// Copyright (c) 2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include const struct VBDeploymentInfo VersionBitsDeploymentInfo[Consensus::MAX_VERSION_BITS_DEPLOYMENTS] = { { /*.name =*/ "testdummy", /*.gbt_force =*/ true, /*.check_mn_protocol =*/ false, }, { /*.name =*/ "csv", /*.gbt_force =*/ true, /*.check_mn_protocol =*/ false, }, { /*.name =*/ "dip0001", /*.gbt_force =*/ true, /*.check_mn_protocol =*/ true, }, { /*.name =*/ "bip147", /*.gbt_force =*/ true, /*.check_mn_protocol =*/ false, }, { /*.name =*/ "dip0003", /*.gbt_force =*/ true, /*.check_mn_protocol =*/ false, }, { /*.name =*/ "dip0008", /*.gbt_force =*/ true, /*.check_mn_protocol =*/ false, }, { /*.name =*/ "realloc", /*.gbt_force =*/ true, /*.check_mn_protocol =*/ false, }, { /*.name =*/ "v17", /*.gbt_force =*/ true, /*.check_mn_protocol =*/ false, }, }; ThresholdState AbstractThresholdConditionChecker::GetStateFor(const CBlockIndex* pindexPrev, const Consensus::Params& params, ThresholdConditionCache& cache) const { int nPeriod = Period(params); int64_t nTimeStart = BeginTime(params); int64_t nTimeTimeout = EndTime(params); // A block's state is always the same as that of the first of its period, so it is computed based on a pindexPrev whose height equals a multiple of nPeriod - 1. if (pindexPrev != nullptr) { pindexPrev = pindexPrev->GetAncestor(pindexPrev->nHeight - ((pindexPrev->nHeight + 1) % nPeriod)); } // Walk backwards in steps of nPeriod to find a pindexPrev whose information is known std::vector vToCompute; while (cache.count(pindexPrev) == 0) { if (pindexPrev == nullptr) { // The genesis block is by definition defined. cache[pindexPrev] = ThresholdState::DEFINED; break; } if (pindexPrev->GetMedianTimePast() < nTimeStart) { // Optimization: don't recompute down further, as we know every earlier block will be before the start time cache[pindexPrev] = ThresholdState::DEFINED; break; } vToCompute.push_back(pindexPrev); pindexPrev = pindexPrev->GetAncestor(pindexPrev->nHeight - nPeriod); } // At this point, cache[pindexPrev] is known assert(cache.count(pindexPrev)); ThresholdState state = cache[pindexPrev]; int nStartHeight{std::numeric_limits::max()}; for (const auto& pair : cache) { if (pair.second == ThresholdState::STARTED && nStartHeight > pair.first->nHeight + 1) { nStartHeight = pair.first->nHeight + 1; } } // Now walk forward and compute the state of descendants of pindexPrev while (!vToCompute.empty()) { ThresholdState stateNext = state; pindexPrev = vToCompute.back(); vToCompute.pop_back(); switch (state) { case ThresholdState::DEFINED: { if (pindexPrev->GetMedianTimePast() >= nTimeTimeout) { stateNext = ThresholdState::FAILED; } else if (pindexPrev->GetMedianTimePast() >= nTimeStart) { stateNext = ThresholdState::STARTED; nStartHeight = pindexPrev->nHeight + 1; } break; } case ThresholdState::STARTED: { if (pindexPrev->GetMedianTimePast() >= nTimeTimeout) { stateNext = ThresholdState::FAILED; break; } // We need to count const CBlockIndex* pindexCount = pindexPrev; int count = 0; for (int i = 0; i < nPeriod; i++) { if (Condition(pindexCount, params)) { count++; } pindexCount = pindexCount->pprev; } assert(nStartHeight > 0 && nStartHeight < std::numeric_limits::max()); int nAttempt = (pindexCount->nHeight + 1 - nStartHeight) / nPeriod; if (count >= Threshold(params, nAttempt)) { stateNext = ThresholdState::LOCKED_IN; } break; } case ThresholdState::LOCKED_IN: { // Always progresses into ACTIVE. stateNext = ThresholdState::ACTIVE; break; } case ThresholdState::FAILED: case ThresholdState::ACTIVE: { // Nothing happens, these are terminal states. break; } } cache[pindexPrev] = state = stateNext; } return state; } // return the numerical statistics of blocks signalling the specified BIP9 condition in this current period BIP9Stats AbstractThresholdConditionChecker::GetStateStatisticsFor(const CBlockIndex* pindex, const Consensus::Params& params, ThresholdConditionCache& cache) const { BIP9Stats stats = {}; stats.period = Period(params); stats.threshold = Threshold(params, 0); if (pindex == nullptr) return stats; // Find beginning of period const CBlockIndex* pindexEndOfPrevPeriod = pindex->GetAncestor(pindex->nHeight - ((pindex->nHeight + 1) % stats.period)); stats.elapsed = pindex->nHeight - pindexEndOfPrevPeriod->nHeight; // Re-calculate current threshold int nAttempt{0}; const ThresholdState state = GetStateFor(pindexEndOfPrevPeriod, params, cache); if (state == ThresholdState::STARTED) { int nStartHeight = GetStateSinceHeightFor(pindexEndOfPrevPeriod, params, cache); nAttempt = (pindexEndOfPrevPeriod->nHeight + 1 - nStartHeight)/stats.period; } stats.threshold = Threshold(params, nAttempt); // Count from current block to beginning of period int count = 0; const CBlockIndex* currentIndex = pindex; while (pindexEndOfPrevPeriod->nHeight != currentIndex->nHeight){ if (Condition(currentIndex, params)) count++; currentIndex = currentIndex->pprev; } stats.count = count; stats.possible = (stats.period - stats.threshold ) >= (stats.elapsed - count); return stats; } int AbstractThresholdConditionChecker::GetStateSinceHeightFor(const CBlockIndex* pindexPrev, const Consensus::Params& params, ThresholdConditionCache& cache) const { const ThresholdState initialState = GetStateFor(pindexPrev, params, cache); // BIP 9 about state DEFINED: "The genesis block is by definition in this state for each deployment." if (initialState == ThresholdState::DEFINED) { return 0; } const int nPeriod = Period(params); // A block's state is always the same as that of the first of its period, so it is computed based on a pindexPrev whose height equals a multiple of nPeriod - 1. // To ease understanding of the following height calculation, it helps to remember that // right now pindexPrev points to the block prior to the block that we are computing for, thus: // if we are computing for the last block of a period, then pindexPrev points to the second to last block of the period, and // if we are computing for the first block of a period, then pindexPrev points to the last block of the previous period. // The parent of the genesis block is represented by nullptr. pindexPrev = pindexPrev->GetAncestor(pindexPrev->nHeight - ((pindexPrev->nHeight + 1) % nPeriod)); const CBlockIndex* previousPeriodParent = pindexPrev->GetAncestor(pindexPrev->nHeight - nPeriod); while (previousPeriodParent != nullptr && GetStateFor(previousPeriodParent, params, cache) == initialState) { pindexPrev = previousPeriodParent; previousPeriodParent = pindexPrev->GetAncestor(pindexPrev->nHeight - nPeriod); } // Adjust the result because right now we point to the parent block. return pindexPrev->nHeight + 1; } namespace { /** * Class to implement versionbits logic. */ class VersionBitsConditionChecker : public AbstractThresholdConditionChecker { private: const Consensus::DeploymentPos id; protected: int64_t BeginTime(const Consensus::Params& params) const override { return params.vDeployments[id].nStartTime; } int64_t EndTime(const Consensus::Params& params) const override { return params.vDeployments[id].nTimeout; } int Period(const Consensus::Params& params) const override { return params.vDeployments[id].nWindowSize ? params.vDeployments[id].nWindowSize : params.nMinerConfirmationWindow; } int Threshold(const Consensus::Params& params, int nAttempt) const override { if (params.vDeployments[id].nThresholdStart == 0) { return params.nRuleChangeActivationThreshold; } if (params.vDeployments[id].nThresholdMin == 0 || params.vDeployments[id].nFalloffCoeff == 0) { return params.vDeployments[id].nThresholdStart; } int64_t nThresholdCalc = params.vDeployments[id].nThresholdStart - nAttempt * nAttempt * Period(params) / 100 / params.vDeployments[id].nFalloffCoeff; return std::max(params.vDeployments[id].nThresholdMin, nThresholdCalc); } bool Condition(const CBlockIndex* pindex, const Consensus::Params& params) const override { return (((pindex->nVersion & VERSIONBITS_TOP_MASK) == VERSIONBITS_TOP_BITS) && (pindex->nVersion & Mask(params)) != 0); } public: explicit VersionBitsConditionChecker(Consensus::DeploymentPos id_) : id(id_) {} uint32_t Mask(const Consensus::Params& params) const { return ((uint32_t)1) << params.vDeployments[id].bit; } }; } // namespace ThresholdState VersionBitsState(const CBlockIndex* pindexPrev, const Consensus::Params& params, Consensus::DeploymentPos pos, VersionBitsCache& cache) { return VersionBitsConditionChecker(pos).GetStateFor(pindexPrev, params, cache.caches[pos]); } BIP9Stats VersionBitsStatistics(const CBlockIndex* pindexPrev, const Consensus::Params& params, Consensus::DeploymentPos pos, VersionBitsCache& cache) { return VersionBitsConditionChecker(pos).GetStateStatisticsFor(pindexPrev, params, cache.caches[pos]); } int VersionBitsStateSinceHeight(const CBlockIndex* pindexPrev, const Consensus::Params& params, Consensus::DeploymentPos pos, VersionBitsCache& cache) { return VersionBitsConditionChecker(pos).GetStateSinceHeightFor(pindexPrev, params, cache.caches[pos]); } uint32_t VersionBitsMask(const Consensus::Params& params, Consensus::DeploymentPos pos) { return VersionBitsConditionChecker(pos).Mask(params); } void VersionBitsCache::Clear() { for (unsigned int d = 0; d < Consensus::MAX_VERSION_BITS_DEPLOYMENTS; d++) { caches[d].clear(); } }