#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test mempool acceptance of raw transactions.""" from io import BytesIO import math from test_framework.test_framework import BitcoinTestFramework from test_framework.messages import ( BIP125_SEQUENCE_NUMBER, COIN, COutPoint, CTransaction, CTxOut, MAX_BLOCK_SIZE, ) from test_framework.script import ( hash160, CScript, OP_0, OP_EQUAL, OP_HASH160, OP_RETURN, ) from test_framework.util import ( assert_equal, assert_raises_rpc_error, bytes_to_hex_str, hex_str_to_bytes, wait_until, ) class MempoolAcceptanceTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [[ '-checkmempool', '-txindex', '-reindex', # Need reindex for txindex '-acceptnonstdtxn=0', # Try to mimic main-net ]] * self.num_nodes def check_mempool_result(self, result_expected, *args, **kwargs): """Wrapper to check result of testmempoolaccept on node_0's mempool""" result_test = self.nodes[0].testmempoolaccept(*args, **kwargs) assert_equal(result_expected, result_test) assert_equal(self.nodes[0].getmempoolinfo()['size'], self.mempool_size) # Must not change mempool state def run_test(self): node = self.nodes[0] self.log.info('Start with empty mempool, and 200 blocks') self.mempool_size = 0 wait_until(lambda: node.getblockcount() == 200) assert_equal(node.getmempoolinfo()['size'], self.mempool_size) self.log.info('Should not accept garbage to testmempoolaccept') assert_raises_rpc_error(-3, 'Expected type array, got string', lambda: node.testmempoolaccept(rawtxs='ff00baar')) assert_raises_rpc_error(-8, 'Array must contain exactly one raw transaction for now', lambda: node.testmempoolaccept(rawtxs=['ff00baar', 'ff22'])) assert_raises_rpc_error(-22, 'TX decode failed', lambda: node.testmempoolaccept(rawtxs=['ff00baar'])) self.log.info('A transaction already in the blockchain') coin = node.listunspent()[0] # Pick a random coin(base) to spend raw_tx_in_block = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': coin['txid'], 'vout': coin['vout']}], outputs=[{node.getnewaddress(): 0.3}, {node.getnewaddress(): 49}], ))['hex'] txid_in_block = node.sendrawtransaction(hexstring=raw_tx_in_block, allowhighfees=True) node.generate(1) self.check_mempool_result( result_expected=[{'txid': txid_in_block, 'allowed': False, 'reject-reason': '18: txn-already-known'}], rawtxs=[raw_tx_in_block], ) self.log.info('A transaction not in the mempool') fee = 0.00000700 raw_tx_0 = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{"txid": txid_in_block, "vout": 0, "sequence": BIP125_SEQUENCE_NUMBER}], # RBF is used later outputs=[{node.getnewaddress(): 0.3 - fee}], ))['hex'] tx = CTransaction() tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True}], rawtxs=[raw_tx_0], ) self.log.info('A transaction in the mempool') node.sendrawtransaction(hexstring=raw_tx_0) self.mempool_size = 1 self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': '18: txn-already-in-mempool'}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that replaces a mempool transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vout[0].nValue -= int(fee * COIN) # Double the fee tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER + 1 # Now, opt out of RBF raw_tx_0_reject = node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex'] tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0_reject))) txid_0_reject = tx.rehash() self.check_mempool_result( # No RBF in DASH result_expected=[{'txid': txid_0_reject, 'allowed': False, 'reject-reason': '18: txn-mempool-conflict'}], rawtxs=[raw_tx_0_reject], ) self.log.info('A transaction that conflicts with an unconfirmed tx') # Send the transaction that replaces the mempool transaction and opts out of replaceability # node.sendrawtransaction(hexstring=bytes_to_hex_str(tx.serialize()), allowhighfees=True) # take original raw_tx_0 tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vout[0].nValue -= int(4 * fee * COIN) # Set more fee # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '18: txn-mempool-conflict'}], rawtxs=[bytes_to_hex_str(tx.serialize())], allowhighfees=True, ) self.log.info('A transaction with missing inputs, that never existed') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14) # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with missing inputs, that existed once in the past') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vin[0].prevout.n = 1 # Set vout to 1, to spend the other outpoint (49 coins) of the in-chain-tx we want to double spend raw_tx_1 = node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex'] txid_1 = node.sendrawtransaction(hexstring=raw_tx_1, allowhighfees=True) # Now spend both to "clearly hide" the outputs, ie. remove the coins from the utxo set by spending them raw_tx_spend_both = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[ {'txid': txid_0, 'vout': 0}, {'txid': txid_1, 'vout': 0}, ], outputs=[{node.getnewaddress(): 0.1}] ))['hex'] txid_spend_both = node.sendrawtransaction(hexstring=raw_tx_spend_both, allowhighfees=True) node.generate(1) self.mempool_size = 0 # Now see if we can add the coins back to the utxo set by sending the exact txs again self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_0], ) self.check_mempool_result( result_expected=[{'txid': txid_1, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_1], ) self.log.info('Create a signed "reference" tx for later use') raw_tx_reference = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': txid_spend_both, 'vout': 0}], outputs=[{node.getnewaddress(): 0.05}], ))['hex'] tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) # Reference tx should be valid on itself self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': True}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with no outputs') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout = [] # Skip re-signing the transaction for context independent checks from now on # tx.deserialize(BytesIO(hex_str_to_bytes(node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex']))) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-empty'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A really large transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin = [tx.vin[0]] * math.ceil(MAX_BLOCK_SIZE / len(tx.vin[0].serialize())) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-oversize'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with negative output value') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].nValue *= -1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-negative'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with too large output value') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].nValue = 21000000 * COIN + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-toolarge'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with too large sum of output values') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout = [tx.vout[0]] * 2 tx.vout[0].nValue = 21000000 * COIN self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-txouttotal-toolarge'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with duplicate inputs') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin = [tx.vin[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-inputs-duplicate'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A coinbase transaction') # Pick the input of the first tx we signed, so it has to be a coinbase tx raw_tx_coinbase_spent = node.getrawtransaction(txid=node.decoderawtransaction(hexstring=raw_tx_in_block)['vin'][0]['txid']) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_coinbase_spent))) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: coinbase'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('Some nonstandard transactions') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.nVersion = 4 # A version currently non-standard self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: version'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].scriptPubKey = CScript([OP_0]) # Some non-standard script self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptpubkey'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].scriptSig = CScript([OP_HASH160]) # Some not-pushonly scriptSig self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptsig-not-pushonly'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) output_p2sh_burn = CTxOut(nValue=540, scriptPubKey=CScript([OP_HASH160, hash160(b'burn'), OP_EQUAL])) num_scripts = 100000 // len(output_p2sh_burn.serialize()) # Use enough outputs to make the tx too large for our policy tx.vout = [output_p2sh_burn] * num_scripts self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: tx-size'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0] = output_p2sh_burn tx.vout[0].nValue -= 1 # Make output smaller, such that it is dust for our policy self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: dust'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].scriptPubKey = CScript([OP_RETURN, b'\xff']) tx.vout = [tx.vout[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: multi-op-return'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A timelocked transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].nSequence -= 1 # Should be non-max, so locktime is not ignored tx.nLockTime = node.getblockcount() + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-final'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction that is locked by BIP68 sequence logic') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].nSequence = 2 # We could include it in the second block mined from now, but not the very next one # Can skip re-signing the tx because of early rejection self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-BIP68-final'}], rawtxs=[bytes_to_hex_str(tx.serialize())], allowhighfees=True, ) if __name__ == '__main__': MempoolAcceptanceTest().main()