// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Helpers for modifying CTxMemPool::mapTx, which is a boost multi_index. struct update_descendant_state { update_descendant_state(int64_t _modifySize, CAmount _modifyFee, int64_t _modifyCount) : modifySize(_modifySize), modifyFee(_modifyFee), modifyCount(_modifyCount) {} void operator() (CTxMemPoolEntry &e) { e.UpdateDescendantState(modifySize, modifyFee, modifyCount); } private: int64_t modifySize; CAmount modifyFee; int64_t modifyCount; }; struct update_ancestor_state { update_ancestor_state(int64_t _modifySize, CAmount _modifyFee, int64_t _modifyCount, int64_t _modifySigOpsCost) : modifySize(_modifySize), modifyFee(_modifyFee), modifyCount(_modifyCount), modifySigOpsCost(_modifySigOpsCost) {} void operator() (CTxMemPoolEntry &e) { e.UpdateAncestorState(modifySize, modifyFee, modifyCount, modifySigOpsCost); } private: int64_t modifySize; CAmount modifyFee; int64_t modifyCount; int64_t modifySigOpsCost; }; struct update_fee_delta { explicit update_fee_delta(int64_t _feeDelta) : feeDelta(_feeDelta) { } void operator() (CTxMemPoolEntry &e) { e.UpdateFeeDelta(feeDelta); } private: int64_t feeDelta; }; bool TestLockPointValidity(CChain& active_chain, const LockPoints& lp) { AssertLockHeld(cs_main); // If there are relative lock times then the maxInputBlock will be set // If there are no relative lock times, the LockPoints don't depend on the chain if (lp.maxInputBlock) { // Check whether active_chain is an extension of the block at which the LockPoints // calculation was valid. If not LockPoints are no longer valid if (!active_chain.Contains(lp.maxInputBlock)) { return false; } } // LockPoints still valid return true; } CTxMemPoolEntry::CTxMemPoolEntry(const CTransactionRef& tx, CAmount fee, int64_t time, unsigned int entry_height, bool spends_coinbase, int64_t sigops_count, LockPoints lp) : tx{tx}, nFee{fee}, nTxSize(tx->GetTotalSize()), nUsageSize{RecursiveDynamicUsage(tx)}, nTime{time}, entryHeight{entry_height}, spendsCoinbase{spends_coinbase}, sigOpCount{sigops_count}, lockPoints{lp}, nSizeWithDescendants{GetTxSize()}, nModFeesWithDescendants{nFee}, nSizeWithAncestors{GetTxSize()}, nModFeesWithAncestors{nFee}, nSigOpCountWithAncestors{sigOpCount} {} void CTxMemPoolEntry::UpdateFeeDelta(int64_t newFeeDelta) { nModFeesWithDescendants += newFeeDelta - feeDelta; nModFeesWithAncestors += newFeeDelta - feeDelta; feeDelta = newFeeDelta; } void CTxMemPoolEntry::UpdateLockPoints(const LockPoints& lp) { lockPoints = lp; } size_t CTxMemPoolEntry::GetTxSize() const { return GetVirtualTransactionSize(nTxSize, sigOpCount); } // Update the given tx for any in-mempool descendants. // Assumes that CTxMemPool::m_children is correct for the given tx and all // descendants. void CTxMemPool::UpdateForDescendants(txiter updateIt, cacheMap &cachedDescendants, const std::set &setExclude) { CTxMemPoolEntry::Children stageEntries, descendants; stageEntries = updateIt->GetMemPoolChildrenConst(); while (!stageEntries.empty()) { const CTxMemPoolEntry& descendant = *stageEntries.begin(); descendants.insert(descendant); stageEntries.erase(descendant); const CTxMemPoolEntry::Children& children = descendant.GetMemPoolChildrenConst(); for (const CTxMemPoolEntry& childEntry : children) { cacheMap::iterator cacheIt = cachedDescendants.find(mapTx.iterator_to(childEntry)); if (cacheIt != cachedDescendants.end()) { // We've already calculated this one, just add the entries for this set // but don't traverse again. for (txiter cacheEntry : cacheIt->second) { descendants.insert(*cacheEntry); } } else if (!descendants.count(childEntry)) { // Schedule for later processing stageEntries.insert(childEntry); } } } // descendants now contains all in-mempool descendants of updateIt. // Update and add to cached descendant map int64_t modifySize = 0; CAmount modifyFee = 0; int64_t modifyCount = 0; for (const CTxMemPoolEntry& descendant : descendants) { if (!setExclude.count(descendant.GetTx().GetHash())) { modifySize += descendant.GetTxSize(); modifyFee += descendant.GetModifiedFee(); modifyCount++; cachedDescendants[updateIt].insert(mapTx.iterator_to(descendant)); // Update ancestor state for each descendant mapTx.modify(mapTx.iterator_to(descendant), update_ancestor_state(updateIt->GetTxSize(), updateIt->GetModifiedFee(), 1, updateIt->GetSigOpCount())); } } mapTx.modify(updateIt, update_descendant_state(modifySize, modifyFee, modifyCount)); } // vHashesToUpdate is the set of transaction hashes from a disconnected block // which has been re-added to the mempool. // for each entry, look for descendants that are outside vHashesToUpdate, and // add fee/size information for such descendants to the parent. // for each such descendant, also update the ancestor state to include the parent. void CTxMemPool::UpdateTransactionsFromBlock(const std::vector &vHashesToUpdate) { AssertLockHeld(cs); // For each entry in vHashesToUpdate, store the set of in-mempool, but not // in-vHashesToUpdate transactions, so that we don't have to recalculate // descendants when we come across a previously seen entry. cacheMap mapMemPoolDescendantsToUpdate; // Use a set for lookups into vHashesToUpdate (these entries are already // accounted for in the state of their ancestors) std::set setAlreadyIncluded(vHashesToUpdate.begin(), vHashesToUpdate.end()); // Iterate in reverse, so that whenever we are looking at a transaction // we are sure that all in-mempool descendants have already been processed. // This maximizes the benefit of the descendant cache and guarantees that // CTxMemPool::m_children will be updated, an assumption made in // UpdateForDescendants. for (const uint256 &hash : reverse_iterate(vHashesToUpdate)) { // calculate children from mapNextTx txiter it = mapTx.find(hash); if (it == mapTx.end()) { continue; } auto iter = mapNextTx.lower_bound(COutPoint(hash, 0)); // First calculate the children, and update CTxMemPool::m_children to // include them, and update their CTxMemPoolEntry::m_parents to include this tx. // we cache the in-mempool children to avoid duplicate updates { WITH_FRESH_EPOCH(m_epoch); for (; iter != mapNextTx.end() && iter->first->hash == hash; ++iter) { const uint256 &childHash = iter->second->GetHash(); txiter childIter = mapTx.find(childHash); assert(childIter != mapTx.end()); // We can skip updating entries we've encountered before or that // are in the block (which are already accounted for). if (!visited(childIter) && !setAlreadyIncluded.count(childHash)) { UpdateChild(it, childIter, true); UpdateParent(childIter, it, true); } } } // release epoch guard for UpdateForDescendants UpdateForDescendants(it, mapMemPoolDescendantsToUpdate, setAlreadyIncluded); } } bool CTxMemPool::CalculateAncestorsAndCheckLimits(size_t entry_size, size_t entry_count, setEntries& setAncestors, CTxMemPoolEntry::Parents& staged_ancestors, uint64_t limitAncestorCount, uint64_t limitAncestorSize, uint64_t limitDescendantCount, uint64_t limitDescendantSize, std::string &errString) const { size_t totalSizeWithAncestors = entry_size; while (!staged_ancestors.empty()) { const CTxMemPoolEntry& stage = staged_ancestors.begin()->get(); txiter stageit = mapTx.iterator_to(stage); setAncestors.insert(stageit); staged_ancestors.erase(stage); totalSizeWithAncestors += stageit->GetTxSize(); if (stageit->GetSizeWithDescendants() + entry_size > limitDescendantSize) { errString = strprintf("exceeds descendant size limit for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limitDescendantSize); return false; } else if (stageit->GetCountWithDescendants() + entry_count > limitDescendantCount) { errString = strprintf("too many descendants for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limitDescendantCount); return false; } else if (totalSizeWithAncestors > limitAncestorSize) { errString = strprintf("exceeds ancestor size limit [limit: %u]", limitAncestorSize); return false; } const CTxMemPoolEntry::Parents& parents = stageit->GetMemPoolParentsConst(); for (const CTxMemPoolEntry& parent : parents) { txiter parent_it = mapTx.iterator_to(parent); // If this is a new ancestor, add it. if (setAncestors.count(parent_it) == 0) { staged_ancestors.insert(parent); } if (staged_ancestors.size() + setAncestors.size() + entry_count > limitAncestorCount) { errString = strprintf("too many unconfirmed ancestors [limit: %u]", limitAncestorCount); return false; } } } return true; } bool CTxMemPool::CheckPackageLimits(const Package& package, uint64_t limitAncestorCount, uint64_t limitAncestorSize, uint64_t limitDescendantCount, uint64_t limitDescendantSize, std::string &errString) const { CTxMemPoolEntry::Parents staged_ancestors; size_t total_size = 0; for (const auto& tx : package) { total_size += GetVirtualTransactionSize(*tx); for (const auto& input : tx->vin) { std::optional piter = GetIter(input.prevout.hash); if (piter) { staged_ancestors.insert(**piter); if (staged_ancestors.size() + package.size() > limitAncestorCount) { errString = strprintf("too many unconfirmed parents [limit: %u]", limitAncestorCount); return false; } } } } // When multiple transactions are passed in, the ancestors and descendants of all transactions // considered together must be within limits even if they are not interdependent. This may be // stricter than the limits for each individual transaction. setEntries setAncestors; const auto ret = CalculateAncestorsAndCheckLimits(total_size, package.size(), setAncestors, staged_ancestors, limitAncestorCount, limitAncestorSize, limitDescendantCount, limitDescendantSize, errString); // It's possible to overestimate the ancestor/descendant totals. if (!ret) errString.insert(0, "possibly "); return ret; } bool CTxMemPool::CalculateMemPoolAncestors(const CTxMemPoolEntry &entry, setEntries &setAncestors, uint64_t limitAncestorCount, uint64_t limitAncestorSize, uint64_t limitDescendantCount, uint64_t limitDescendantSize, std::string &errString, bool fSearchForParents /* = true */) const { CTxMemPoolEntry::Parents staged_ancestors; const CTransaction &tx = entry.GetTx(); if (fSearchForParents) { // Get parents of this transaction that are in the mempool // GetMemPoolParents() is only valid for entries in the mempool, so we // iterate mapTx to find parents. for (unsigned int i = 0; i < tx.vin.size(); i++) { std::optional piter = GetIter(tx.vin[i].prevout.hash); if (piter) { staged_ancestors.insert(**piter); if (staged_ancestors.size() + 1 > limitAncestorCount) { errString = strprintf("too many unconfirmed parents [limit: %u]", limitAncestorCount); return false; } } } } else { // If we're not searching for parents, we require this to already be an // entry in the mempool and use the entry's cached parents. txiter it = mapTx.iterator_to(entry); staged_ancestors = it->GetMemPoolParentsConst(); } return CalculateAncestorsAndCheckLimits(entry.GetTxSize(), /* entry_count */ 1, setAncestors, staged_ancestors, limitAncestorCount, limitAncestorSize, limitDescendantCount, limitDescendantSize, errString); } void CTxMemPool::UpdateAncestorsOf(bool add, txiter it, setEntries &setAncestors) { const CTxMemPoolEntry::Parents& parents = it->GetMemPoolParentsConst(); // add or remove this tx as a child of each parent for (const CTxMemPoolEntry& parent : parents) { UpdateChild(mapTx.iterator_to(parent), it, add); } const int64_t updateCount = (add ? 1 : -1); const int64_t updateSize = updateCount * it->GetTxSize(); const CAmount updateFee = updateCount * it->GetModifiedFee(); for (txiter ancestorIt : setAncestors) { mapTx.modify(ancestorIt, update_descendant_state(updateSize, updateFee, updateCount)); } } void CTxMemPool::UpdateEntryForAncestors(txiter it, const setEntries &setAncestors) { int64_t updateCount = setAncestors.size(); int64_t updateSize = 0; CAmount updateFee = 0; int updateSigOps = 0; for (txiter ancestorIt : setAncestors) { updateSize += ancestorIt->GetTxSize(); updateFee += ancestorIt->GetModifiedFee(); updateSigOps += ancestorIt->GetSigOpCount(); } mapTx.modify(it, update_ancestor_state(updateSize, updateFee, updateCount, updateSigOps)); } void CTxMemPool::UpdateChildrenForRemoval(txiter it) { const CTxMemPoolEntry::Children& children = it->GetMemPoolChildrenConst(); for (const CTxMemPoolEntry& updateIt : children) { UpdateParent(mapTx.iterator_to(updateIt), it, false); } } void CTxMemPool::UpdateForRemoveFromMempool(const setEntries &entriesToRemove, bool updateDescendants) { // For each entry, walk back all ancestors and decrement size associated with this // transaction const uint64_t nNoLimit = std::numeric_limits::max(); if (updateDescendants) { // updateDescendants should be true whenever we're not recursively // removing a tx and all its descendants, eg when a transaction is // confirmed in a block. // Here we only update statistics and not data in CTxMemPool::Parents // and CTxMemPoolEntry::Children (which we need to preserve until we're // finished with all operations that need to traverse the mempool). for (txiter removeIt : entriesToRemove) { setEntries setDescendants; CalculateDescendants(removeIt, setDescendants); setDescendants.erase(removeIt); // don't update state for self int64_t modifySize = -((int64_t)removeIt->GetTxSize()); CAmount modifyFee = -removeIt->GetModifiedFee(); int modifySigOps = -removeIt->GetSigOpCount(); for (txiter dit : setDescendants) { mapTx.modify(dit, update_ancestor_state(modifySize, modifyFee, -1, modifySigOps)); } } } for (txiter removeIt : entriesToRemove) { setEntries setAncestors; const CTxMemPoolEntry &entry = *removeIt; std::string dummy; // Since this is a tx that is already in the mempool, we can call CMPA // with fSearchForParents = false. If the mempool is in a consistent // state, then using true or false should both be correct, though false // should be a bit faster. // However, if we happen to be in the middle of processing a reorg, then // the mempool can be in an inconsistent state. In this case, the set // of ancestors reachable via GetMemPoolParents()/GetMemPoolChildren() // will be the same as the set of ancestors whose packages include this // transaction, because when we add a new transaction to the mempool in // addUnchecked(), we assume it has no children, and in the case of a // reorg where that assumption is false, the in-mempool children aren't // linked to the in-block tx's until UpdateTransactionsFromBlock() is // called. // So if we're being called during a reorg, ie before // UpdateTransactionsFromBlock() has been called, then // GetMemPoolParents()/GetMemPoolChildren() will differ from the set of // mempool parents we'd calculate by searching, and it's important that // we use the cached notion of ancestor transactions as the set of // things to update for removal. CalculateMemPoolAncestors(entry, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false); // Note that UpdateAncestorsOf severs the child links that point to // removeIt in the entries for the parents of removeIt. UpdateAncestorsOf(false, removeIt, setAncestors); } // After updating all the ancestor sizes, we can now sever the link between each // transaction being removed and any mempool children (ie, update CTxMemPoolEntry::m_parents // for each direct child of a transaction being removed). for (txiter removeIt : entriesToRemove) { UpdateChildrenForRemoval(removeIt); } } void CTxMemPoolEntry::UpdateDescendantState(int64_t modifySize, CAmount modifyFee, int64_t modifyCount) { nSizeWithDescendants += modifySize; assert(int64_t(nSizeWithDescendants) > 0); nModFeesWithDescendants += modifyFee; nCountWithDescendants += modifyCount; assert(int64_t(nCountWithDescendants) > 0); } void CTxMemPoolEntry::UpdateAncestorState(int64_t modifySize, CAmount modifyFee, int64_t modifyCount, int64_t modifySigOps) { nSizeWithAncestors += modifySize; assert(int64_t(nSizeWithAncestors) > 0); nModFeesWithAncestors += modifyFee; nCountWithAncestors += modifyCount; assert(int64_t(nCountWithAncestors) > 0); nSigOpCountWithAncestors += modifySigOps; assert(int(nSigOpCountWithAncestors) >= 0); } CTxMemPool::CTxMemPool(CBlockPolicyEstimator* estimator, int check_ratio) : m_check_ratio(check_ratio), minerPolicyEstimator(estimator) { _clear(); //lock free clear } void CTxMemPool::ConnectManagers(gsl::not_null dmnman) { // Do not allow double-initialization assert(m_dmnman == nullptr); m_dmnman = dmnman; } bool CTxMemPool::isSpent(const COutPoint& outpoint) const { LOCK(cs); return mapNextTx.count(outpoint); } unsigned int CTxMemPool::GetTransactionsUpdated() const { return nTransactionsUpdated; } void CTxMemPool::AddTransactionsUpdated(unsigned int n) { nTransactionsUpdated += n; } void CTxMemPool::addUnchecked(const CTxMemPoolEntry &entry, setEntries &setAncestors, bool validFeeEstimate) { // Add to memory pool without checking anything. // Used by AcceptToMemoryPool(), which DOES do // all the appropriate checks. indexed_transaction_set::iterator newit = mapTx.insert(entry).first; // Update transaction for any feeDelta created by PrioritiseTransaction CAmount delta{0}; ApplyDelta(entry.GetTx().GetHash(), delta); if (delta) { mapTx.modify(newit, update_fee_delta(delta)); } // Update cachedInnerUsage to include contained transaction's usage. // (When we update the entry for in-mempool parents, memory usage will be // further updated.) cachedInnerUsage += entry.DynamicMemoryUsage(); const CTransaction& tx = newit->GetTx(); std::set setParentTransactions; for (unsigned int i = 0; i < tx.vin.size(); i++) { mapNextTx.insert(std::make_pair(&tx.vin[i].prevout, &tx)); setParentTransactions.insert(tx.vin[i].prevout.hash); } // Don't bother worrying about child transactions of this one. // Normal case of a new transaction arriving is that there can't be any // children, because such children would be orphans. // An exception to that is if a transaction enters that used to be in a block. // In that case, our disconnect block logic will call UpdateTransactionsFromBlock // to clean up the mess we're leaving here. // Update ancestors with information about this tx for (const auto& pit : GetIterSet(setParentTransactions)) { UpdateParent(newit, pit, true); } UpdateAncestorsOf(true, newit, setAncestors); UpdateEntryForAncestors(newit, setAncestors); nTransactionsUpdated++; totalTxSize += entry.GetTxSize(); m_total_fee += entry.GetFee(); if (minerPolicyEstimator) { minerPolicyEstimator->processTransaction(entry, validFeeEstimate); } vTxHashes.emplace_back(entry.GetTx().GetHash(), newit); newit->vTxHashesIdx = vTxHashes.size() - 1; // Invalid ProTxes should never get this far because transactions should be // fully checked by AcceptToMemoryPool() at this point, so we just assume that // everything is fine here. if (m_dmnman) { addUncheckedProTx(newit, tx); } } void CTxMemPool::addAddressIndex(const CTxMemPoolEntry& entry, const CCoinsViewCache& view) { LOCK(cs); const CTransaction& tx = entry.GetTx(); std::vector inserted; uint256 txhash = tx.GetHash(); for (unsigned int j = 0; j < tx.vin.size(); j++) { const CTxIn input = tx.vin[j]; const Coin& coin = view.AccessCoin(input.prevout); const CTxOut &prevout = coin.out; AddressType address_type{AddressType::UNKNOWN}; uint160 address_bytes; if (!AddressBytesFromScript(prevout.scriptPubKey, address_type, address_bytes)) { continue; } CMempoolAddressDeltaKey key(address_type, address_bytes, txhash, j, /* tx_spent */ true); CMempoolAddressDelta delta(entry.GetTime(), prevout.nValue * -1, input.prevout.hash, input.prevout.n); mapAddress.insert(std::make_pair(key, delta)); inserted.push_back(key); } for (unsigned int k = 0; k < tx.vout.size(); k++) { const CTxOut &out = tx.vout[k]; AddressType address_type{AddressType::UNKNOWN}; uint160 address_bytes; if (!AddressBytesFromScript(out.scriptPubKey, address_type, address_bytes)) { continue; } CMempoolAddressDeltaKey key(address_type, address_bytes, txhash, k, /* tx_spent */ false); mapAddress.insert(std::make_pair(key, CMempoolAddressDelta(entry.GetTime(), out.nValue))); inserted.push_back(key); } mapAddressInserted.insert(std::make_pair(txhash, inserted)); } bool CTxMemPool::getAddressIndex(const std::vector& addresses, std::vector& results) const { LOCK(cs); for (const auto& address : addresses) { addressDeltaMap::const_iterator ait = mapAddress.lower_bound(address); while (ait != mapAddress.end() && (*ait).first.m_address_bytes == address.m_address_bytes && (*ait).first.m_address_type == address.m_address_type) { results.push_back(*ait); ait++; } } return true; } bool CTxMemPool::removeAddressIndex(const uint256 txhash) { LOCK(cs); addressDeltaMapInserted::iterator it = mapAddressInserted.find(txhash); if (it != mapAddressInserted.end()) { std::vector keys = (*it).second; for (std::vector::iterator mit = keys.begin(); mit != keys.end(); mit++) { mapAddress.erase(*mit); } mapAddressInserted.erase(it); } return true; } void CTxMemPool::addSpentIndex(const CTxMemPoolEntry& entry, const CCoinsViewCache& view) { LOCK(cs); const CTransaction& tx = entry.GetTx(); std::vector inserted; uint256 txhash = tx.GetHash(); for (unsigned int j = 0; j < tx.vin.size(); j++) { const CTxIn input = tx.vin[j]; const Coin& coin = view.AccessCoin(input.prevout); const CTxOut &prevout = coin.out; AddressType address_type{AddressType::UNKNOWN}; uint160 address_bytes; if (!AddressBytesFromScript(prevout.scriptPubKey, address_type, address_bytes)) { continue; } CSpentIndexKey key = CSpentIndexKey(input.prevout.hash, input.prevout.n); CSpentIndexValue value = CSpentIndexValue(txhash, j, -1, prevout.nValue, address_type, address_bytes); mapSpent.insert(std::make_pair(key, value)); inserted.push_back(key); } mapSpentInserted.insert(make_pair(txhash, inserted)); } bool CTxMemPool::getSpentIndex(const CSpentIndexKey& key, CSpentIndexValue& value) const { LOCK(cs); mapSpentIndex::const_iterator it = mapSpent.find(key); if (it != mapSpent.end()) { value = it->second; return true; } return false; } bool CTxMemPool::removeSpentIndex(const uint256 txhash) { LOCK(cs); mapSpentIndexInserted::iterator it = mapSpentInserted.find(txhash); if (it != mapSpentInserted.end()) { std::vector keys = (*it).second; for (std::vector::iterator mit = keys.begin(); mit != keys.end(); mit++) { mapSpent.erase(*mit); } mapSpentInserted.erase(it); } return true; } void CTxMemPool::addUncheckedProTx(indexed_transaction_set::iterator& newit, const CTransaction& tx) { assert(m_dmnman); if (tx.nType == TRANSACTION_PROVIDER_REGISTER) { auto proTx = *Assert(GetTxPayload(tx)); if (!proTx.collateralOutpoint.hash.IsNull()) { mapProTxRefs.emplace(tx.GetHash(), proTx.collateralOutpoint.hash); } mapProTxAddresses.emplace(proTx.addr, tx.GetHash()); mapProTxPubKeyIDs.emplace(proTx.keyIDOwner, tx.GetHash()); mapProTxBlsPubKeyHashes.emplace(proTx.pubKeyOperator.GetHash(), tx.GetHash()); if (!proTx.collateralOutpoint.hash.IsNull()) { mapProTxCollaterals.emplace(proTx.collateralOutpoint, tx.GetHash()); } else { mapProTxCollaterals.emplace(COutPoint(tx.GetHash(), proTx.collateralOutpoint.n), tx.GetHash()); } } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_SERVICE) { auto proTx = *Assert(GetTxPayload(tx)); mapProTxRefs.emplace(proTx.proTxHash, tx.GetHash()); mapProTxAddresses.emplace(proTx.addr, tx.GetHash()); } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REGISTRAR) { auto proTx = *Assert(GetTxPayload(tx)); mapProTxRefs.emplace(proTx.proTxHash, tx.GetHash()); mapProTxBlsPubKeyHashes.emplace(proTx.pubKeyOperator.GetHash(), tx.GetHash()); auto dmn = Assert(m_dmnman->GetListAtChainTip().GetMN(proTx.proTxHash)); newit->validForProTxKey = ::SerializeHash(dmn->pdmnState->pubKeyOperator); if (dmn->pdmnState->pubKeyOperator != proTx.pubKeyOperator) { newit->isKeyChangeProTx = true; } } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REVOKE) { auto proTx = *Assert(GetTxPayload(tx)); mapProTxRefs.emplace(proTx.proTxHash, tx.GetHash()); auto dmn = Assert(m_dmnman->GetListAtChainTip().GetMN(proTx.proTxHash)); newit->validForProTxKey = ::SerializeHash(dmn->pdmnState->pubKeyOperator); if (dmn->pdmnState->pubKeyOperator.Get() != CBLSPublicKey()) { newit->isKeyChangeProTx = true; } } else if (tx.nType == TRANSACTION_ASSET_UNLOCK) { auto assetUnlockTx = *Assert(GetTxPayload(tx)); mapAssetUnlockExpiry.insert({tx.GetHash(), assetUnlockTx.getHeightToExpiry()}); } else if (tx.nType == TRANSACTION_MNHF_SIGNAL) { PrioritiseTransaction(tx.GetHash(), 0.1 * COIN); } } void CTxMemPool::removeUnchecked(txiter it, MemPoolRemovalReason reason) { // We increment mempool sequence value no matter removal reason // even if not directly reported below. uint64_t mempool_sequence = GetAndIncrementSequence(); if (reason != MemPoolRemovalReason::BLOCK) { // Notify clients that a transaction has been removed from the mempool // for any reason except being included in a block. Clients interested // in transactions included in blocks can subscribe to the BlockConnected // notification. GetMainSignals().TransactionRemovedFromMempool(it->GetSharedTx(), reason, mempool_sequence); } const uint256 hash = it->GetTx().GetHash(); for (const CTxIn& txin : it->GetTx().vin) mapNextTx.erase(txin.prevout); RemoveUnbroadcastTx(hash, true /* add logging because unchecked */ ); if (vTxHashes.size() > 1) { vTxHashes[it->vTxHashesIdx] = std::move(vTxHashes.back()); vTxHashes[it->vTxHashesIdx].second->vTxHashesIdx = it->vTxHashesIdx; vTxHashes.pop_back(); if (vTxHashes.size() * 2 < vTxHashes.capacity()) vTxHashes.shrink_to_fit(); } else vTxHashes.clear(); if (m_dmnman) { removeUncheckedProTx(it->GetTx()); } totalTxSize -= it->GetTxSize(); m_total_fee -= it->GetFee(); cachedInnerUsage -= it->DynamicMemoryUsage(); cachedInnerUsage -= memusage::DynamicUsage(it->GetMemPoolParentsConst()) + memusage::DynamicUsage(it->GetMemPoolChildrenConst()); mapTx.erase(it); nTransactionsUpdated++; if (minerPolicyEstimator) {minerPolicyEstimator->removeTx(hash, false);} removeAddressIndex(hash); removeSpentIndex(hash); } void CTxMemPool::removeUncheckedProTx(const CTransaction& tx) { auto eraseProTxRef = [&](const uint256& proTxHash, const uint256& txHash) { auto its = mapProTxRefs.equal_range(proTxHash); for (auto it = its.first; it != its.second;) { if (it->second == txHash) { it = mapProTxRefs.erase(it); } else { ++it; } } }; if (tx.nType == TRANSACTION_PROVIDER_REGISTER) { auto proTx = *Assert(GetTxPayload(tx)); if (!proTx.collateralOutpoint.IsNull()) { eraseProTxRef(tx.GetHash(), proTx.collateralOutpoint.hash); } mapProTxAddresses.erase(proTx.addr); mapProTxPubKeyIDs.erase(proTx.keyIDOwner); mapProTxBlsPubKeyHashes.erase(proTx.pubKeyOperator.GetHash()); mapProTxCollaterals.erase(proTx.collateralOutpoint); mapProTxCollaterals.erase(COutPoint(tx.GetHash(), proTx.collateralOutpoint.n)); } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_SERVICE) { auto proTx = *Assert(GetTxPayload(tx)); eraseProTxRef(proTx.proTxHash, tx.GetHash()); mapProTxAddresses.erase(proTx.addr); } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REGISTRAR) { auto proTx = *Assert(GetTxPayload(tx)); eraseProTxRef(proTx.proTxHash, tx.GetHash()); mapProTxBlsPubKeyHashes.erase(proTx.pubKeyOperator.GetHash()); } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REVOKE) { auto proTx = *Assert(GetTxPayload(tx)); eraseProTxRef(proTx.proTxHash, tx.GetHash()); } else if (tx.nType == TRANSACTION_ASSET_UNLOCK) { mapAssetUnlockExpiry.erase(tx.GetHash()); } } // Calculates descendants of entry that are not already in setDescendants, and adds to // setDescendants. Assumes entryit is already a tx in the mempool and CTxMemPoolEntry::m_children // is correct for tx and all descendants. // Also assumes that if an entry is in setDescendants already, then all // in-mempool descendants of it are already in setDescendants as well, so that we // can save time by not iterating over those entries. void CTxMemPool::CalculateDescendants(txiter entryit, setEntries& setDescendants) const { setEntries stage; if (setDescendants.count(entryit) == 0) { stage.insert(entryit); } // Traverse down the children of entry, only adding children that are not // accounted for in setDescendants already (because those children have either // already been walked, or will be walked in this iteration). while (!stage.empty()) { txiter it = *stage.begin(); setDescendants.insert(it); stage.erase(it); const CTxMemPoolEntry::Children& children = it->GetMemPoolChildrenConst(); for (const CTxMemPoolEntry& child : children) { txiter childiter = mapTx.iterator_to(child); if (!setDescendants.count(childiter)) { stage.insert(childiter); } } } } void CTxMemPool::removeRecursive(const CTransaction &origTx, MemPoolRemovalReason reason) { // Remove transaction from memory pool AssertLockHeld(cs); setEntries txToRemove; txiter origit = mapTx.find(origTx.GetHash()); if (origit != mapTx.end()) { txToRemove.insert(origit); } else { // When recursively removing but origTx isn't in the mempool // be sure to remove any children that are in the pool. This can // happen during chain re-orgs if origTx isn't re-accepted into // the mempool for any reason. for (unsigned int i = 0; i < origTx.vout.size(); i++) { auto it = mapNextTx.find(COutPoint(origTx.GetHash(), i)); if (it == mapNextTx.end()) continue; txiter nextit = mapTx.find(it->second->GetHash()); assert(nextit != mapTx.end()); txToRemove.insert(nextit); } } setEntries setAllRemoves; for (txiter it : txToRemove) { CalculateDescendants(it, setAllRemoves); } RemoveStaged(setAllRemoves, false, reason); } void CTxMemPool::removeForReorg(CChain& chain, std::function check_final_and_mature) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { // Remove transactions spending a coinbase which are now immature and no-longer-final transactions AssertLockHeld(cs); AssertLockHeld(::cs_main); setEntries txToRemove; for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) { if (check_final_and_mature(it)) txToRemove.insert(it); } setEntries setAllRemoves; for (txiter it : txToRemove) { CalculateDescendants(it, setAllRemoves); } RemoveStaged(setAllRemoves, false, MemPoolRemovalReason::REORG); for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) { assert(TestLockPointValidity(chain, it->GetLockPoints())); } } void CTxMemPool::removeConflicts(const CTransaction &tx) { // Remove transactions which depend on inputs of tx, recursively AssertLockHeld(cs); for (const CTxIn &txin : tx.vin) { auto it = mapNextTx.find(txin.prevout); if (it != mapNextTx.end()) { const CTransaction &txConflict = *it->second; if (txConflict != tx) { if (txConflict.nType == TRANSACTION_PROVIDER_REGISTER) { // Remove all other protxes which refer to this protx // NOTE: Can't use equal_range here as every call to removeRecursive might invalidate iterators while (true) { auto itPro = mapProTxRefs.find(txConflict.GetHash()); if (itPro == mapProTxRefs.end()) { break; } auto txit = mapTx.find(itPro->second); if (txit != mapTx.end()) { ClearPrioritisation(txit->GetTx().GetHash()); removeRecursive(txit->GetTx(), MemPoolRemovalReason::CONFLICT); } else { mapProTxRefs.erase(itPro); } } } ClearPrioritisation(txConflict.GetHash()); removeRecursive(txConflict, MemPoolRemovalReason::CONFLICT); } } } } void CTxMemPool::removeProTxPubKeyConflicts(const CTransaction &tx, const CKeyID &keyId) { if (mapProTxPubKeyIDs.count(keyId)) { uint256 conflictHash = mapProTxPubKeyIDs[keyId]; if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) { removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT); } } } void CTxMemPool::removeProTxPubKeyConflicts(const CTransaction &tx, const CBLSLazyPublicKey &pubKey) { if (mapProTxBlsPubKeyHashes.count(pubKey.GetHash())) { uint256 conflictHash = mapProTxBlsPubKeyHashes[pubKey.GetHash()]; if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) { removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT); } } } void CTxMemPool::removeProTxCollateralConflicts(const CTransaction &tx, const COutPoint &collateralOutpoint) { if (mapProTxCollaterals.count(collateralOutpoint)) { uint256 conflictHash = mapProTxCollaterals[collateralOutpoint]; if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) { removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT); } } } void CTxMemPool::removeProTxSpentCollateralConflicts(const CTransaction &tx) { assert(m_dmnman); // Remove TXs that refer to a MN for which the collateral was spent auto removeSpentCollateralConflict = [&](const uint256& proTxHash) EXCLUSIVE_LOCKS_REQUIRED(cs) { // Can't use equal_range here as every call to removeRecursive might invalidate iterators AssertLockHeld(cs); while (true) { auto it = mapProTxRefs.find(proTxHash); if (it == mapProTxRefs.end()) { break; } auto conflictIt = mapTx.find(it->second); if (conflictIt != mapTx.end()) { removeRecursive(conflictIt->GetTx(), MemPoolRemovalReason::CONFLICT); } else { // Should not happen as we track referencing TXs in addUnchecked/removeUnchecked. // But lets be on the safe side and not run into an endless loop... LogPrint(BCLog::MEMPOOL, "%s: ERROR: found invalid TX ref in mapProTxRefs, proTxHash=%s, txHash=%s\n", __func__, proTxHash.ToString(), it->second.ToString()); mapProTxRefs.erase(it); } } }; auto mnList = m_dmnman->GetListAtChainTip(); for (const auto& in : tx.vin) { auto collateralIt = mapProTxCollaterals.find(in.prevout); if (collateralIt != mapProTxCollaterals.end()) { // These are not yet mined ProRegTxs removeSpentCollateralConflict(collateralIt->second); } auto dmn = mnList.GetMNByCollateral(in.prevout); if (dmn) { // These are updates referring to a mined ProRegTx removeSpentCollateralConflict(dmn->proTxHash); } } } void CTxMemPool::removeProTxKeyChangedConflicts(const CTransaction &tx, const uint256& proTxHash, const uint256& newKeyHash) { std::set conflictingTxs; for (auto its = mapProTxRefs.equal_range(proTxHash); its.first != its.second; ++its.first) { auto txit = mapTx.find(its.first->second); if (txit == mapTx.end()) { continue; } if (txit->validForProTxKey != newKeyHash) { conflictingTxs.emplace(txit->GetTx().GetHash()); } } for (const auto& txHash : conflictingTxs) { auto& tx = mapTx.find(txHash)->GetTx(); removeRecursive(tx, MemPoolRemovalReason::CONFLICT); } } void CTxMemPool::removeProTxConflicts(const CTransaction &tx) { removeProTxSpentCollateralConflicts(tx); if (tx.nType == TRANSACTION_PROVIDER_REGISTER) { const auto opt_proTx = GetTxPayload(tx); if (!opt_proTx) { LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString()); return; } auto& proTx = *opt_proTx; if (mapProTxAddresses.count(proTx.addr)) { uint256 conflictHash = mapProTxAddresses[proTx.addr]; if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) { removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT); } } removeProTxPubKeyConflicts(tx, proTx.keyIDOwner); removeProTxPubKeyConflicts(tx, proTx.pubKeyOperator); if (!proTx.collateralOutpoint.hash.IsNull()) { removeProTxCollateralConflicts(tx, proTx.collateralOutpoint); } else { removeProTxCollateralConflicts(tx, COutPoint(tx.GetHash(), proTx.collateralOutpoint.n)); } } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_SERVICE) { const auto opt_proTx = GetTxPayload(tx); if (!opt_proTx) { LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString()); return; } if (mapProTxAddresses.count(opt_proTx->addr)) { uint256 conflictHash = mapProTxAddresses[opt_proTx->addr]; if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) { removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT); } } } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REGISTRAR) { const auto opt_proTx = GetTxPayload(tx); if (!opt_proTx) { LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString()); return; } removeProTxPubKeyConflicts(tx, opt_proTx->pubKeyOperator); removeProTxKeyChangedConflicts(tx, opt_proTx->proTxHash, ::SerializeHash(opt_proTx->pubKeyOperator)); } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REVOKE) { const auto opt_proTx = GetTxPayload(tx); if (!opt_proTx) { LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString()); return; } removeProTxKeyChangedConflicts(tx, opt_proTx->proTxHash, ::SerializeHash(CBLSPublicKey())); } } /** * Called when a block is connected. Removes from mempool and updates the miner fee estimator. */ void CTxMemPool::removeForBlock(const std::vector& vtx, unsigned int nBlockHeight) { AssertLockHeld(cs); std::vector entries; for (const auto& tx : vtx) { uint256 hash = tx->GetHash(); indexed_transaction_set::iterator i = mapTx.find(hash); if (i != mapTx.end()) entries.push_back(&*i); } // Before the txs in the new block have been removed from the mempool, update policy estimates if (minerPolicyEstimator) {minerPolicyEstimator->processBlock(nBlockHeight, entries);} for (const auto& tx : vtx) { txiter it = mapTx.find(tx->GetHash()); if (it != mapTx.end()) { setEntries stage; stage.insert(it); RemoveStaged(stage, true, MemPoolRemovalReason::BLOCK); } removeConflicts(*tx); if (m_dmnman) { removeProTxConflicts(*tx); } ClearPrioritisation(tx->GetHash()); } lastRollingFeeUpdate = GetTime(); blockSinceLastRollingFeeBump = true; } /** * Called when a lenght of chain is increased. Removes from mempool expired asset-unlock transactions */ void CTxMemPool::removeExpiredAssetUnlock(int nBlockHeight) { AssertLockHeld(cs); // items to removed should be firstly collected to independed list, // because removing items by `removeRecursive` changes the mapAssetUnlockExpiry std::vector entries; for (const auto& item: mapAssetUnlockExpiry) { if (item.second < nBlockHeight) { entries.push_back(get(item.first)); } } for (const auto& tx : entries) { removeRecursive(*tx, MemPoolRemovalReason::EXPIRY); } } void CTxMemPool::_clear() { vTxHashes.clear(); mapTx.clear(); mapNextTx.clear(); mapProTxAddresses.clear(); mapProTxPubKeyIDs.clear(); totalTxSize = 0; m_total_fee = 0; cachedInnerUsage = 0; lastRollingFeeUpdate = GetTime(); blockSinceLastRollingFeeBump = false; rollingMinimumFeeRate = 0; ++nTransactionsUpdated; } void CTxMemPool::clear() { LOCK(cs); _clear(); } void CTxMemPool::check(const CCoinsViewCache& active_coins_tip, int64_t spendheight) const { if (m_check_ratio == 0) return; if (GetRand(m_check_ratio) >= 1) return; AssertLockHeld(::cs_main); LOCK(cs); LogPrint(BCLog::MEMPOOL, "Checking mempool with %u transactions and %u inputs\n", (unsigned int)mapTx.size(), (unsigned int)mapNextTx.size()); uint64_t checkTotal = 0; CAmount check_total_fee{0}; uint64_t innerUsage = 0; uint64_t prev_ancestor_count{0}; CCoinsViewCache mempoolDuplicate(const_cast(&active_coins_tip)); for (const auto& it : GetSortedDepthAndScore()) { checkTotal += it->GetTxSize(); check_total_fee += it->GetFee(); innerUsage += it->DynamicMemoryUsage(); const CTransaction& tx = it->GetTx(); innerUsage += memusage::DynamicUsage(it->GetMemPoolParentsConst()) + memusage::DynamicUsage(it->GetMemPoolChildrenConst()); CTxMemPoolEntry::Parents setParentCheck; for (const CTxIn &txin : tx.vin) { // Check that every mempool transaction's inputs refer to available coins, or other mempool tx's. indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash); if (it2 != mapTx.end()) { const CTransaction& tx2 = it2->GetTx(); assert(tx2.vout.size() > txin.prevout.n && !tx2.vout[txin.prevout.n].IsNull()); setParentCheck.insert(*it2); } // We are iterating through the mempool entries sorted in order by ancestor count. // All parents must have been checked before their children and their coins added to // the mempoolDuplicate coins cache. assert(mempoolDuplicate.HaveCoin(txin.prevout)); // Check whether its inputs are marked in mapNextTx. auto it3 = mapNextTx.find(txin.prevout); assert(it3 != mapNextTx.end()); assert(it3->first == &txin.prevout); assert(it3->second == &tx); } auto comp = [](const CTxMemPoolEntry& a, const CTxMemPoolEntry& b) -> bool { return a.GetTx().GetHash() == b.GetTx().GetHash(); }; assert(setParentCheck.size() == it->GetMemPoolParentsConst().size()); assert(std::equal(setParentCheck.begin(), setParentCheck.end(), it->GetMemPoolParentsConst().begin(), comp)); // Verify ancestor state is correct. setEntries setAncestors; uint64_t nNoLimit = std::numeric_limits::max(); std::string dummy; CalculateMemPoolAncestors(*it, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy); uint64_t nCountCheck = setAncestors.size() + 1; uint64_t nSizeCheck = it->GetTxSize(); CAmount nFeesCheck = it->GetModifiedFee(); unsigned int nSigOpCheck = it->GetSigOpCount(); for (txiter ancestorIt : setAncestors) { nSizeCheck += ancestorIt->GetTxSize(); nFeesCheck += ancestorIt->GetModifiedFee(); nSigOpCheck += ancestorIt->GetSigOpCount(); } assert(it->GetCountWithAncestors() == nCountCheck); assert(it->GetSizeWithAncestors() == nSizeCheck); assert(it->GetSigOpCountWithAncestors() == nSigOpCheck); assert(it->GetModFeesWithAncestors() == nFeesCheck); // Sanity check: we are walking in ascending ancestor count order. assert(prev_ancestor_count <= it->GetCountWithAncestors()); prev_ancestor_count = it->GetCountWithAncestors(); // Check children against mapNextTx CTxMemPoolEntry::Children setChildrenCheck; auto iter = mapNextTx.lower_bound(COutPoint(it->GetTx().GetHash(), 0)); uint64_t child_sizes = 0; for (; iter != mapNextTx.end() && iter->first->hash == it->GetTx().GetHash(); ++iter) { txiter childit = mapTx.find(iter->second->GetHash()); assert(childit != mapTx.end()); // mapNextTx points to in-mempool transactions if (setChildrenCheck.insert(*childit).second) { child_sizes += childit->GetTxSize(); } } assert(setChildrenCheck.size() == it->GetMemPoolChildrenConst().size()); assert(std::equal(setChildrenCheck.begin(), setChildrenCheck.end(), it->GetMemPoolChildrenConst().begin(), comp)); // Also check to make sure size is greater than sum with immediate children. // just a sanity check, not definitive that this calc is correct... assert(it->GetSizeWithDescendants() >= child_sizes + it->GetTxSize()); TxValidationState dummy_state; // Not used. CheckTxInputs() should always pass CAmount txfee = 0; assert(!tx.IsCoinBase()); assert(Consensus::CheckTxInputs(tx, dummy_state, mempoolDuplicate, spendheight, txfee)); for (const auto& input: tx.vin) mempoolDuplicate.SpendCoin(input.prevout); AddCoins(mempoolDuplicate, tx, std::numeric_limits::max()); } for (auto it = mapNextTx.cbegin(); it != mapNextTx.cend(); it++) { uint256 hash = it->second->GetHash(); indexed_transaction_set::const_iterator it2 = mapTx.find(hash); const CTransaction& tx = it2->GetTx(); assert(it2 != mapTx.end()); assert(&tx == it->second); } assert(totalTxSize == checkTotal); assert(m_total_fee == check_total_fee); assert(innerUsage == cachedInnerUsage); } bool CTxMemPool::CompareDepthAndScore(const uint256& hasha, const uint256& hashb) { /* Return `true` if hasha should be considered sooner than hashb. Namely when: * a is not in the mempool, but b is * both are in the mempool and a has fewer ancestors than b * both are in the mempool and a has a higher score than b */ LOCK(cs); indexed_transaction_set::const_iterator j = mapTx.find(hashb); if (j == mapTx.end()) return false; indexed_transaction_set::const_iterator i = mapTx.find(hasha); if (i == mapTx.end()) return true; uint64_t counta = i->GetCountWithAncestors(); uint64_t countb = j->GetCountWithAncestors(); if (counta == countb) { return CompareTxMemPoolEntryByScore()(*i, *j); } return counta < countb; } namespace { class DepthAndScoreComparator { public: bool operator()(const CTxMemPool::indexed_transaction_set::const_iterator& a, const CTxMemPool::indexed_transaction_set::const_iterator& b) { uint64_t counta = a->GetCountWithAncestors(); uint64_t countb = b->GetCountWithAncestors(); if (counta == countb) { return CompareTxMemPoolEntryByScore()(*a, *b); } return counta < countb; } }; } // namespace std::vector CTxMemPool::GetSortedDepthAndScore() const { std::vector iters; AssertLockHeld(cs); iters.reserve(mapTx.size()); for (indexed_transaction_set::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi) { iters.push_back(mi); } std::sort(iters.begin(), iters.end(), DepthAndScoreComparator()); return iters; } void CTxMemPool::queryHashes(std::vector& vtxid) const { LOCK(cs); auto iters = GetSortedDepthAndScore(); vtxid.clear(); vtxid.reserve(mapTx.size()); for (auto it : iters) { vtxid.push_back(it->GetTx().GetHash()); } } static TxMempoolInfo GetInfo(CTxMemPool::indexed_transaction_set::const_iterator it) { return TxMempoolInfo{it->GetSharedTx(), it->GetTime(), it->GetFee(), it->GetTxSize(), it->GetModifiedFee() - it->GetFee()}; } std::vector CTxMemPool::infoAll() const { LOCK(cs); auto iters = GetSortedDepthAndScore(); std::vector ret; ret.reserve(mapTx.size()); for (auto it : iters) { ret.push_back(GetInfo(it)); } return ret; } CTransactionRef CTxMemPool::get(const uint256& hash) const { LOCK(cs); indexed_transaction_set::const_iterator i = mapTx.find(hash); if (i == mapTx.end()) return nullptr; return i->GetSharedTx(); } TxMempoolInfo CTxMemPool::info(const uint256& hash) const { LOCK(cs); indexed_transaction_set::const_iterator i = mapTx.find(hash); if (i == mapTx.end()) return TxMempoolInfo(); return GetInfo(i); } bool CTxMemPool::existsProviderTxConflict(const CTransaction &tx) const { assert(m_dmnman); LOCK(cs); auto hasKeyChangeInMempool = [&](const uint256& proTxHash) EXCLUSIVE_LOCKS_REQUIRED(cs) { AssertLockHeld(cs); for (auto its = mapProTxRefs.equal_range(proTxHash); its.first != its.second; ++its.first) { auto txit = mapTx.find(its.first->second); if (txit == mapTx.end()) { continue; } if (txit->isKeyChangeProTx) { return true; } } return false; }; if (tx.nType == TRANSACTION_PROVIDER_REGISTER) { const auto opt_proTx = GetTxPayload(tx); if (!opt_proTx) { LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString()); return true; // i.e. can't decode payload == conflict } auto& proTx = *opt_proTx; if (mapProTxAddresses.count(proTx.addr) || mapProTxPubKeyIDs.count(proTx.keyIDOwner) || mapProTxBlsPubKeyHashes.count(proTx.pubKeyOperator.GetHash())) return true; if (!proTx.collateralOutpoint.hash.IsNull()) { if (mapProTxCollaterals.count(proTx.collateralOutpoint)) { // there is another ProRegTx that refers to the same collateral return true; } if (mapNextTx.count(proTx.collateralOutpoint)) { // there is another tx that spends the collateral return true; } } return false; } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_SERVICE) { const auto opt_proTx = GetTxPayload(tx); if (!opt_proTx) { LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString()); return true; // i.e. can't decode payload == conflict } auto it = mapProTxAddresses.find(opt_proTx->addr); return it != mapProTxAddresses.end() && it->second != opt_proTx->proTxHash; } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REGISTRAR) { const auto opt_proTx = GetTxPayload(tx); if (!opt_proTx) { LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString()); return true; // i.e. can't decode payload == conflict } auto& proTx = *opt_proTx; // this method should only be called with validated ProTxs auto dmn = m_dmnman->GetListAtChainTip().GetMN(proTx.proTxHash); if (!dmn) { LogPrint(BCLog::MEMPOOL, "%s: ERROR: Masternode is not in the list, proTxHash: %s\n", __func__, proTx.proTxHash.ToString()); return true; // i.e. failed to find validated ProTx == conflict } // only allow one operator key change in the mempool if (dmn->pdmnState->pubKeyOperator != proTx.pubKeyOperator) { if (hasKeyChangeInMempool(proTx.proTxHash)) { return true; } } auto it = mapProTxBlsPubKeyHashes.find(proTx.pubKeyOperator.GetHash()); return it != mapProTxBlsPubKeyHashes.end() && it->second != proTx.proTxHash; } else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REVOKE) { const auto opt_proTx = GetTxPayload(tx); if (!opt_proTx) { LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString()); return true; // i.e. can't decode payload == conflict } auto& proTx = *opt_proTx; // this method should only be called with validated ProTxs auto dmn = m_dmnman->GetListAtChainTip().GetMN(proTx.proTxHash); if (!dmn) { LogPrint(BCLog::MEMPOOL, "%s: ERROR: Masternode is not in the list, proTxHash: %s\n", __func__, proTx.proTxHash.ToString()); return true; // i.e. failed to find validated ProTx == conflict } // only allow one operator key change in the mempool if (dmn->pdmnState->pubKeyOperator.Get() != CBLSPublicKey()) { if (hasKeyChangeInMempool(proTx.proTxHash)) { return true; } } } return false; } void CTxMemPool::PrioritiseTransaction(const uint256& hash, const CAmount& nFeeDelta) { { LOCK(cs); CAmount &delta = mapDeltas[hash]; delta += nFeeDelta; txiter it = mapTx.find(hash); if (it != mapTx.end()) { mapTx.modify(it, update_fee_delta(delta)); // Now update all ancestors' modified fees with descendants setEntries setAncestors; uint64_t nNoLimit = std::numeric_limits::max(); std::string dummy; CalculateMemPoolAncestors(*it, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false); for (txiter ancestorIt : setAncestors) { mapTx.modify(ancestorIt, update_descendant_state(0, nFeeDelta, 0)); } // Now update all descendants' modified fees with ancestors setEntries setDescendants; CalculateDescendants(it, setDescendants); setDescendants.erase(it); for (txiter descendantIt : setDescendants) { mapTx.modify(descendantIt, update_ancestor_state(0, nFeeDelta, 0, 0)); } ++nTransactionsUpdated; } } LogPrint(BCLog::MEMPOOL, "PrioritiseTransaction: %s feerate += %s\n", hash.ToString(), FormatMoney(nFeeDelta)); } void CTxMemPool::ApplyDelta(const uint256& hash, CAmount &nFeeDelta) const { AssertLockHeld(cs); std::map::const_iterator pos = mapDeltas.find(hash); if (pos == mapDeltas.end()) return; const CAmount &delta = pos->second; nFeeDelta += delta; } void CTxMemPool::ClearPrioritisation(const uint256& hash) { AssertLockHeld(cs); mapDeltas.erase(hash); } const CTransaction* CTxMemPool::GetConflictTx(const COutPoint& prevout) const { const auto it = mapNextTx.find(prevout); return it == mapNextTx.end() ? nullptr : it->second; } std::optional CTxMemPool::GetIter(const uint256& txid) const { auto it = mapTx.find(txid); if (it != mapTx.end()) return it; return std::nullopt; } CTxMemPool::setEntries CTxMemPool::GetIterSet(const std::set& hashes) const { CTxMemPool::setEntries ret; for (const auto& h : hashes) { const auto mi = GetIter(h); if (mi) ret.insert(*mi); } return ret; } bool CTxMemPool::HasNoInputsOf(const CTransaction &tx) const { for (unsigned int i = 0; i < tx.vin.size(); i++) if (exists(tx.vin[i].prevout.hash)) return false; return true; } CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView* baseIn, const CTxMemPool& mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { } bool CCoinsViewMemPool::GetCoin(const COutPoint &outpoint, Coin &coin) const { // Check to see if the inputs are made available by another tx in the package. // These Coins would not be available in the underlying CoinsView. if (auto it = m_temp_added.find(outpoint); it != m_temp_added.end()) { coin = it->second; return true; } // If an entry in the mempool exists, always return that one, as it's guaranteed to never // conflict with the underlying cache, and it cannot have pruned entries (as it contains full) // transactions. First checking the underlying cache risks returning a pruned entry instead. CTransactionRef ptx = mempool.get(outpoint.hash); if (ptx) { if (outpoint.n < ptx->vout.size()) { coin = Coin(ptx->vout[outpoint.n], MEMPOOL_HEIGHT, false); return true; } else { return false; } } return base->GetCoin(outpoint, coin); } void CCoinsViewMemPool::PackageAddTransaction(const CTransactionRef& tx) { for (unsigned int n = 0; n < tx->vout.size(); ++n) { m_temp_added.emplace(COutPoint(tx->GetHash(), n), Coin(tx->vout[n], MEMPOOL_HEIGHT, false)); } } size_t CTxMemPool::DynamicMemoryUsage() const { LOCK(cs); // Estimate the overhead of mapTx to be 12 pointers + an allocation, as no exact formula for boost::multi_index_contained is implemented. return memusage::MallocUsage(sizeof(CTxMemPoolEntry) + 12 * sizeof(void*)) * mapTx.size() + memusage::DynamicUsage(mapNextTx) + memusage::DynamicUsage(mapDeltas) + memusage::DynamicUsage(vTxHashes) + cachedInnerUsage; } void CTxMemPool::RemoveUnbroadcastTx(const uint256& txid, const bool unchecked) { LOCK(cs); if (m_unbroadcast_txids.erase(txid)) { LogPrint(BCLog::MEMPOOL, "Removed %i from set of unbroadcast txns%s\n", txid.GetHex(), (unchecked ? " before confirmation that txn was sent out" : "")); } } void CTxMemPool::RemoveStaged(setEntries &stage, bool updateDescendants, MemPoolRemovalReason reason) { AssertLockHeld(cs); UpdateForRemoveFromMempool(stage, updateDescendants); for (txiter it : stage) { removeUnchecked(it, reason); } } int CTxMemPool::Expire(std::chrono::seconds time) { AssertLockHeld(cs); indexed_transaction_set::index::type::iterator it = mapTx.get().begin(); setEntries toremove; while (it != mapTx.get().end() && it->GetTime() < time) { // locked txes do not expire until mined and have sufficient confirmations if (llmq::quorumInstantSendManager->IsLocked(it->GetTx().GetHash())) { it++; continue; } toremove.insert(mapTx.project<0>(it)); it++; } setEntries stage; for (txiter removeit : toremove) { CalculateDescendants(removeit, stage); } RemoveStaged(stage, false, MemPoolRemovalReason::EXPIRY); return stage.size(); } void CTxMemPool::addUnchecked(const CTxMemPoolEntry &entry, bool validFeeEstimate) { setEntries setAncestors; uint64_t nNoLimit = std::numeric_limits::max(); std::string dummy; CalculateMemPoolAncestors(entry, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy); return addUnchecked(entry, setAncestors, validFeeEstimate); } void CTxMemPool::UpdateChild(txiter entry, txiter child, bool add) { AssertLockHeld(cs); CTxMemPoolEntry::Children s; if (add && entry->GetMemPoolChildren().insert(*child).second) { cachedInnerUsage += memusage::IncrementalDynamicUsage(s); } else if (!add && entry->GetMemPoolChildren().erase(*child)) { cachedInnerUsage -= memusage::IncrementalDynamicUsage(s); } } void CTxMemPool::UpdateParent(txiter entry, txiter parent, bool add) { AssertLockHeld(cs); CTxMemPoolEntry::Parents s; if (add && entry->GetMemPoolParents().insert(*parent).second) { cachedInnerUsage += memusage::IncrementalDynamicUsage(s); } else if (!add && entry->GetMemPoolParents().erase(*parent)) { cachedInnerUsage -= memusage::IncrementalDynamicUsage(s); } } CFeeRate CTxMemPool::GetMinFee(size_t sizelimit) const { LOCK(cs); if (!blockSinceLastRollingFeeBump || rollingMinimumFeeRate == 0) return CFeeRate(llround(rollingMinimumFeeRate)); int64_t time = GetTime(); if (time > lastRollingFeeUpdate + 10) { double halflife = ROLLING_FEE_HALFLIFE; if (DynamicMemoryUsage() < sizelimit / 4) halflife /= 4; else if (DynamicMemoryUsage() < sizelimit / 2) halflife /= 2; rollingMinimumFeeRate = rollingMinimumFeeRate / pow(2.0, (time - lastRollingFeeUpdate) / halflife); lastRollingFeeUpdate = time; if (rollingMinimumFeeRate < (double)incrementalRelayFee.GetFeePerK() / 2) { rollingMinimumFeeRate = 0; return CFeeRate(0); } } return std::max(CFeeRate(llround(rollingMinimumFeeRate)), incrementalRelayFee); } void CTxMemPool::trackPackageRemoved(const CFeeRate& rate) { AssertLockHeld(cs); if (rate.GetFeePerK() > rollingMinimumFeeRate) { rollingMinimumFeeRate = rate.GetFeePerK(); blockSinceLastRollingFeeBump = false; } } void CTxMemPool::TrimToSize(size_t sizelimit, std::vector* pvNoSpendsRemaining) { AssertLockHeld(cs); unsigned nTxnRemoved = 0; CFeeRate maxFeeRateRemoved(0); while (!mapTx.empty() && DynamicMemoryUsage() > sizelimit) { indexed_transaction_set::index::type::iterator it = mapTx.get().begin(); // We set the new mempool min fee to the feerate of the removed set, plus the // "minimum reasonable fee rate" (ie some value under which we consider txn // to have 0 fee). This way, we don't allow txn to enter mempool with feerate // equal to txn which were removed with no block in between. CFeeRate removed(it->GetModFeesWithDescendants(), it->GetSizeWithDescendants()); removed += incrementalRelayFee; trackPackageRemoved(removed); maxFeeRateRemoved = std::max(maxFeeRateRemoved, removed); setEntries stage; CalculateDescendants(mapTx.project<0>(it), stage); nTxnRemoved += stage.size(); std::vector txn; if (pvNoSpendsRemaining) { txn.reserve(stage.size()); for (txiter iter : stage) txn.push_back(iter->GetTx()); } RemoveStaged(stage, false, MemPoolRemovalReason::SIZELIMIT); if (pvNoSpendsRemaining) { for (const CTransaction& tx : txn) { for (const CTxIn& txin : tx.vin) { if (exists(txin.prevout.hash)) continue; pvNoSpendsRemaining->push_back(txin.prevout); } } } } if (maxFeeRateRemoved > CFeeRate(0)) { LogPrint(BCLog::MEMPOOL, "Removed %u txn, rolling minimum fee bumped to %s\n", nTxnRemoved, maxFeeRateRemoved.ToString()); } } uint64_t CTxMemPool::CalculateDescendantMaximum(txiter entry) const { // find parent with highest descendant count std::vector candidates; setEntries counted; candidates.push_back(entry); uint64_t maximum = 0; while (candidates.size()) { txiter candidate = candidates.back(); candidates.pop_back(); if (!counted.insert(candidate).second) continue; const CTxMemPoolEntry::Parents& parents = candidate->GetMemPoolParentsConst(); if (parents.size() == 0) { maximum = std::max(maximum, candidate->GetCountWithDescendants()); } else { for (const CTxMemPoolEntry& i : parents) { candidates.push_back(mapTx.iterator_to(i)); } } } return maximum; } void CTxMemPool::GetTransactionAncestry(const uint256& txid, size_t& ancestors, size_t& descendants) const { LOCK(cs); auto it = mapTx.find(txid); ancestors = descendants = 0; if (it != mapTx.end()) { ancestors = it->GetCountWithAncestors(); descendants = CalculateDescendantMaximum(it); } } bool CTxMemPool::IsLoaded() const { LOCK(cs); return m_is_loaded; } void CTxMemPool::SetIsLoaded(bool loaded) { LOCK(cs); m_is_loaded = loaded; }