// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include template base_uint::base_uint(const std::string& str) { static_assert(BITS/32 > 0 && BITS%32 == 0, "Template parameter BITS must be a positive multiple of 32."); SetHex(str); } template base_uint& base_uint::operator<<=(unsigned int shift) { base_uint a(*this); for (int i = 0; i < WIDTH; i++) pn[i] = 0; int k = shift / 32; shift = shift % 32; for (int i = 0; i < WIDTH; i++) { if (i + k + 1 < WIDTH && shift != 0) pn[i + k + 1] |= (a.pn[i] >> (32 - shift)); if (i + k < WIDTH) pn[i + k] |= (a.pn[i] << shift); } return *this; } template base_uint& base_uint::operator>>=(unsigned int shift) { base_uint a(*this); for (int i = 0; i < WIDTH; i++) pn[i] = 0; int k = shift / 32; shift = shift % 32; for (int i = 0; i < WIDTH; i++) { if (i - k - 1 >= 0 && shift != 0) pn[i - k - 1] |= (a.pn[i] << (32 - shift)); if (i - k >= 0) pn[i - k] |= (a.pn[i] >> shift); } return *this; } template base_uint& base_uint::operator*=(uint32_t b32) { uint64_t carry = 0; for (int i = 0; i < WIDTH; i++) { uint64_t n = carry + (uint64_t)b32 * pn[i]; pn[i] = n & 0xffffffff; carry = n >> 32; } return *this; } template base_uint& base_uint::operator*=(const base_uint& b) { base_uint a; for (int j = 0; j < WIDTH; j++) { uint64_t carry = 0; for (int i = 0; i + j < WIDTH; i++) { uint64_t n = carry + a.pn[i + j] + (uint64_t)pn[j] * b.pn[i]; a.pn[i + j] = n & 0xffffffff; carry = n >> 32; } } *this = a; return *this; } template base_uint& base_uint::operator/=(const base_uint& b) { base_uint div = b; // make a copy, so we can shift. base_uint num = *this; // make a copy, so we can subtract. *this = 0; // the quotient. int num_bits = num.bits(); int div_bits = div.bits(); if (div_bits == 0) throw uint_error("Division by zero"); if (div_bits > num_bits) // the result is certainly 0. return *this; int shift = num_bits - div_bits; div <<= shift; // shift so that div and num align. while (shift >= 0) { if (num >= div) { num -= div; pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result. } div >>= 1; // shift back. shift--; } // num now contains the remainder of the division. return *this; } template int base_uint::CompareTo(const base_uint& b) const { for (int i = WIDTH - 1; i >= 0; i--) { if (pn[i] < b.pn[i]) return -1; if (pn[i] > b.pn[i]) return 1; } return 0; } template bool base_uint::EqualTo(uint64_t b) const { for (int i = WIDTH - 1; i >= 2; i--) { if (pn[i]) return false; } if (pn[1] != (b >> 32)) return false; if (pn[0] != (b & 0xfffffffful)) return false; return true; } template double base_uint::getdouble() const { double ret = 0.0; double fact = 1.0; for (int i = 0; i < WIDTH; i++) { ret += fact * pn[i]; fact *= 4294967296.0; } return ret; } template std::string base_uint::GetHex() const { return ArithToUint256(*this).GetHex(); } template void base_uint::SetHex(const char* psz) { *this = UintToArith256(uint256S(psz)); } template void base_uint::SetHex(const std::string& str) { SetHex(str.c_str()); } template std::string base_uint::ToString() const { return (GetHex()); } template unsigned int base_uint::bits() const { for (int pos = WIDTH - 1; pos >= 0; pos--) { if (pn[pos]) { for (int nbits = 31; nbits > 0; nbits--) { if (pn[pos] & 1 << nbits) return 32 * pos + nbits + 1; } return 32 * pos + 1; } } return 0; } // Explicit instantiations for base_uint<256> template base_uint<256>::base_uint(const std::string&); template base_uint<256>& base_uint<256>::operator<<=(unsigned int); template base_uint<256>& base_uint<256>::operator>>=(unsigned int); template base_uint<256>& base_uint<256>::operator*=(uint32_t b32); template base_uint<256>& base_uint<256>::operator*=(const base_uint<256>& b); template base_uint<256>& base_uint<256>::operator/=(const base_uint<256>& b); template int base_uint<256>::CompareTo(const base_uint<256>&) const; template bool base_uint<256>::EqualTo(uint64_t) const; template double base_uint<256>::getdouble() const; template std::string base_uint<256>::GetHex() const; template std::string base_uint<256>::ToString() const; template void base_uint<256>::SetHex(const char*); template void base_uint<256>::SetHex(const std::string&); template unsigned int base_uint<256>::bits() const; // This implementation directly uses shifts instead of going // through an intermediate MPI representation. arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow) { int nSize = nCompact >> 24; uint32_t nWord = nCompact & 0x007fffff; if (nSize <= 3) { nWord >>= 8 * (3 - nSize); *this = nWord; } else { *this = nWord; *this <<= 8 * (nSize - 3); } if (pfNegative) *pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0; if (pfOverflow) *pfOverflow = nWord != 0 && ((nSize > 34) || (nWord > 0xff && nSize > 33) || (nWord > 0xffff && nSize > 32)); return *this; } uint32_t arith_uint256::GetCompact(bool fNegative) const { int nSize = (bits() + 7) / 8; uint32_t nCompact = 0; if (nSize <= 3) { nCompact = GetLow64() << 8 * (3 - nSize); } else { arith_uint256 bn = *this >> 8 * (nSize - 3); nCompact = bn.GetLow64(); } // The 0x00800000 bit denotes the sign. // Thus, if it is already set, divide the mantissa by 256 and increase the exponent. if (nCompact & 0x00800000) { nCompact >>= 8; nSize++; } assert((nCompact & ~0x007fffff) == 0); assert(nSize < 256); nCompact |= nSize << 24; nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0); return nCompact; } uint256 ArithToUint256(const arith_uint256 &a) { uint256 b; for(int x=0; x