (PastBlocksMass >= PastBlocksMin) { if ((PastRateAdjustmentRatio <= EventHorizonDeviationSlow) || (PastRateAdjustmentRatio >= EventHorizonDeviationFast)) { assert(BlockReading); break; } } if (BlockReading->pprev == NULL) { assert(BlockReading); break; } BlockReading = BlockReading->pprev; } arith_uint256 bnNew(PastDifficultyAverage); if (PastRateActualSeconds != 0 && PastRateTargetSeconds != 0) { bnNew *= PastRateActualSeconds; bnNew /= PastRateTargetSeconds; } if (bnNew > UintToArith256(params.powLimit)) { bnNew = UintToArith256(params.powLimit); } return bnNew.GetCompact(); } unsigned int static DarkGravityWave(const CBlockIndex* pindexLast, const Consensus::Params& params) { /* current difficulty formula, dash - DarkGravity v3, written by Evan Duffield - evan@dash.org */ const CBlockIndex *BlockLastSolved = pindexLast; const CBlockIndex *BlockReading = pindexLast; int64_t nActualTimespan = 0; int64_t LastBlockTime = 0; int64_t PastBlocksMin = 24; int64_t PastBlocksMax = 24; int64_t CountBlocks = 0; arith_uint256 PastDifficultyAverage; arith_uint256 PastDifficultyAveragePrev; if (BlockLastSolved == NULL || BlockLastSolved->nHeight == 0 || BlockLastSolved->nHeight < PastBlocksMin) { return UintToArith256(params.powLimit).GetCompact(); } for (unsigned int i = 1; BlockReading && BlockReading->nHeight > 0; i++) { if (PastBlocksMax > 0 && i > PastBlocksMax) { break; } CountBlocks++; if(CountBlocks <= PastBlocksMin) { if (CountBlocks == 1) { PastDifficultyAverage.SetCompact(BlockReading->nBits); } else { PastDifficultyAverage = ((PastDifficultyAveragePrev * CountBlocks) + (arith_uint256().SetCompact(BlockReading->nBits))) / (CountBlocks + 1); } PastDifficultyAveragePrev = PastDifficultyAverage; } if(LastBlockTime > 0){ int64_t Diff = (LastBlockTime - BlockReading->GetBlockTime()); nActualTimespan += Diff; } LastBlockTime = BlockReading->GetBlockTime(); if (BlockReading->pprev == NULL) { assert(BlockReading); break; } BlockReading = BlockReading->pprev; } arith_uint256 bnNew(PastDifficultyAverage); int64_t _nTargetTimespan = CountBlocks * params.nPowTargetSpacing; if (nActualTimespan < _nTargetTimespan/3) nActualTimespan = _nTargetTimespan/3; if (nActualTimespan > _nTargetTimespan*3) nActualTimespan = _nTargetTimespan*3; // Retarget bnNew *= nActualTimespan; bnNew /= _nTargetTimespan; if (bnNew > UintToArith256(params.powLimit)){ bnNew = UintToArith256(params.powLimit); } return bnNew.GetCompact(); } unsigned int GetNextWorkRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock, const Consensus::Params& params) { unsigned int retarget = DIFF_DGW; // mainnet/regtest share a configuration if (Params().NetworkIDString() == CBaseChainParams::MAIN || Params().NetworkIDString() == CBaseChainParams::REGTEST) { if (pindexLast->nHeight + 1 >= 34140) retarget = DIFF_DGW; else if (pindexLast->nHeight + 1 >= 15200) retarget = DIFF_KGW; else retarget = DIFF_BTC; // testnet -- we want a lot of coins in existance early on } else { if (pindexLast->nHeight + 1 >= 3000) retarget = DIFF_DGW; else retarget = DIFF_BTC; } // Default Bitcoin style retargeting if (retarget == DIFF_BTC) { unsigned int nProofOfWorkLimit = UintToArith256(params.powLimit).GetCompact(); // Genesis block if (pindexLast == NULL) return nProofOfWorkLimit; // Only change once per interval if ((pindexLast->nHeight+1) % params.DifficultyAdjustmentInterval() != 0) { if (params.fPowAllowMinDifficultyBlocks) { // Special difficulty rule for testnet: // If the new block's timestamp is more than 2* 2.5 minutes // then allow mining of a min-difficulty block. if (pblock->GetBlockTime() > pindexLast->GetBlockTime() + params.nPowTargetSpacing*2) return nProofOfWorkLimit; else { // Return the last non-special-min-difficulty-rules-block const CBlockIndex* pindex = pindexLast; while (pindex->pprev && pindex->nHeight % params.DifficultyAdjustmentInterval() != 0 && pindex->nBits == nProofOfWorkLimit) pindex = pindex->pprev; return pindex->nBits; } } return pindexLast->nBits; } // Go back by what we want to be 1 day worth of blocks int nHeightFirst = pindexLast->nHeight - (params.DifficultyAdjustmentInterval()-1); assert(nHeightFirst >= 0); const CBlockIndex* pindexFirst = pindexLast->GetAncestor(nHeightFirst); assert(pindexFirst); return CalculateNextWorkRequired(pindexLast, pindexFirst->GetBlockTime(), params); } // Retarget using Kimoto Gravity Wave else if (retarget == DIFF_KGW) { return KimotoGravityWell(pindexLast, params); } // Retarget using Dark Gravity Wave 3 else if (retarget == DIFF_DGW) { return DarkGravityWave(pindexLast, params); } return DarkGravityWave(pindexLast, params); } // for DIFF_BTC only! unsigned int CalculateNextWorkRequired(const CBlockIndex* pindexLast, int64_t nFirstBlockTime, const Consensus::Params& params) { if (params.fPowNoRetargeting) return pindexLast->nBits; // Limit adjustment step int64_t nActualTimespan = pindexLast->GetBlockTime() - nFirstBlockTime; LogPrintf(" nActualTimespan = %d before bounds\n", nActualTimespan); if (nActualTimespan < params.nPowTargetTimespan/4) nActualTimespan = params.nPowTargetTimespan/4; if (nActualTimespan > params.nPowTargetTimespan*4) nActualTimespan = params.nPowTargetTimespan*4; // Retarget const arith_uint256 bnPowLimit = UintToArith256(params.powLimit); arith_uint256 bnNew; arith_uint256 bnOld; bnNew.SetCompact(pindexLast->nBits); bnOld = bnNew; bnNew *= nActualTimespan; bnNew /= params.nPowTargetTimespan; if (bnNew > bnPowLimit) bnNew = bnPowLimit; /// debug print LogPrintf("GetNextWorkRequired RETARGET\n"); LogPrintf("params.nPowTargetTimespan = %d nActualTimespan = %d\n", params.nPowTargetTimespan, nActualTimespan); LogPrintf("Before: %08x %s\n", pindexLast->nBits, bnOld.ToString()); LogPrintf("After: %08x %s\n", bnNew.GetCompact(), bnNew.ToString()); return bnNew.GetCompact(); } bool CheckProofOfWork(uint256 hash, unsigned int nBits, const Consensus::Params& params) { bool fNegative; bool fOverflow; arith_uint256 bnTarget; bnTarget.SetCompact(nBits, &fNegative, &fOverflow); // Check range if (fNegative || bnTarget == 0 || fOverflow || bnTarget > UintToArith256(params.powLimit)) return error("CheckProofOfWork(): nBits below minimum work"); // Check proof of work matches claimed amount if (UintToArith256(hash) > bnTarget) return error("CheckProofOfWork(): hash doesn't match nBits"); return true; } arith_uint256 GetBlockProof(const CBlockIndex& block) { arith_uint256 bnTarget; bool fNegative; bool fOverflow; bnTarget.SetCompact(block.nBits, &fNegative, &fOverflow); if (fNegative || fOverflow || bnTarget == 0) return 0; // We need to compute 2**256 / (bnTarget+1), but we can't represent 2**256 // as it's too large for a arith_uint256. However, as 2**256 is at least as large // as bnTarget+1, it is equal to ((2**256 - bnTarget - 1) / (bnTarget+1)) + 1, // or ~bnTarget / (nTarget+1) + 1. return (~bnTarget / (bnTarget + 1)) + 1; } int64_t GetBlockProofEquivalentTime(const CBlockIndex& to, const CBlockIndex& from, const CBlockIndex& tip, const Consensus::Params& params) { arith_uint256 r; int sign = 1; if (to.nChainWork > from.nChainWork) { r = to.nChainWork - from.nChainWork; } else { r = from.nChainWork - to.nChainWork; sign = -1; } r = r * arith_uint256(params.nPowTargetSpacing) / GetBlockProof(tip); if (r.bits() > 63) { return sign * std::numeric_limits::max(); } return sign * r.GetLow64(); }