dash/test/functional/mempool_accept.py
MarcoFalke 31e0fb550f
Merge #14819: Bugfix: test/functional/mempool_accept: Ensure oversize transaction is actually oversize
29aeed1734 Bugfix: test/functional/mempool_accept: Ensure oversize transaction is actually oversize (Luke Dashjr)

Pull request description:

  Simply integer dividing results in an acceptable size if the limit isn't an exact multiple of the input size.
  Use math.ceil to ensure the transaction is always oversize.

  (This issue can be triggered by changing the address style used.)

Tree-SHA512: e45062b0e8a3e9cb08e9dac5275b68d86e4377b460f1b3b995944090a055b0542a6986826312ec0e223369838094e42e20d8614b5c2bab9975b9a6f749295b21
2021-05-23 01:19:32 +03:00

296 lines
14 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2017 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test mempool acceptance of raw transactions."""
from io import BytesIO
import math
from test_framework.test_framework import BitcoinTestFramework
from test_framework.messages import (
BIP125_SEQUENCE_NUMBER,
COIN,
COutPoint,
CTransaction,
CTxOut,
MAX_BLOCK_SIZE,
)
from test_framework.script import (
hash160,
CScript,
OP_0,
OP_EQUAL,
OP_HASH160,
OP_RETURN,
)
from test_framework.util import (
assert_equal,
assert_raises_rpc_error,
bytes_to_hex_str,
hex_str_to_bytes,
wait_until,
)
class MempoolAcceptanceTest(BitcoinTestFramework):
def set_test_params(self):
self.num_nodes = 1
self.extra_args = [[
'-checkmempool',
'-txindex',
'-reindex', # Need reindex for txindex
'-acceptnonstdtxn=0', # Try to mimic main-net
]] * self.num_nodes
def check_mempool_result(self, result_expected, *args, **kwargs):
"""Wrapper to check result of testmempoolaccept on node_0's mempool"""
result_test = self.nodes[0].testmempoolaccept(*args, **kwargs)
assert_equal(result_expected, result_test)
assert_equal(self.nodes[0].getmempoolinfo()['size'], self.mempool_size) # Must not change mempool state
def run_test(self):
node = self.nodes[0]
self.log.info('Start with empty mempool, and 200 blocks')
self.mempool_size = 0
wait_until(lambda: node.getblockcount() == 200)
assert_equal(node.getmempoolinfo()['size'], self.mempool_size)
self.log.info('Should not accept garbage to testmempoolaccept')
assert_raises_rpc_error(-3, 'Expected type array, got string', lambda: node.testmempoolaccept(rawtxs='ff00baar'))
assert_raises_rpc_error(-8, 'Array must contain exactly one raw transaction for now', lambda: node.testmempoolaccept(rawtxs=['ff00baar', 'ff22']))
assert_raises_rpc_error(-22, 'TX decode failed', lambda: node.testmempoolaccept(rawtxs=['ff00baar']))
self.log.info('A transaction already in the blockchain')
coin = node.listunspent()[0] # Pick a random coin(base) to spend
raw_tx_in_block = node.signrawtransactionwithwallet(node.createrawtransaction(
inputs=[{'txid': coin['txid'], 'vout': coin['vout']}],
outputs=[{node.getnewaddress(): 0.3}, {node.getnewaddress(): 49}],
))['hex']
txid_in_block = node.sendrawtransaction(hexstring=raw_tx_in_block, allowhighfees=True)
node.generate(1)
self.check_mempool_result(
result_expected=[{'txid': txid_in_block, 'allowed': False, 'reject-reason': '18: txn-already-known'}],
rawtxs=[raw_tx_in_block],
)
self.log.info('A transaction not in the mempool')
fee = 0.00000700
raw_tx_0 = node.signrawtransactionwithwallet(node.createrawtransaction(
inputs=[{"txid": txid_in_block, "vout": 0, "sequence": BIP125_SEQUENCE_NUMBER}], # RBF is used later
outputs=[{node.getnewaddress(): 0.3 - fee}],
))['hex']
tx = CTransaction()
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
txid_0 = tx.rehash()
self.check_mempool_result(
result_expected=[{'txid': txid_0, 'allowed': True}],
rawtxs=[raw_tx_0],
)
self.log.info('A transaction in the mempool')
node.sendrawtransaction(hexstring=raw_tx_0)
self.mempool_size = 1
self.check_mempool_result(
result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': '18: txn-already-in-mempool'}],
rawtxs=[raw_tx_0],
)
self.log.info('A transaction that replaces a mempool transaction')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
tx.vout[0].nValue -= int(fee * COIN) # Double the fee
tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER + 1 # Now, opt out of RBF
raw_tx_0_reject = node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex']
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0_reject)))
txid_0_reject = tx.rehash()
self.check_mempool_result(
# No RBF in DASH
result_expected=[{'txid': txid_0_reject, 'allowed': False, 'reject-reason': '18: txn-mempool-conflict'}],
rawtxs=[raw_tx_0_reject],
)
self.log.info('A transaction that conflicts with an unconfirmed tx')
# Send the transaction that replaces the mempool transaction and opts out of replaceability
# node.sendrawtransaction(hexstring=bytes_to_hex_str(tx.serialize()), allowhighfees=True)
# take original raw_tx_0
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
tx.vout[0].nValue -= int(4 * fee * COIN) # Set more fee
# skip re-signing the tx
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '18: txn-mempool-conflict'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
allowhighfees=True,
)
self.log.info('A transaction with missing inputs, that never existed')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14)
# skip re-signing the tx
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'missing-inputs'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
self.log.info('A transaction with missing inputs, that existed once in the past')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
tx.vin[0].prevout.n = 1 # Set vout to 1, to spend the other outpoint (49 coins) of the in-chain-tx we want to double spend
raw_tx_1 = node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex']
txid_1 = node.sendrawtransaction(hexstring=raw_tx_1, allowhighfees=True)
# Now spend both to "clearly hide" the outputs, ie. remove the coins from the utxo set by spending them
raw_tx_spend_both = node.signrawtransactionwithwallet(node.createrawtransaction(
inputs=[
{'txid': txid_0, 'vout': 0},
{'txid': txid_1, 'vout': 0},
],
outputs=[{node.getnewaddress(): 0.1}]
))['hex']
txid_spend_both = node.sendrawtransaction(hexstring=raw_tx_spend_both, allowhighfees=True)
node.generate(1)
self.mempool_size = 0
# Now see if we can add the coins back to the utxo set by sending the exact txs again
self.check_mempool_result(
result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'missing-inputs'}],
rawtxs=[raw_tx_0],
)
self.check_mempool_result(
result_expected=[{'txid': txid_1, 'allowed': False, 'reject-reason': 'missing-inputs'}],
rawtxs=[raw_tx_1],
)
self.log.info('Create a signed "reference" tx for later use')
raw_tx_reference = node.signrawtransactionwithwallet(node.createrawtransaction(
inputs=[{'txid': txid_spend_both, 'vout': 0}],
outputs=[{node.getnewaddress(): 0.05}],
))['hex']
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
# Reference tx should be valid on itself
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': True}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
self.log.info('A transaction with no outputs')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vout = []
# Skip re-signing the transaction for context independent checks from now on
# tx.deserialize(BytesIO(hex_str_to_bytes(node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex'])))
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-empty'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
self.log.info('A really large transaction')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vin = [tx.vin[0]] * math.ceil(MAX_BLOCK_SIZE / len(tx.vin[0].serialize()))
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-oversize'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
self.log.info('A transaction with negative output value')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vout[0].nValue *= -1
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-negative'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
self.log.info('A transaction with too large output value')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vout[0].nValue = 21000000 * COIN + 1
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-toolarge'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
self.log.info('A transaction with too large sum of output values')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vout = [tx.vout[0]] * 2
tx.vout[0].nValue = 21000000 * COIN
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-txouttotal-toolarge'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
self.log.info('A transaction with duplicate inputs')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vin = [tx.vin[0]] * 2
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-inputs-duplicate'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
self.log.info('A coinbase transaction')
# Pick the input of the first tx we signed, so it has to be a coinbase tx
raw_tx_coinbase_spent = node.getrawtransaction(txid=node.decoderawtransaction(hexstring=raw_tx_in_block)['vin'][0]['txid'])
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_coinbase_spent)))
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: coinbase'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
self.log.info('Some nonstandard transactions')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.nVersion = 4 # A version currently non-standard
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: version'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vout[0].scriptPubKey = CScript([OP_0]) # Some non-standard script
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptpubkey'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vin[0].scriptSig = CScript([OP_HASH160]) # Some not-pushonly scriptSig
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptsig-not-pushonly'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
output_p2sh_burn = CTxOut(nValue=540, scriptPubKey=CScript([OP_HASH160, hash160(b'burn'), OP_EQUAL]))
num_scripts = 100000 // len(output_p2sh_burn.serialize()) # Use enough outputs to make the tx too large for our policy
tx.vout = [output_p2sh_burn] * num_scripts
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: tx-size'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vout[0] = output_p2sh_burn
tx.vout[0].nValue -= 1 # Make output smaller, such that it is dust for our policy
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: dust'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vout[0].scriptPubKey = CScript([OP_RETURN, b'\xff'])
tx.vout = [tx.vout[0]] * 2
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: multi-op-return'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
self.log.info('A timelocked transaction')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vin[0].nSequence -= 1 # Should be non-max, so locktime is not ignored
tx.nLockTime = node.getblockcount() + 1
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-final'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
)
self.log.info('A transaction that is locked by BIP68 sequence logic')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vin[0].nSequence = 2 # We could include it in the second block mined from now, but not the very next one
# Can skip re-signing the tx because of early rejection
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-BIP68-final'}],
rawtxs=[bytes_to_hex_str(tx.serialize())],
allowhighfees=True,
)
if __name__ == '__main__':
MempoolAcceptanceTest().main()