// Copyright (c) 2012-2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "coins.h" #include "memusage.h" #include "random.h" #include /** * calculate number of bytes for the bitmask, and its number of non-zero bytes * each bit in the bitmask represents the availability of one output, but the * availabilities of the first two outputs are encoded separately */ void CCoins::CalcMaskSize(unsigned int &nBytes, unsigned int &nNonzeroBytes) const { unsigned int nLastUsedByte = 0; for (unsigned int b = 0; 2+b*8 < vout.size(); b++) { bool fZero = true; for (unsigned int i = 0; i < 8 && 2+b*8+i < vout.size(); i++) { if (!vout[2+b*8+i].IsNull()) { fZero = false; continue; } } if (!fZero) { nLastUsedByte = b + 1; nNonzeroBytes++; } } nBytes += nLastUsedByte; } bool CCoins::Spend(uint32_t nPos) { if (nPos >= vout.size() || vout[nPos].IsNull()) return false; vout[nPos].SetNull(); Cleanup(); return true; } bool CCoinsView::GetCoins(const uint256 &txid, CCoins &coins) const { return false; } bool CCoinsView::HaveCoins(const uint256 &txid) const { return false; } uint256 CCoinsView::GetBestBlock() const { return uint256(); } bool CCoinsView::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock) { return false; } CCoinsViewCursor *CCoinsView::Cursor() const { return 0; } CCoinsViewBacked::CCoinsViewBacked(CCoinsView *viewIn) : base(viewIn) { } bool CCoinsViewBacked::GetCoins(const uint256 &txid, CCoins &coins) const { return base->GetCoins(txid, coins); } bool CCoinsViewBacked::HaveCoins(const uint256 &txid) const { return base->HaveCoins(txid); } uint256 CCoinsViewBacked::GetBestBlock() const { return base->GetBestBlock(); } void CCoinsViewBacked::SetBackend(CCoinsView &viewIn) { base = &viewIn; } bool CCoinsViewBacked::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock) { return base->BatchWrite(mapCoins, hashBlock); } CCoinsViewCursor *CCoinsViewBacked::Cursor() const { return base->Cursor(); } SaltedTxidHasher::SaltedTxidHasher() : k0(GetRand(std::numeric_limits::max())), k1(GetRand(std::numeric_limits::max())) {} CCoinsViewCache::CCoinsViewCache(CCoinsView *baseIn) : CCoinsViewBacked(baseIn), hasModifier(false), cachedCoinsUsage(0) { } CCoinsViewCache::~CCoinsViewCache() { assert(!hasModifier); } size_t CCoinsViewCache::DynamicMemoryUsage() const { return memusage::DynamicUsage(cacheCoins) + cachedCoinsUsage; } CCoinsMap::const_iterator CCoinsViewCache::FetchCoins(const uint256 &txid) const { CCoinsMap::iterator it = cacheCoins.find(txid); if (it != cacheCoins.end()) return it; CCoins tmp; if (!base->GetCoins(txid, tmp)) return cacheCoins.end(); CCoinsMap::iterator ret = cacheCoins.insert(std::make_pair(txid, CCoinsCacheEntry())).first; tmp.swap(ret->second.coins); if (ret->second.coins.IsPruned()) { // The parent only has an empty entry for this txid; we can consider our // version as fresh. ret->second.flags = CCoinsCacheEntry::FRESH; } cachedCoinsUsage += ret->second.coins.DynamicMemoryUsage(); return ret; } bool CCoinsViewCache::GetCoins(const uint256 &txid, CCoins &coins) const { CCoinsMap::const_iterator it = FetchCoins(txid); if (it != cacheCoins.end()) { coins = it->second.coins; return true; } return false; } CCoinsModifier CCoinsViewCache::ModifyCoins(const uint256 &txid) { assert(!hasModifier); std::pair ret = cacheCoins.insert(std::make_pair(txid, CCoinsCacheEntry())); size_t cachedCoinUsage = 0; if (ret.second) { if (!base->GetCoins(txid, ret.first->second.coins)) { // The parent view does not have this entry; mark it as fresh. ret.first->second.coins.Clear(); ret.first->second.flags = CCoinsCacheEntry::FRESH; } else if (ret.first->second.coins.IsPruned()) { // The parent view only has a pruned entry for this; mark it as fresh. ret.first->second.flags = CCoinsCacheEntry::FRESH; } } else { cachedCoinUsage = ret.first->second.coins.DynamicMemoryUsage(); } // Assume that whenever ModifyCoins is called, the entry will be modified. ret.first->second.flags |= CCoinsCacheEntry::DIRTY; return CCoinsModifier(*this, ret.first, cachedCoinUsage); } /* ModifyNewCoins allows for faster coin modification when creating the new * outputs from a transaction. It assumes that BIP 30 (no duplicate txids) * applies and has already been tested for (or the test is not required due to * BIP 34, height in coinbase). If we can assume BIP 30 then we know that any * non-coinbase transaction we are adding to the UTXO must not already exist in * the utxo unless it is fully spent. Thus we can check only if it exists DIRTY * at the current level of the cache, in which case it is not safe to mark it * FRESH (b/c then its spentness still needs to flushed). If it's not dirty and * doesn't exist or is pruned in the current cache, we know it either doesn't * exist or is pruned in parent caches, which is the definition of FRESH. The * exception to this is the two historical violations of BIP 30 in the chain, * both of which were coinbases. We do not mark these fresh so we we can ensure * that they will still be properly overwritten when spent. */ CCoinsModifier CCoinsViewCache::ModifyNewCoins(const uint256 &txid, bool coinbase) { assert(!hasModifier); std::pair ret = cacheCoins.insert(std::make_pair(txid, CCoinsCacheEntry())); if (!coinbase) { // New coins must not already exist. if (!ret.first->second.coins.IsPruned()) throw std::logic_error("ModifyNewCoins should not find pre-existing coins on a non-coinbase unless they are pruned!"); if (!(ret.first->second.flags & CCoinsCacheEntry::DIRTY)) { // If the coin is known to be pruned (have no unspent outputs) in // the current view and the cache entry is not dirty, we know the // coin also must be pruned in the parent view as well, so it is safe // to mark this fresh. ret.first->second.flags |= CCoinsCacheEntry::FRESH; } } ret.first->second.coins.Clear(); ret.first->second.flags |= CCoinsCacheEntry::DIRTY; return CCoinsModifier(*this, ret.first, 0); } const CCoins* CCoinsViewCache::AccessCoins(const uint256 &txid) const { CCoinsMap::const_iterator it = FetchCoins(txid); if (it == cacheCoins.end()) { return NULL; } else { return &it->second.coins; } } bool CCoinsViewCache::HaveCoins(const uint256 &txid) const { CCoinsMap::const_iterator it = FetchCoins(txid); // We're using vtx.empty() instead of IsPruned here for performance reasons, // as we only care about the case where a transaction was replaced entirely // in a reorganization (which wipes vout entirely, as opposed to spending // which just cleans individual outputs). return (it != cacheCoins.end() && !it->second.coins.vout.empty()); } bool CCoinsViewCache::HaveCoinsInCache(const uint256 &txid) const { CCoinsMap::const_iterator it = cacheCoins.find(txid); return it != cacheCoins.end(); } uint256 CCoinsViewCache::GetBestBlock() const { if (hashBlock.IsNull()) hashBlock = base->GetBestBlock(); return hashBlock; } void CCoinsViewCache::SetBestBlock(const uint256 &hashBlockIn) { hashBlock = hashBlockIn; } bool CCoinsViewCache::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlockIn) { assert(!hasModifier); for (CCoinsMap::iterator it = mapCoins.begin(); it != mapCoins.end();) { if (it->second.flags & CCoinsCacheEntry::DIRTY) { // Ignore non-dirty entries (optimization). CCoinsMap::iterator itUs = cacheCoins.find(it->first); if (itUs == cacheCoins.end()) { // The parent cache does not have an entry, while the child does // We can ignore it if it's both FRESH and pruned in the child if (!(it->second.flags & CCoinsCacheEntry::FRESH && it->second.coins.IsPruned())) { // Otherwise we will need to create it in the parent // and move the data up and mark it as dirty CCoinsCacheEntry& entry = cacheCoins[it->first]; entry.coins.swap(it->second.coins); cachedCoinsUsage += entry.coins.DynamicMemoryUsage(); entry.flags = CCoinsCacheEntry::DIRTY; // We can mark it FRESH in the parent if it was FRESH in the child // Otherwise it might have just been flushed from the parent's cache // and already exist in the grandparent if (it->second.flags & CCoinsCacheEntry::FRESH) entry.flags |= CCoinsCacheEntry::FRESH; } } else { // Found the entry in the parent cache if ((itUs->second.flags & CCoinsCacheEntry::FRESH) && it->second.coins.IsPruned()) { // The grandparent does not have an entry, and the child is // modified and being pruned. This means we can just delete // it from the parent. cachedCoinsUsage -= itUs->second.coins.DynamicMemoryUsage(); cacheCoins.erase(itUs); } else { // A normal modification. cachedCoinsUsage -= itUs->second.coins.DynamicMemoryUsage(); itUs->second.coins.swap(it->second.coins); cachedCoinsUsage += itUs->second.coins.DynamicMemoryUsage(); itUs->second.flags |= CCoinsCacheEntry::DIRTY; // NOTE: It is possible the child has a FRESH flag here in // the event the entry we found in the parent is pruned. But // we must not copy that FRESH flag to the parent as that // pruned state likely still needs to be communicated to the // grandparent. } } } CCoinsMap::iterator itOld = it++; mapCoins.erase(itOld); } hashBlock = hashBlockIn; return true; } bool CCoinsViewCache::Flush() { bool fOk = base->BatchWrite(cacheCoins, hashBlock); cacheCoins.clear(); cachedCoinsUsage = 0; return fOk; } void CCoinsViewCache::Uncache(const uint256& hash) { CCoinsMap::iterator it = cacheCoins.find(hash); if (it != cacheCoins.end() && it->second.flags == 0) { cachedCoinsUsage -= it->second.coins.DynamicMemoryUsage(); cacheCoins.erase(it); } } unsigned int CCoinsViewCache::GetCacheSize() const { return cacheCoins.size(); } const CTxOut &CCoinsViewCache::GetOutputFor(const CTxIn& input) const { const CCoins* coins = AccessCoins(input.prevout.hash); assert(coins && coins->IsAvailable(input.prevout.n)); return coins->vout[input.prevout.n]; } CAmount CCoinsViewCache::GetValueIn(const CTransaction& tx) const { if (tx.IsCoinBase()) return 0; CAmount nResult = 0; for (unsigned int i = 0; i < tx.vin.size(); i++) nResult += GetOutputFor(tx.vin[i]).nValue; return nResult; } bool CCoinsViewCache::HaveInputs(const CTransaction& tx) const { if (!tx.IsCoinBase()) { for (unsigned int i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; const CCoins* coins = AccessCoins(prevout.hash); if (!coins || !coins->IsAvailable(prevout.n)) { return false; } } } return true; } double CCoinsViewCache::GetPriority(const CTransaction &tx, int nHeight, CAmount &inChainInputValue) const { inChainInputValue = 0; if (tx.IsCoinBase()) return 0.0; double dResult = 0.0; BOOST_FOREACH(const CTxIn& txin, tx.vin) { const CCoins* coins = AccessCoins(txin.prevout.hash); assert(coins); if (!coins->IsAvailable(txin.prevout.n)) continue; if (coins->nHeight <= nHeight) { dResult += coins->vout[txin.prevout.n].nValue * (nHeight-coins->nHeight); inChainInputValue += coins->vout[txin.prevout.n].nValue; } } return tx.ComputePriority(dResult); } CCoinsModifier::CCoinsModifier(CCoinsViewCache& cache_, CCoinsMap::iterator it_, size_t usage) : cache(cache_), it(it_), cachedCoinUsage(usage) { assert(!cache.hasModifier); cache.hasModifier = true; } CCoinsModifier::~CCoinsModifier() { assert(cache.hasModifier); cache.hasModifier = false; it->second.coins.Cleanup(); cache.cachedCoinsUsage -= cachedCoinUsage; // Subtract the old usage if ((it->second.flags & CCoinsCacheEntry::FRESH) && it->second.coins.IsPruned()) { cache.cacheCoins.erase(it); } else { // If the coin still exists after the modification, add the new usage cache.cachedCoinsUsage += it->second.coins.DynamicMemoryUsage(); } } CCoinsViewCursor::~CCoinsViewCursor() { }