#!/usr/bin/env python2 # Copyright (c) 2015 The Bitcoin Core developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # from test_framework.test_framework import ComparisonTestFramework from test_framework.util import * from test_framework.comptool import TestManager, TestInstance, RejectResult from test_framework.blocktools import * import time from test_framework.key import CECKey from test_framework.script import CScript, SignatureHash, SIGHASH_ALL, OP_TRUE, OP_FALSE class PreviousSpendableOutput(object): def __init__(self, tx = CTransaction(), n = -1): self.tx = tx self.n = n # the output we're spending ''' This reimplements tests from the bitcoinj/FullBlockTestGenerator used by the pull-tester. We use the testing framework in which we expect a particular answer from each test. ''' class FullBlockTest(ComparisonTestFramework): ''' Can either run this test as 1 node with expected answers, or two and compare them. Change the "outcome" variable from each TestInstance object to only do the comparison. ''' def __init__(self): self.num_nodes = 1 self.block_heights = {} self.coinbase_key = CECKey() self.coinbase_key.set_secretbytes(b"horsebattery") self.coinbase_pubkey = self.coinbase_key.get_pubkey() self.block_time = int(time.time())+1 self.tip = None self.blocks = {} def run_test(self): test = TestManager(self, self.options.tmpdir) test.add_all_connections(self.nodes) NetworkThread().start() # Start up network handling in another thread sync_masternodes(self.nodes) test.run() def add_transactions_to_block(self, block, tx_list): [ tx.rehash() for tx in tx_list ] block.vtx.extend(tx_list) block.hashMerkleRoot = block.calc_merkle_root() block.rehash() return block # Create a block on top of self.tip, and advance self.tip to point to the new block # if spend is specified, then 1 satoshi will be spent from that to an anyone-can-spend output, # and rest will go to fees. def next_block(self, number, spend=None, additional_coinbase_value=0, script=None): if self.tip == None: base_block_hash = self.genesis_hash else: base_block_hash = self.tip.sha256 # First create the coinbase height = self.block_heights[base_block_hash] + 1 coinbase = create_coinbase(height, self.coinbase_pubkey) coinbase.vout[0].nValue += additional_coinbase_value if (spend != None): coinbase.vout[0].nValue += spend.tx.vout[spend.n].nValue - 1 # all but one satoshi to fees coinbase.rehash() block = create_block(base_block_hash, coinbase, self.block_time) if (spend != None): tx = CTransaction() tx.vin.append(CTxIn(COutPoint(spend.tx.sha256, spend.n), b"", 0xffffffff)) # no signature yet # This copies the java comparison tool testing behavior: the first # txout has a garbage scriptPubKey, "to make sure we're not # pre-verifying too much" (?) tx.vout.append(CTxOut(0, CScript([random.randint(0,255), height & 255]))) if script == None: tx.vout.append(CTxOut(1, CScript([OP_TRUE]))) else: tx.vout.append(CTxOut(1, script)) # Now sign it if necessary scriptSig = b"" scriptPubKey = bytearray(spend.tx.vout[spend.n].scriptPubKey) if (scriptPubKey[0] == OP_TRUE): # looks like an anyone-can-spend scriptSig = CScript([OP_TRUE]) else: # We have to actually sign it (sighash, err) = SignatureHash(spend.tx.vout[spend.n].scriptPubKey, tx, 0, SIGHASH_ALL) scriptSig = CScript([self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL]))]) tx.vin[0].scriptSig = scriptSig # Now add the transaction to the block block = self.add_transactions_to_block(block, [tx]) block.solve() self.tip = block self.block_heights[block.sha256] = height self.block_time += 1 assert number not in self.blocks self.blocks[number] = block return block def get_tests(self): self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16) self.block_heights[self.genesis_hash] = 0 spendable_outputs = [] # save the current tip so it can be spent by a later block def save_spendable_output(): spendable_outputs.append(self.tip) # get an output that we previous marked as spendable def get_spendable_output(): return PreviousSpendableOutput(spendable_outputs.pop(0).vtx[0], 0) # returns a test case that asserts that the current tip was accepted def accepted(): return TestInstance([[self.tip, True]]) # returns a test case that asserts that the current tip was rejected def rejected(reject = None): if reject is None: return TestInstance([[self.tip, False]]) else: return TestInstance([[self.tip, reject]]) # move the tip back to a previous block def tip(number): self.tip = self.blocks[number] # add transactions to a block produced by next_block def update_block(block_number, new_transactions): block = self.blocks[block_number] old_hash = block.sha256 self.add_transactions_to_block(block, new_transactions) block.solve() # Update the internal state just like in next_block self.tip = block self.block_heights[block.sha256] = self.block_heights[old_hash] del self.block_heights[old_hash] self.blocks[block_number] = block return block # creates a new block and advances the tip to that block block = self.next_block # Create a new block block(0) save_spendable_output() yield accepted() # Now we need that block to mature so we can spend the coinbase. test = TestInstance(sync_every_block=False) for i in range(99): block(1000 + i) test.blocks_and_transactions.append([self.tip, True]) save_spendable_output() yield test # Start by building a couple of blocks on top (which output is spent is # in parentheses): # genesis -> b1 (0) -> b2 (1) out0 = get_spendable_output() block(1, spend=out0) save_spendable_output() yield accepted() out1 = get_spendable_output() b2 = block(2, spend=out1) yield accepted() # so fork like this: # # genesis -> b1 (0) -> b2 (1) # \-> b3 (1) # # Nothing should happen at this point. We saw b2 first so it takes priority. tip(1) b3 = block(3, spend=out1) txout_b3 = PreviousSpendableOutput(b3.vtx[1], 1) yield rejected() # Now we add another block to make the alternative chain longer. # # genesis -> b1 (0) -> b2 (1) # \-> b3 (1) -> b4 (2) out2 = get_spendable_output() block(4, spend=out2) yield accepted() # ... and back to the first chain. # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b3 (1) -> b4 (2) tip(2) block(5, spend=out2) save_spendable_output() yield rejected() out3 = get_spendable_output() block(6, spend=out3) yield accepted() # Try to create a fork that double-spends # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b7 (2) -> b8 (4) # \-> b3 (1) -> b4 (2) tip(5) block(7, spend=out2) yield rejected() out4 = get_spendable_output() block(8, spend=out4) yield rejected() # Try to create a block that has too much fee # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b9 (4) # \-> b3 (1) -> b4 (2) tip(6) block(9, spend=out4, additional_coinbase_value=1) yield rejected(RejectResult(16, b'bad-cb-amount')) # Create a fork that ends in a block with too much fee (the one that causes the reorg) # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b10 (3) -> b11 (4) # \-> b3 (1) -> b4 (2) tip(5) block(10, spend=out3) yield rejected() block(11, spend=out4, additional_coinbase_value=1) yield rejected(RejectResult(16, b'bad-cb-amount')) # Try again, but with a valid fork first # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b14 (5) # (b12 added last) # \-> b3 (1) -> b4 (2) tip(5) b12 = block(12, spend=out3) save_spendable_output() #yield TestInstance([[b12, False]]) b13 = block(13, spend=out4) # Deliver the block header for b12, and the block b13. # b13 should be accepted but the tip won't advance until b12 is delivered. yield TestInstance([[CBlockHeader(b12), None], [b13, False]]) save_spendable_output() out5 = get_spendable_output() # b14 is invalid, but the node won't know that until it tries to connect # Tip still can't advance because b12 is missing block(14, spend=out5, additional_coinbase_value=1) yield rejected() yield TestInstance([[b12, True, b13.sha256]]) # New tip should be b13. # Add a block with MAX_BLOCK_SIGOPS and one with one more sigop # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b16 (6) # \-> b3 (1) -> b4 (2) # Test that a block with a lot of checksigs is okay lots_of_checksigs = CScript([OP_CHECKSIG] * (1000000 // 50 - 1)) tip(13) block(15, spend=out5, script=lots_of_checksigs) yield accepted() # Test that a block with too many checksigs is rejected out6 = get_spendable_output() too_many_checksigs = CScript([OP_CHECKSIG] * (1000000 // 50)) block(16, spend=out6, script=too_many_checksigs) yield rejected(RejectResult(16, b'bad-blk-sigops')) # Attempt to spend a transaction created on a different fork # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b17 (b3.vtx[1]) # \-> b3 (1) -> b4 (2) tip(15) block(17, spend=txout_b3) yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) # Attempt to spend a transaction created on a different fork (on a fork this time) # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) # \-> b18 (b3.vtx[1]) -> b19 (6) # \-> b3 (1) -> b4 (2) tip(13) block(18, spend=txout_b3) yield rejected() block(19, spend=out6) yield rejected() # Attempt to spend a coinbase at depth too low # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b20 (7) # \-> b3 (1) -> b4 (2) tip(15) out7 = get_spendable_output() block(20, spend=out7) yield rejected(RejectResult(16, b'bad-txns-premature-spend-of-coinbase')) # Attempt to spend a coinbase at depth too low (on a fork this time) # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) # \-> b21 (6) -> b22 (5) # \-> b3 (1) -> b4 (2) tip(13) block(21, spend=out6) yield rejected() block(22, spend=out5) yield rejected() # Create a block on either side of MAX_BLOCK_SIZE and make sure its accepted/rejected # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) # \-> b24 (6) -> b25 (7) # \-> b3 (1) -> b4 (2) tip(15) b23 = block(23, spend=out6) old_hash = b23.sha256 tx = CTransaction() script_length = MAX_BLOCK_SIZE - len(b23.serialize()) - 69 script_output = CScript([b'\x00' * script_length]) tx.vout.append(CTxOut(0, script_output)) tx.vin.append(CTxIn(COutPoint(b23.vtx[1].sha256, 1))) b23 = update_block(23, [tx]) # Make sure the math above worked out to produce a max-sized block assert_equal(len(b23.serialize()), MAX_BLOCK_SIZE) yield accepted() # Make the next block one byte bigger and check that it fails tip(15) b24 = block(24, spend=out6) script_length = MAX_BLOCK_SIZE - len(b24.serialize()) - 69 script_output = CScript([b'\x00' * (script_length+1)]) tx.vout = [CTxOut(0, script_output)] b24 = update_block(24, [tx]) assert_equal(len(b24.serialize()), MAX_BLOCK_SIZE+1) yield rejected(RejectResult(16, b'bad-blk-length')) b25 = block(25, spend=out7) yield rejected() # Create blocks with a coinbase input script size out of range # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) # \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7) # \-> ... (6) -> ... (7) # \-> b3 (1) -> b4 (2) tip(15) b26 = block(26, spend=out6) b26.vtx[0].vin[0].scriptSig = b'\x00' b26.vtx[0].rehash() # update_block causes the merkle root to get updated, even with no new # transactions, and updates the required state. b26 = update_block(26, []) yield rejected(RejectResult(16, b'bad-cb-length')) # Extend the b26 chain to make sure bitcoind isn't accepting b26 b27 = block(27, spend=out7) yield rejected() # Now try a too-large-coinbase script tip(15) b28 = block(28, spend=out6) b28.vtx[0].vin[0].scriptSig = b'\x00' * 101 b28.vtx[0].rehash() b28 = update_block(28, []) yield rejected(RejectResult(16, b'bad-cb-length')) # Extend the b28 chain to make sure bitcoind isn't accepted b28 b29 = block(29, spend=out7) # TODO: Should get a reject message back with "bad-prevblk", except # there's a bug that prevents this from being detected. Just note # failure for now, and add the reject result later. yield rejected() # b30 has a max-sized coinbase scriptSig. tip(23) b30 = block(30) b30.vtx[0].vin[0].scriptSig = b'\x00' * 100 b30.vtx[0].rehash() b30 = update_block(30, []) yield accepted() if __name__ == '__main__': FullBlockTest().main()