// Copyright (c) 2012-2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_DBWRAPPER_H #define BITCOIN_DBWRAPPER_H #include #include #include #include #include #include #include #include #include #include static const size_t DBWRAPPER_PREALLOC_KEY_SIZE = 64; static const size_t DBWRAPPER_PREALLOC_VALUE_SIZE = 1024; class dbwrapper_error : public std::runtime_error { public: explicit dbwrapper_error(const std::string& msg) : std::runtime_error(msg) {} }; class CDBWrapper; /** These should be considered an implementation detail of the specific database. */ namespace dbwrapper_private { /** Handle database error by throwing dbwrapper_error exception. */ void HandleError(const leveldb::Status& status); /** Work around circular dependency, as well as for testing in dbwrapper_tests. * Database obfuscation should be considered an implementation detail of the * specific database. */ const std::vector& GetObfuscateKey(const CDBWrapper &w); }; /** Batch of changes queued to be written to a CDBWrapper */ class CDBBatch { friend class CDBWrapper; private: const CDBWrapper &parent; leveldb::WriteBatch batch; CDataStream ssKey; CDataStream ssValue; size_t size_estimate; public: /** * @param[in] parent CDBWrapper that this batch is to be submitted to */ explicit CDBBatch(const CDBWrapper &_parent) : parent(_parent), ssKey(SER_DISK, CLIENT_VERSION), ssValue(SER_DISK, CLIENT_VERSION), size_estimate(0) { }; void Clear() { batch.Clear(); size_estimate = 0; } template void Write(const K& key, const V& value) { ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey << key; Write(ssKey, value); ssKey.clear(); } template void Write(const CDataStream& _ssKey, const V& value) { leveldb::Slice slKey(_ssKey.data(), _ssKey.size()); ssValue.reserve(DBWRAPPER_PREALLOC_VALUE_SIZE); ssValue << value; ssValue.Xor(dbwrapper_private::GetObfuscateKey(parent)); leveldb::Slice slValue(ssValue.data(), ssValue.size()); batch.Put(slKey, slValue); // - varint: key length (1 byte up to 127B, 2 bytes up to 16383B, ...) // - byte[]: key // - varint: value length // - byte[]: value // The formula below assumes the key and value are both less than 16k. size_estimate += 3 + (slKey.size() > 127) + slKey.size() + (slValue.size() > 127) + slValue.size(); ssValue.clear(); } template void Erase(const K& key) { ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey << key; Erase(ssKey); ssKey.clear(); } void Erase(const CDataStream& _ssKey) { leveldb::Slice slKey(_ssKey.data(), _ssKey.size()); batch.Delete(slKey); // - byte: header // - varint: key length // - byte[]: key // The formula below assumes the key is less than 16kB. size_estimate += 2 + (slKey.size() > 127) + slKey.size(); } size_t SizeEstimate() const { return size_estimate; } }; class CDBIterator { private: const CDBWrapper &parent; leveldb::Iterator *piter; public: /** * @param[in] _parent Parent CDBWrapper instance. * @param[in] _piter The original leveldb iterator. */ CDBIterator(const CDBWrapper &_parent, leveldb::Iterator *_piter) : parent(_parent), piter(_piter) { }; ~CDBIterator(); bool Valid() const; void SeekToFirst(); template void Seek(const K& key) { CDataStream ssKey(SER_DISK, CLIENT_VERSION); ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey << key; Seek(ssKey); } void Seek(const CDataStream& ssKey) { leveldb::Slice slKey(ssKey.data(), ssKey.size()); piter->Seek(slKey); } void Next(); template bool GetKey(K& key) { try { CDataStream ssKey = GetKey(); ssKey >> key; } catch (const std::exception&) { return false; } return true; } CDataStream GetKey() { leveldb::Slice slKey = piter->key(); return CDataStream(slKey.data(), slKey.data() + slKey.size(), SER_DISK, CLIENT_VERSION); } unsigned int GetKeySize() { return piter->key().size(); } template bool GetValue(V& value) { leveldb::Slice slValue = piter->value(); try { CDataStream ssValue(slValue.data(), slValue.data() + slValue.size(), SER_DISK, CLIENT_VERSION); ssValue.Xor(dbwrapper_private::GetObfuscateKey(parent)); ssValue >> value; } catch (const std::exception&) { return false; } return true; } unsigned int GetValueSize() { return piter->value().size(); } }; class CDBWrapper { friend const std::vector& dbwrapper_private::GetObfuscateKey(const CDBWrapper &w); private: //! custom environment this database is using (may be nullptr in case of default environment) leveldb::Env* penv; //! database options used leveldb::Options options; //! options used when reading from the database leveldb::ReadOptions readoptions; //! options used when iterating over values of the database leveldb::ReadOptions iteroptions; //! options used when writing to the database leveldb::WriteOptions writeoptions; //! options used when sync writing to the database leveldb::WriteOptions syncoptions; //! the database itself leveldb::DB* pdb; //! a key used for optional XOR-obfuscation of the database std::vector obfuscate_key; //! the key under which the obfuscation key is stored static const std::string OBFUSCATE_KEY_KEY; //! the length of the obfuscate key in number of bytes static const unsigned int OBFUSCATE_KEY_NUM_BYTES; std::vector CreateObfuscateKey() const; public: /** * @param[in] path Location in the filesystem where leveldb data will be stored. * @param[in] nCacheSize Configures various leveldb cache settings. * @param[in] fMemory If true, use leveldb's memory environment. * @param[in] fWipe If true, remove all existing data. * @param[in] obfuscate If true, store data obfuscated via simple XOR. If false, XOR * with a zero'd byte array. */ CDBWrapper(const fs::path& path, size_t nCacheSize, bool fMemory = false, bool fWipe = false, bool obfuscate = false); ~CDBWrapper(); template bool ReadDataStream(const K& key, CDataStream& ssValue) const { CDataStream ssKey(SER_DISK, CLIENT_VERSION); ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey << key; return ReadDataStream(ssKey, ssValue); } bool ReadDataStream(const CDataStream& ssKey, CDataStream& ssValue) const { leveldb::Slice slKey(ssKey.data(), ssKey.size()); std::string strValue; leveldb::Status status = pdb->Get(readoptions, slKey, &strValue); if (!status.ok()) { if (status.IsNotFound()) return false; LogPrintf("LevelDB read failure: %s\n", status.ToString()); dbwrapper_private::HandleError(status); } CDataStream ssValueTmp(strValue.data(), strValue.data() + strValue.size(), SER_DISK, CLIENT_VERSION); ssValueTmp.Xor(obfuscate_key); ssValue = std::move(ssValueTmp); return true; } template bool Read(const K& key, V& value) const { CDataStream ssKey(SER_DISK, CLIENT_VERSION); ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey << key; return Read(ssKey, value); } template bool Read(const CDataStream& ssKey, V& value) const { CDataStream ssValue(SER_DISK, CLIENT_VERSION); if (!ReadDataStream(ssKey, ssValue)) { return false; } try { ssValue >> value; } catch (const std::exception&) { return false; } return true; } template bool Write(const K& key, const V& value, bool fSync = false) { CDBBatch batch(*this); batch.Write(key, value); return WriteBatch(batch, fSync); } template bool Exists(const K& key) const { CDataStream ssKey(SER_DISK, CLIENT_VERSION); ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey << key; return Exists(ssKey); } bool Exists(const CDataStream& key) const { leveldb::Slice slKey(key.data(), key.size()); std::string strValue; leveldb::Status status = pdb->Get(readoptions, slKey, &strValue); if (!status.ok()) { if (status.IsNotFound()) return false; LogPrintf("LevelDB read failure: %s\n", status.ToString()); dbwrapper_private::HandleError(status); } return true; } template bool Erase(const K& key, bool fSync = false) { CDBBatch batch(*this); batch.Erase(key); return WriteBatch(batch, fSync); } bool WriteBatch(CDBBatch& batch, bool fSync = false); // not available for LevelDB; provide for compatibility with BDB bool Flush() { return true; } bool Sync() { CDBBatch batch(*this); return WriteBatch(batch, true); } CDBIterator *NewIterator() { return new CDBIterator(*this, pdb->NewIterator(iteroptions)); } /** * Return true if the database managed by this class contains no entries. */ bool IsEmpty(); template size_t EstimateSize(const K& key_begin, const K& key_end) const { CDataStream ssKey1(SER_DISK, CLIENT_VERSION), ssKey2(SER_DISK, CLIENT_VERSION); ssKey1.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey2.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey1 << key_begin; ssKey2 << key_end; leveldb::Slice slKey1(ssKey1.data(), ssKey1.size()); leveldb::Slice slKey2(ssKey2.data(), ssKey2.size()); uint64_t size = 0; leveldb::Range range(slKey1, slKey2); pdb->GetApproximateSizes(&range, 1, &size); return size; } /** * Compact a certain range of keys in the database. */ template void CompactRange(const K& key_begin, const K& key_end) const { CDataStream ssKey1(SER_DISK, CLIENT_VERSION), ssKey2(SER_DISK, CLIENT_VERSION); ssKey1.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey2.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey1 << key_begin; ssKey2 << key_end; leveldb::Slice slKey1(ssKey1.data(), ssKey1.size()); leveldb::Slice slKey2(ssKey2.data(), ssKey2.size()); pdb->CompactRange(&slKey1, &slKey2); } void CompactFull() const { pdb->CompactRange(nullptr, nullptr); } }; template class CDBTransactionIterator { private: CDBTransaction& transaction; typedef typename std::remove_pointer::type ParentIterator; // We maintain 2 iterators, one for the transaction and one for the parent // At all times, only one of both provides the current value. The decision is made by comparing the current keys // of both iterators, so that always the smaller key is the current one. On Next(), the previously chosen iterator // is advanced. typename CDBTransaction::WritesMap::iterator transactionIt; std::unique_ptr parentIt; CDataStream parentKey; bool curIsParent{false}; public: explicit CDBTransactionIterator(CDBTransaction& _transaction) : transaction(_transaction), parentKey(SER_DISK, CLIENT_VERSION) { transactionIt = transaction.writes.end(); parentIt = std::unique_ptr(transaction.parent.NewIterator()); } void SeekToFirst() { transactionIt = transaction.writes.begin(); parentIt->SeekToFirst(); SkipDeletedAndOverwritten(); DecideCur(); } template void Seek(const K& key) { Seek(CDBTransaction::KeyToDataStream(key)); } void Seek(const CDataStream& ssKey) { transactionIt = transaction.writes.lower_bound(ssKey); parentIt->Seek(ssKey); SkipDeletedAndOverwritten(); DecideCur(); } bool Valid() { return transactionIt != transaction.writes.end() || parentIt->Valid(); } void Next() { if (transactionIt == transaction.writes.end() && !parentIt->Valid()) { return; } if (curIsParent) { assert(parentIt->Valid()); parentIt->Next(); SkipDeletedAndOverwritten(); } else { assert(transactionIt != transaction.writes.end()); ++transactionIt; } DecideCur(); } template bool GetKey(K& key) { if (!Valid()) { return false; } if (curIsParent) { try { // TODO try to avoid this copy (we need a stream that allows reading from external buffers) CDataStream ssKey = parentKey; ssKey >> key; } catch (const std::exception&) { return false; } return true; } else { try { // TODO try to avoid this copy (we need a stream that allows reading from external buffers) CDataStream ssKey = transactionIt->first; ssKey >> key; } catch (const std::exception&) { return false; } return true; } } CDataStream GetKey() { if (!Valid()) { return CDataStream(SER_DISK, CLIENT_VERSION); } if (curIsParent) { return parentKey; } else { return transactionIt->first; } } unsigned int GetKeySize() { if (!Valid()) { return 0; } if (curIsParent) { return parentIt->GetKeySize(); } else { return transactionIt->first.vKey.size(); } } template bool GetValue(V& value) { if (!Valid()) { return false; } if (curIsParent) { return transaction.Read(parentKey, value); } else { return transaction.Read(transactionIt->first, value); } }; private: void SkipDeletedAndOverwritten() { while (parentIt->Valid()) { parentKey = parentIt->GetKey(); if (!transaction.deletes.count(parentKey) && !transaction.writes.count(parentKey)) { break; } parentIt->Next(); } } void DecideCur() { if (transactionIt != transaction.writes.end() && !parentIt->Valid()) { curIsParent = false; } else if (transactionIt == transaction.writes.end() && parentIt->Valid()) { curIsParent = true; } else if (transactionIt != transaction.writes.end() && parentIt->Valid()) { if (CDBTransaction::DataStreamCmp::less(transactionIt->first, parentKey)) { curIsParent = false; } else { curIsParent = true; } } } }; template class CDBTransaction { friend class CDBTransactionIterator; protected: Parent &parent; CommitTarget &commitTarget; ssize_t memoryUsage{0}; // signed, just in case we made an error in the calculations so that we don't get an overflow struct DataStreamCmp { static bool less(const CDataStream& a, const CDataStream& b) { return std::lexicographical_compare( (const uint8_t*)a.data(), (const uint8_t*)a.data() + a.size(), (const uint8_t*)b.data(), (const uint8_t*)b.data() + b.size()); } bool operator()(const CDataStream& a, const CDataStream& b) const { return less(a, b); } }; struct ValueHolder { size_t memoryUsage; ValueHolder(size_t _memoryUsage) : memoryUsage(_memoryUsage) {} virtual ~ValueHolder() = default; virtual void Write(const CDataStream& ssKey, CommitTarget &parent) = 0; }; typedef std::unique_ptr ValueHolderPtr; template struct ValueHolderImpl : ValueHolder { ValueHolderImpl(const V &_value, size_t _memoryUsage) : ValueHolder(_memoryUsage), value(_value) {} virtual void Write(const CDataStream& ssKey, CommitTarget &commitTarget) { // we're moving the value instead of copying it. This means that Write() can only be called once per // ValueHolderImpl instance. Commit() clears the write maps, so this ok. commitTarget.Write(ssKey, std::move(value)); } V value; }; template static CDataStream KeyToDataStream(const K& key) { CDataStream ssKey(SER_DISK, CLIENT_VERSION); ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey << key; return ssKey; } typedef std::map WritesMap; typedef std::set DeletesSet; WritesMap writes; DeletesSet deletes; public: CDBTransaction(Parent &_parent, CommitTarget &_commitTarget) : parent(_parent), commitTarget(_commitTarget) {} template void Write(const K& key, const V& v) { Write(KeyToDataStream(key), v); } template void Write(const CDataStream& ssKey, const V& v) { auto valueMemoryUsage = ::GetSerializeSize(v, SER_DISK, CLIENT_VERSION); if (deletes.erase(ssKey)) { memoryUsage -= ssKey.size(); } auto it = writes.emplace(ssKey, nullptr).first; if (it->second) { memoryUsage -= ssKey.size() + it->second->memoryUsage; } it->second = std::make_unique>(v, valueMemoryUsage); memoryUsage += ssKey.size() + valueMemoryUsage; } template bool Read(const K& key, V& value) { return Read(KeyToDataStream(key), value); } template bool Read(const CDataStream& ssKey, V& value) { if (deletes.count(ssKey)) { return false; } auto it = writes.find(ssKey); if (it != writes.end()) { auto *impl = dynamic_cast *>(it->second.get()); if (!impl) { throw std::runtime_error("Read called with V != previously written type"); } value = impl->value; return true; } return parent.Read(ssKey, value); } template bool Exists(const K& key) { return Exists(KeyToDataStream(key)); } bool Exists(const CDataStream& ssKey) { if (deletes.count(ssKey)) { return false; } if (writes.count(ssKey)) { return true; } return parent.Exists(ssKey); } template void Erase(const K& key) { return Erase(KeyToDataStream(key)); } void Erase(const CDataStream& ssKey) { auto it = writes.find(ssKey); if (it != writes.end()) { memoryUsage -= ssKey.size() + it->second->memoryUsage; writes.erase(it); } if (deletes.emplace(ssKey).second) { memoryUsage += ssKey.size(); } } void Clear() { writes.clear(); deletes.clear(); memoryUsage = 0; } void Commit() { for (const auto &k : deletes) { commitTarget.Erase(k); } for (auto &p : writes) { p.second->Write(p.first, commitTarget); } Clear(); } bool IsClean() { return writes.empty() && deletes.empty(); } size_t GetMemoryUsage() const { if (memoryUsage < 0) { // something went wrong when we accounted/calculated used memory... static volatile bool didPrint = false; if (!didPrint) { LogPrintf("CDBTransaction::%s -- negative memoryUsage (%d)", __func__, memoryUsage); didPrint = true; } return 0; } return (size_t)memoryUsage; } CDBTransactionIterator* NewIterator() { return new CDBTransactionIterator(*this); } std::unique_ptr> NewIteratorUniquePtr() { return std::make_unique>(*this); } }; #endif // BITCOIN_DBWRAPPER_H