mirror of
https://github.com/dashpay/dash.git
synced 2024-12-28 13:32:47 +01:00
7c3c6c6cea
1afcd41a906e6417925e80578c0d850d269dc008 [net] Remove CombinerAll (John Newbery) Pull request description: This was introduced in9519a9a4
for use with boost signals. Boost signals have not been used in net since8ad663c1
, so this code is unused. ACKs for top commit: MarcoFalke: review ACK 1afcd41a906e6417925e80578c0d850d269dc008 laanwj: code review ACK 1afcd41a906e6417925e80578c0d850d269dc008 Tree-SHA512: a4313142afb88bf12f15abc4e717b3b0d0b40d2d5db2638494af3181e1cd680d7b036087050fc0e0dfe606228849a2e20ae85135908a9ebe8ff2130f163920e1
1574 lines
57 KiB
C++
1574 lines
57 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||
// Copyright (c) 2009-2020 The Bitcoin Core developers
|
||
// Distributed under the MIT software license, see the accompanying
|
||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||
|
||
#ifndef BITCOIN_NET_H
|
||
#define BITCOIN_NET_H
|
||
|
||
#include <addrdb.h>
|
||
#include <addrman.h>
|
||
#include <bloom.h>
|
||
#include <chainparams.h>
|
||
#include <compat.h>
|
||
#include <fs.h>
|
||
#include <crypto/siphash.h>
|
||
#include <hash.h>
|
||
#include <i2p.h>
|
||
#include <limitedmap.h>
|
||
#include <net_permissions.h>
|
||
#include <netaddress.h>
|
||
#include <policy/feerate.h>
|
||
#include <protocol.h>
|
||
#include <random.h>
|
||
#include <saltedhasher.h>
|
||
#include <streams.h>
|
||
#include <sync.h>
|
||
#include <threadinterrupt.h>
|
||
#include <uint256.h>
|
||
#include <util/system.h>
|
||
#include <consensus/params.h>
|
||
|
||
#include <atomic>
|
||
#include <cstdint>
|
||
#include <deque>
|
||
#include <map>
|
||
#include <thread>
|
||
#include <memory>
|
||
#include <condition_variable>
|
||
#include <optional>
|
||
#include <queue>
|
||
|
||
#ifndef WIN32
|
||
#define USE_WAKEUP_PIPE
|
||
#endif
|
||
|
||
class CScheduler;
|
||
class CNode;
|
||
class BanMan;
|
||
struct bilingual_str;
|
||
|
||
/** Default for -whitelistrelay. */
|
||
static const bool DEFAULT_WHITELISTRELAY = true;
|
||
/** Default for -whitelistforcerelay. */
|
||
static const bool DEFAULT_WHITELISTFORCERELAY = false;
|
||
|
||
/** Time after which to disconnect, after waiting for a ping response (or inactivity). */
|
||
static const int TIMEOUT_INTERVAL = 20 * 60;
|
||
/** Time to wait since nTimeConnected before disconnecting a probe node. **/
|
||
static const int PROBE_WAIT_INTERVAL = 5;
|
||
/** Minimum time between warnings printed to log. */
|
||
static const int WARNING_INTERVAL = 10 * 60;
|
||
/** Run the feeler connection loop once every 2 minutes or 120 seconds. **/
|
||
static const int FEELER_INTERVAL = 120;
|
||
/** The maximum number of entries in an 'inv' protocol message */
|
||
static const unsigned int MAX_INV_SZ = 50000;
|
||
/** The maximum number of addresses from our addrman to return in response to a getaddr message. */
|
||
static constexpr size_t MAX_ADDR_TO_SEND = 1000;
|
||
/** Maximum length of incoming protocol messages (no message over 3 MiB is currently acceptable). */
|
||
static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH = 3 * 1024 * 1024;
|
||
/** Maximum length of the user agent string in `version` message */
|
||
static const unsigned int MAX_SUBVERSION_LENGTH = 256;
|
||
/** Maximum number of automatic outgoing nodes over which we'll relay everything (blocks, tx, addrs, etc) */
|
||
static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS = 8;
|
||
/** Maximum number of addnode outgoing nodes */
|
||
static const int MAX_ADDNODE_CONNECTIONS = 8;
|
||
/** Eviction protection time for incoming connections */
|
||
static const int INBOUND_EVICTION_PROTECTION_TIME = 1;
|
||
/** Maximum number of block-relay-only outgoing connections */
|
||
static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS = 2;
|
||
/** Maximum number of feeler connections */
|
||
static const int MAX_FEELER_CONNECTIONS = 1;
|
||
/** -listen default */
|
||
static const bool DEFAULT_LISTEN = true;
|
||
/** The maximum number of peer connections to maintain.
|
||
* Masternodes are forced to accept at least this many connections
|
||
*/
|
||
static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 125;
|
||
/** The default for -maxuploadtarget. 0 = Unlimited */
|
||
static constexpr uint64_t DEFAULT_MAX_UPLOAD_TARGET = 0;
|
||
/** Default for blocks only*/
|
||
static const bool DEFAULT_BLOCKSONLY = false;
|
||
/** -peertimeout default */
|
||
static const int64_t DEFAULT_PEER_CONNECT_TIMEOUT = 60;
|
||
|
||
static const bool DEFAULT_FORCEDNSSEED = false;
|
||
static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000;
|
||
static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000;
|
||
|
||
#if defined USE_KQUEUE
|
||
#define DEFAULT_SOCKETEVENTS "kqueue"
|
||
#elif defined USE_EPOLL
|
||
#define DEFAULT_SOCKETEVENTS "epoll"
|
||
#elif defined USE_POLL
|
||
#define DEFAULT_SOCKETEVENTS "poll"
|
||
#else
|
||
#define DEFAULT_SOCKETEVENTS "select"
|
||
#endif
|
||
|
||
typedef int64_t NodeId;
|
||
|
||
struct AddedNodeInfo
|
||
{
|
||
std::string strAddedNode;
|
||
CService resolvedAddress;
|
||
bool fConnected;
|
||
bool fInbound;
|
||
};
|
||
|
||
class CNodeStats;
|
||
class CClientUIInterface;
|
||
|
||
struct CSerializedNetMsg
|
||
{
|
||
CSerializedNetMsg() = default;
|
||
CSerializedNetMsg(CSerializedNetMsg&&) = default;
|
||
CSerializedNetMsg& operator=(CSerializedNetMsg&&) = default;
|
||
// No copying, only moves.
|
||
CSerializedNetMsg(const CSerializedNetMsg& msg) = delete;
|
||
CSerializedNetMsg& operator=(const CSerializedNetMsg&) = delete;
|
||
|
||
std::vector<unsigned char> data;
|
||
std::string command;
|
||
};
|
||
|
||
/** Different types of connections to a peer. This enum encapsulates the
|
||
* information we have available at the time of opening or accepting the
|
||
* connection. Aside from INBOUND, all types are initiated by us.
|
||
*
|
||
* If adding or removing types, please update CONNECTION_TYPE_DOC in
|
||
* src/rpc/net.cpp. */
|
||
enum class ConnectionType {
|
||
/**
|
||
* Inbound connections are those initiated by a peer. This is the only
|
||
* property we know at the time of connection, until P2P messages are
|
||
* exchanged.
|
||
*/
|
||
INBOUND,
|
||
|
||
/**
|
||
* These are the default connections that we use to connect with the
|
||
* network. There is no restriction on what is relayed- by default we relay
|
||
* blocks, addresses & transactions. We automatically attempt to open
|
||
* MAX_OUTBOUND_FULL_RELAY_CONNECTIONS using addresses from our AddrMan.
|
||
*/
|
||
OUTBOUND_FULL_RELAY,
|
||
|
||
|
||
/**
|
||
* We open manual connections to addresses that users explicitly inputted
|
||
* via the addnode RPC, or the -connect command line argument. Even if a
|
||
* manual connection is misbehaving, we do not automatically disconnect or
|
||
* add it to our discouragement filter.
|
||
*/
|
||
MANUAL,
|
||
|
||
/**
|
||
* Feeler connections are short-lived connections made to check that a node
|
||
* is alive. They can be useful for:
|
||
* - test-before-evict: if one of the peers is considered for eviction from
|
||
* our AddrMan because another peer is mapped to the same slot in the tried table,
|
||
* evict only if this longer-known peer is offline.
|
||
* - move node addresses from New to Tried table, so that we have more
|
||
* connectable addresses in our AddrMan.
|
||
* Note that in the literature ("Eclipse Attacks on Bitcoin’s Peer-to-Peer Network")
|
||
* only the latter feature is referred to as "feeler connections",
|
||
* although in our codebase feeler connections encompass test-before-evict as well.
|
||
* We make these connections approximately every FEELER_INTERVAL:
|
||
* first we resolve previously found collisions if they exist (test-before-evict),
|
||
* otherwise connect to a node from the new table.
|
||
*/
|
||
FEELER,
|
||
|
||
/**
|
||
* We use block-relay-only connections to help prevent against partition
|
||
* attacks. By not relaying transactions or addresses, these connections
|
||
* are harder to detect by a third party, thus helping obfuscate the
|
||
* network topology. We automatically attempt to open
|
||
* MAX_BLOCK_RELAY_ONLY_ANCHORS using addresses from our anchors.dat. Then
|
||
* addresses from our AddrMan if MAX_BLOCK_RELAY_ONLY_CONNECTIONS
|
||
* isn't reached yet.
|
||
*/
|
||
BLOCK_RELAY,
|
||
|
||
/**
|
||
* AddrFetch connections are short lived connections used to solicit
|
||
* addresses from peers. These are initiated to addresses submitted via the
|
||
* -seednode command line argument, or under certain conditions when the
|
||
* AddrMan is empty.
|
||
*/
|
||
ADDR_FETCH,
|
||
};
|
||
|
||
class NetEventsInterface;
|
||
class CConnman
|
||
{
|
||
friend class CNode;
|
||
public:
|
||
|
||
enum NumConnections {
|
||
CONNECTIONS_NONE = 0,
|
||
CONNECTIONS_IN = (1U << 0),
|
||
CONNECTIONS_OUT = (1U << 1),
|
||
CONNECTIONS_ALL = (CONNECTIONS_IN | CONNECTIONS_OUT),
|
||
CONNECTIONS_VERIFIED = (1U << 2),
|
||
CONNECTIONS_VERIFIED_IN = (CONNECTIONS_VERIFIED | CONNECTIONS_IN),
|
||
CONNECTIONS_VERIFIED_OUT = (CONNECTIONS_VERIFIED | CONNECTIONS_OUT),
|
||
};
|
||
|
||
enum SocketEventsMode {
|
||
SOCKETEVENTS_SELECT = 0,
|
||
SOCKETEVENTS_POLL = 1,
|
||
SOCKETEVENTS_EPOLL = 2,
|
||
SOCKETEVENTS_KQUEUE = 3,
|
||
};
|
||
|
||
struct Options
|
||
{
|
||
ServiceFlags nLocalServices = NODE_NONE;
|
||
int nMaxConnections = 0;
|
||
int m_max_outbound_full_relay = 0;
|
||
int m_max_outbound_block_relay = 0;
|
||
int nMaxAddnode = 0;
|
||
int nMaxFeeler = 0;
|
||
CClientUIInterface* uiInterface = nullptr;
|
||
NetEventsInterface* m_msgproc = nullptr;
|
||
BanMan* m_banman = nullptr;
|
||
unsigned int nSendBufferMaxSize = 0;
|
||
unsigned int nReceiveFloodSize = 0;
|
||
uint64_t nMaxOutboundLimit = 0;
|
||
int64_t m_peer_connect_timeout = DEFAULT_PEER_CONNECT_TIMEOUT;
|
||
std::vector<std::string> vSeedNodes;
|
||
std::vector<NetWhitelistPermissions> vWhitelistedRange;
|
||
std::vector<NetWhitebindPermissions> vWhiteBinds;
|
||
std::vector<CService> vBinds;
|
||
std::vector<CService> onion_binds;
|
||
bool m_use_addrman_outgoing = true;
|
||
std::vector<std::string> m_specified_outgoing;
|
||
std::vector<std::string> m_added_nodes;
|
||
SocketEventsMode socketEventsMode = SOCKETEVENTS_SELECT;
|
||
std::vector<bool> m_asmap;
|
||
bool m_i2p_accept_incoming;
|
||
};
|
||
|
||
void Init(const Options& connOptions) {
|
||
nLocalServices = connOptions.nLocalServices;
|
||
nMaxConnections = connOptions.nMaxConnections;
|
||
m_max_outbound_full_relay = std::min(connOptions.m_max_outbound_full_relay, connOptions.nMaxConnections);
|
||
m_max_outbound_block_relay = connOptions.m_max_outbound_block_relay;
|
||
m_use_addrman_outgoing = connOptions.m_use_addrman_outgoing;
|
||
nMaxAddnode = connOptions.nMaxAddnode;
|
||
nMaxFeeler = connOptions.nMaxFeeler;
|
||
m_max_outbound = m_max_outbound_full_relay + m_max_outbound_block_relay + nMaxFeeler;
|
||
clientInterface = connOptions.uiInterface;
|
||
m_banman = connOptions.m_banman;
|
||
m_msgproc = connOptions.m_msgproc;
|
||
nSendBufferMaxSize = connOptions.nSendBufferMaxSize;
|
||
nReceiveFloodSize = connOptions.nReceiveFloodSize;
|
||
m_peer_connect_timeout = connOptions.m_peer_connect_timeout;
|
||
{
|
||
LOCK(cs_totalBytesSent);
|
||
nMaxOutboundLimit = connOptions.nMaxOutboundLimit;
|
||
}
|
||
vWhitelistedRange = connOptions.vWhitelistedRange;
|
||
{
|
||
LOCK(cs_vAddedNodes);
|
||
vAddedNodes = connOptions.m_added_nodes;
|
||
}
|
||
socketEventsMode = connOptions.socketEventsMode;
|
||
m_onion_binds = connOptions.onion_binds;
|
||
}
|
||
|
||
CConnman(uint64_t seed0, uint64_t seed1, CAddrMan& addrman);
|
||
~CConnman();
|
||
bool Start(CScheduler& scheduler, const Options& options);
|
||
|
||
void StopThreads();
|
||
void StopNodes();
|
||
void Stop()
|
||
{
|
||
StopThreads();
|
||
StopNodes();
|
||
};
|
||
|
||
void Interrupt();
|
||
bool GetNetworkActive() const { return fNetworkActive; };
|
||
bool GetUseAddrmanOutgoing() const { return m_use_addrman_outgoing; };
|
||
void SetNetworkActive(bool active);
|
||
SocketEventsMode GetSocketEventsMode() const { return socketEventsMode; }
|
||
|
||
enum class MasternodeConn {
|
||
IsNotConnection,
|
||
IsConnection,
|
||
};
|
||
|
||
enum class MasternodeProbeConn {
|
||
IsNotConnection,
|
||
IsConnection,
|
||
};
|
||
|
||
void OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant* grantOutbound, const char* strDest, ConnectionType conn_type, MasternodeConn masternode_connection = MasternodeConn::IsNotConnection, MasternodeProbeConn masternode_probe_connection = MasternodeProbeConn::IsNotConnection);
|
||
void OpenMasternodeConnection(const CAddress& addrConnect, MasternodeProbeConn probe = MasternodeProbeConn::IsConnection);
|
||
bool CheckIncomingNonce(uint64_t nonce);
|
||
|
||
struct CFullyConnectedOnly {
|
||
bool operator() (const CNode* pnode) const {
|
||
return NodeFullyConnected(pnode);
|
||
}
|
||
};
|
||
|
||
constexpr static const CFullyConnectedOnly FullyConnectedOnly{};
|
||
|
||
struct CAllNodes {
|
||
bool operator() (const CNode*) const {return true;}
|
||
};
|
||
|
||
constexpr static const CAllNodes AllNodes{};
|
||
|
||
bool ForNode(NodeId id, std::function<bool(const CNode* pnode)> cond, std::function<bool(CNode* pnode)> func);
|
||
bool ForNode(const CService& addr, std::function<bool(const CNode* pnode)> cond, std::function<bool(CNode* pnode)> func);
|
||
|
||
template<typename Callable>
|
||
bool ForNode(const CService& addr, Callable&& func)
|
||
{
|
||
return ForNode(addr, FullyConnectedOnly, func);
|
||
}
|
||
|
||
template<typename Callable>
|
||
bool ForNode(NodeId id, Callable&& func)
|
||
{
|
||
return ForNode(id, FullyConnectedOnly, func);
|
||
}
|
||
|
||
bool IsConnected(const CService& addr, std::function<bool(const CNode* pnode)> cond)
|
||
{
|
||
return ForNode(addr, cond, [](CNode* pnode){
|
||
return true;
|
||
});
|
||
}
|
||
|
||
bool IsMasternodeOrDisconnectRequested(const CService& addr);
|
||
|
||
void PushMessage(CNode* pnode, CSerializedNetMsg&& msg);
|
||
|
||
template<typename Condition, typename Callable>
|
||
bool ForEachNodeContinueIf(const Condition& cond, Callable&& func)
|
||
{
|
||
LOCK(cs_vNodes);
|
||
for (auto&& node : vNodes)
|
||
if (cond(node))
|
||
if(!func(node))
|
||
return false;
|
||
return true;
|
||
};
|
||
|
||
template<typename Callable>
|
||
bool ForEachNodeContinueIf(Callable&& func)
|
||
{
|
||
return ForEachNodeContinueIf(FullyConnectedOnly, func);
|
||
}
|
||
|
||
template<typename Condition, typename Callable>
|
||
bool ForEachNodeContinueIf(const Condition& cond, Callable&& func) const
|
||
{
|
||
LOCK(cs_vNodes);
|
||
for (const auto& node : vNodes)
|
||
if (cond(node))
|
||
if(!func(node))
|
||
return false;
|
||
return true;
|
||
};
|
||
|
||
template<typename Callable>
|
||
bool ForEachNodeContinueIf(Callable&& func) const
|
||
{
|
||
return ForEachNodeContinueIf(FullyConnectedOnly, func);
|
||
}
|
||
|
||
template<typename Condition, typename Callable>
|
||
void ForEachNode(const Condition& cond, Callable&& func)
|
||
{
|
||
LOCK(cs_vNodes);
|
||
for (auto&& node : vNodes) {
|
||
if (cond(node))
|
||
func(node);
|
||
}
|
||
};
|
||
|
||
template<typename Callable>
|
||
void ForEachNode(Callable&& func)
|
||
{
|
||
ForEachNode(FullyConnectedOnly, func);
|
||
}
|
||
|
||
template<typename Condition, typename Callable>
|
||
void ForEachNode(const Condition& cond, Callable&& func) const
|
||
{
|
||
LOCK(cs_vNodes);
|
||
for (auto&& node : vNodes) {
|
||
if (cond(node))
|
||
func(node);
|
||
}
|
||
};
|
||
|
||
template<typename Callable>
|
||
void ForEachNode(Callable&& func) const
|
||
{
|
||
ForEachNode(FullyConnectedOnly, func);
|
||
}
|
||
|
||
template<typename Condition, typename Callable, typename CallableAfter>
|
||
void ForEachNodeThen(const Condition& cond, Callable&& pre, CallableAfter&& post)
|
||
{
|
||
LOCK(cs_vNodes);
|
||
for (auto&& node : vNodes) {
|
||
if (cond(node))
|
||
pre(node);
|
||
}
|
||
post();
|
||
};
|
||
|
||
template<typename Callable, typename CallableAfter>
|
||
void ForEachNodeThen(Callable&& pre, CallableAfter&& post)
|
||
{
|
||
ForEachNodeThen(FullyConnectedOnly, pre, post);
|
||
}
|
||
|
||
template<typename Condition, typename Callable, typename CallableAfter>
|
||
void ForEachNodeThen(const Condition& cond, Callable&& pre, CallableAfter&& post) const
|
||
{
|
||
LOCK(cs_vNodes);
|
||
for (auto&& node : vNodes) {
|
||
if (cond(node))
|
||
pre(node);
|
||
}
|
||
post();
|
||
};
|
||
|
||
template<typename Callable, typename CallableAfter>
|
||
void ForEachNodeThen(Callable&& pre, CallableAfter&& post) const
|
||
{
|
||
ForEachNodeThen(FullyConnectedOnly, pre, post);
|
||
}
|
||
|
||
std::vector<CNode*> CopyNodeVector(std::function<bool(const CNode* pnode)> cond);
|
||
std::vector<CNode*> CopyNodeVector();
|
||
void ReleaseNodeVector(const std::vector<CNode*>& vecNodes);
|
||
|
||
void RelayTransaction(const CTransaction& tx);
|
||
void RelayInv(CInv &inv, const int minProtoVersion = MIN_PEER_PROTO_VERSION);
|
||
void RelayInvFiltered(CInv &inv, const CTransaction &relatedTx, const int minProtoVersion = MIN_PEER_PROTO_VERSION);
|
||
// This overload will not update node filters, so use it only for the cases when other messages will update related transaction data in filters
|
||
void RelayInvFiltered(CInv &inv, const uint256 &relatedTxHash, const int minProtoVersion = MIN_PEER_PROTO_VERSION);
|
||
|
||
// Addrman functions
|
||
/**
|
||
* Return all or many randomly selected addresses, optionally by network.
|
||
*
|
||
* @param[in] max_addresses Maximum number of addresses to return (0 = all).
|
||
* @param[in] max_pct Maximum percentage of addresses to return (0 = all).
|
||
* @param[in] network Select only addresses of this network (nullopt = all).
|
||
*/
|
||
std::vector<CAddress> GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network);
|
||
|
||
/**
|
||
* Cache is used to minimize topology leaks, so it should
|
||
* be used for all non-trusted calls, for example, p2p.
|
||
* A non-malicious call (from RPC or a peer with addr permission) should
|
||
* call the function without a parameter to avoid using the cache.
|
||
*/
|
||
std::vector<CAddress> GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct);
|
||
|
||
// This allows temporarily exceeding m_max_outbound_full_relay, with the goal of finding
|
||
// a peer that is better than all our current peers.
|
||
void SetTryNewOutboundPeer(bool flag);
|
||
bool GetTryNewOutboundPeer();
|
||
|
||
// Return the number of outbound peers we have in excess of our target (eg,
|
||
// if we previously called SetTryNewOutboundPeer(true), and have since set
|
||
// to false, we may have extra peers that we wish to disconnect). This may
|
||
// return a value less than (num_outbound_connections - num_outbound_slots)
|
||
// in cases where some outbound connections are not yet fully connected, or
|
||
// not yet fully disconnected.
|
||
int GetExtraOutboundCount();
|
||
|
||
bool AddNode(const std::string& node);
|
||
bool RemoveAddedNode(const std::string& node);
|
||
std::vector<AddedNodeInfo> GetAddedNodeInfo();
|
||
|
||
bool AddPendingMasternode(const uint256& proTxHash);
|
||
void SetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set<uint256>& proTxHashes);
|
||
void SetMasternodeQuorumRelayMembers(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set<uint256>& proTxHashes);
|
||
bool HasMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash);
|
||
std::set<uint256> GetMasternodeQuorums(Consensus::LLMQType llmqType);
|
||
// also returns QWATCH nodes
|
||
std::set<NodeId> GetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash) const;
|
||
void RemoveMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash);
|
||
bool IsMasternodeQuorumNode(const CNode* pnode);
|
||
bool IsMasternodeQuorumRelayMember(const uint256& protxHash);
|
||
void AddPendingProbeConnections(const std::set<uint256>& proTxHashes);
|
||
|
||
size_t GetNodeCount(NumConnections num);
|
||
size_t GetMaxOutboundNodeCount();
|
||
void GetNodeStats(std::vector<CNodeStats>& vstats);
|
||
bool DisconnectNode(const std::string& node);
|
||
bool DisconnectNode(const CSubNet& subnet);
|
||
bool DisconnectNode(const CNetAddr& addr);
|
||
bool DisconnectNode(NodeId id);
|
||
|
||
//! Used to convey which local services we are offering peers during node
|
||
//! connection.
|
||
//!
|
||
//! The data returned by this is used in CNode construction,
|
||
//! which is used to advertise which services we are offering
|
||
//! that peer during `net_processing.cpp:PushNodeVersion()`.
|
||
ServiceFlags GetLocalServices() const;
|
||
|
||
uint64_t GetMaxOutboundTarget();
|
||
std::chrono::seconds GetMaxOutboundTimeframe();
|
||
|
||
//! check if the outbound target is reached
|
||
//! if param historicalBlockServingLimit is set true, the function will
|
||
//! response true if the limit for serving historical blocks has been reached
|
||
bool OutboundTargetReached(bool historicalBlockServingLimit);
|
||
|
||
//! response the bytes left in the current max outbound cycle
|
||
//! in case of no limit, it will always response 0
|
||
uint64_t GetOutboundTargetBytesLeft();
|
||
|
||
//! returns the time left in the current max outbound cycle
|
||
//! in case of no limit, it will always return 0
|
||
std::chrono::seconds GetMaxOutboundTimeLeftInCycle();
|
||
|
||
uint64_t GetTotalBytesRecv();
|
||
uint64_t GetTotalBytesSent();
|
||
|
||
/** Get a unique deterministic randomizer. */
|
||
CSipHasher GetDeterministicRandomizer(uint64_t id) const;
|
||
|
||
unsigned int GetReceiveFloodSize() const;
|
||
|
||
void WakeMessageHandler();
|
||
void WakeSelect();
|
||
|
||
/** Attempts to obfuscate tx time through exponentially distributed emitting.
|
||
Works assuming that a single interval is used.
|
||
Variable intervals will result in privacy decrease.
|
||
*/
|
||
int64_t PoissonNextSendInbound(int64_t now, int average_interval_seconds);
|
||
|
||
void SetAsmap(std::vector<bool> asmap) { addrman.m_asmap = std::move(asmap); }
|
||
|
||
private:
|
||
struct ListenSocket {
|
||
public:
|
||
SOCKET socket;
|
||
inline void AddSocketPermissionFlags(NetPermissionFlags& flags) const { NetPermissions::AddFlag(flags, m_permissions); }
|
||
ListenSocket(SOCKET socket_, NetPermissionFlags permissions_) : socket(socket_), m_permissions(permissions_) {}
|
||
private:
|
||
NetPermissionFlags m_permissions;
|
||
};
|
||
|
||
bool BindListenPort(const CService& bindAddr, bilingual_str& strError, NetPermissionFlags permissions);
|
||
bool Bind(const CService& addr, unsigned int flags, NetPermissionFlags permissions);
|
||
bool InitBinds(
|
||
const std::vector<CService>& binds,
|
||
const std::vector<NetWhitebindPermissions>& whiteBinds,
|
||
const std::vector<CService>& onion_binds);
|
||
|
||
void ThreadOpenAddedConnections();
|
||
void AddAddrFetch(const std::string& strDest);
|
||
void ProcessAddrFetch();
|
||
void ThreadOpenConnections(std::vector<std::string> connect);
|
||
void ThreadMessageHandler();
|
||
void ThreadI2PAcceptIncoming();
|
||
void AcceptConnection(const ListenSocket& hListenSocket);
|
||
|
||
/**
|
||
* Create a `CNode` object from a socket that has just been accepted and add the node to
|
||
* the `vNodes` member.
|
||
* @param[in] hSocket Connected socket to communicate with the peer.
|
||
* @param[in] permissionFlags The peer's permissions.
|
||
* @param[in] addr_bind The address and port at our side of the connection.
|
||
* @param[in] addr The address and port at the peer's side of the connection.
|
||
*/
|
||
void CreateNodeFromAcceptedSocket(SOCKET hSocket,
|
||
NetPermissionFlags permissionFlags,
|
||
const CAddress& addr_bind,
|
||
const CAddress& addr);
|
||
|
||
void DisconnectNodes();
|
||
void NotifyNumConnectionsChanged();
|
||
void CalculateNumConnectionsChangedStats();
|
||
void InactivityCheck(CNode *pnode) const;
|
||
bool GenerateSelectSet(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set);
|
||
#ifdef USE_KQUEUE
|
||
void SocketEventsKqueue(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
|
||
#endif
|
||
#ifdef USE_EPOLL
|
||
void SocketEventsEpoll(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
|
||
#endif
|
||
#ifdef USE_POLL
|
||
void SocketEventsPoll(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
|
||
#endif
|
||
void SocketEventsSelect(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
|
||
void SocketEvents(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
|
||
void SocketHandler();
|
||
void ThreadSocketHandler();
|
||
void ThreadDNSAddressSeed();
|
||
void ThreadOpenMasternodeConnections();
|
||
|
||
uint64_t CalculateKeyedNetGroup(const CAddress& ad) const;
|
||
|
||
CNode* FindNode(const CNetAddr& ip, bool fExcludeDisconnecting = true);
|
||
CNode* FindNode(const CSubNet& subNet, bool fExcludeDisconnecting = true);
|
||
CNode* FindNode(const std::string& addrName, bool fExcludeDisconnecting = true);
|
||
CNode* FindNode(const CService& addr, bool fExcludeDisconnecting = true);
|
||
|
||
bool AttemptToEvictConnection();
|
||
CNode* ConnectNode(CAddress addrConnect, const char *pszDest = nullptr, bool fCountFailure = false, ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY);
|
||
void AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr) const;
|
||
|
||
void DeleteNode(CNode* pnode);
|
||
|
||
NodeId GetNewNodeId();
|
||
|
||
size_t SocketSendData(CNode *pnode);
|
||
size_t SocketRecvData(CNode* pnode);
|
||
void DumpAddresses();
|
||
|
||
// Network stats
|
||
void RecordBytesRecv(uint64_t bytes);
|
||
void RecordBytesSent(uint64_t bytes);
|
||
|
||
/**
|
||
* Return vector of current BLOCK_RELAY peers.
|
||
*/
|
||
std::vector<CAddress> GetCurrentBlockRelayOnlyConns() const;
|
||
|
||
// Whether the node should be passed out in ForEach* callbacks
|
||
static bool NodeFullyConnected(const CNode* pnode);
|
||
|
||
void RegisterEvents(CNode* pnode);
|
||
void UnregisterEvents(CNode* pnode);
|
||
|
||
// Network usage totals
|
||
RecursiveMutex cs_totalBytesRecv;
|
||
RecursiveMutex cs_totalBytesSent;
|
||
uint64_t nTotalBytesRecv GUARDED_BY(cs_totalBytesRecv) {0};
|
||
uint64_t nTotalBytesSent GUARDED_BY(cs_totalBytesSent) {0};
|
||
|
||
// outbound limit & stats
|
||
uint64_t nMaxOutboundTotalBytesSentInCycle GUARDED_BY(cs_totalBytesSent) {0};
|
||
std::chrono::seconds nMaxOutboundCycleStartTime GUARDED_BY(cs_totalBytesSent) {0};
|
||
uint64_t nMaxOutboundLimit GUARDED_BY(cs_totalBytesSent);
|
||
|
||
// P2P timeout in seconds
|
||
int64_t m_peer_connect_timeout;
|
||
|
||
// Whitelisted ranges. Any node connecting from these is automatically
|
||
// whitelisted (as well as those connecting to whitelisted binds).
|
||
std::vector<NetWhitelistPermissions> vWhitelistedRange;
|
||
|
||
unsigned int nSendBufferMaxSize{0};
|
||
unsigned int nReceiveFloodSize{0};
|
||
|
||
std::vector<ListenSocket> vhListenSocket;
|
||
std::atomic<bool> fNetworkActive{true};
|
||
bool fAddressesInitialized{false};
|
||
CAddrMan& addrman;
|
||
std::deque<std::string> m_addr_fetches GUARDED_BY(m_addr_fetches_mutex);
|
||
RecursiveMutex m_addr_fetches_mutex;
|
||
std::vector<std::string> vAddedNodes GUARDED_BY(cs_vAddedNodes);
|
||
RecursiveMutex cs_vAddedNodes;
|
||
std::vector<uint256> vPendingMasternodes;
|
||
mutable RecursiveMutex cs_vPendingMasternodes;
|
||
std::map<std::pair<Consensus::LLMQType, uint256>, std::set<uint256>> masternodeQuorumNodes GUARDED_BY(cs_vPendingMasternodes);
|
||
std::map<std::pair<Consensus::LLMQType, uint256>, std::set<uint256>> masternodeQuorumRelayMembers GUARDED_BY(cs_vPendingMasternodes);
|
||
std::set<uint256> masternodePendingProbes GUARDED_BY(cs_vPendingMasternodes);
|
||
std::vector<CNode*> vNodes GUARDED_BY(cs_vNodes);
|
||
std::list<CNode*> vNodesDisconnected;
|
||
std::unordered_map<SOCKET, CNode*> mapSocketToNode;
|
||
mutable RecursiveMutex cs_vNodes;
|
||
std::atomic<NodeId> nLastNodeId{0};
|
||
unsigned int nPrevNodeCount{0};
|
||
|
||
/**
|
||
* Cache responses to addr requests to minimize privacy leak.
|
||
* Attack example: scraping addrs in real-time may allow an attacker
|
||
* to infer new connections of the victim by detecting new records
|
||
* with fresh timestamps (per self-announcement).
|
||
*/
|
||
struct CachedAddrResponse {
|
||
std::vector<CAddress> m_addrs_response_cache;
|
||
std::chrono::microseconds m_cache_entry_expiration{0};
|
||
};
|
||
|
||
/**
|
||
* Addr responses stored in different caches
|
||
* per (network, local socket) prevent cross-network node identification.
|
||
* If a node for example is multi-homed under Tor and IPv6,
|
||
* a single cache (or no cache at all) would let an attacker
|
||
* to easily detect that it is the same node by comparing responses.
|
||
* Indexing by local socket prevents leakage when a node has multiple
|
||
* listening addresses on the same network.
|
||
*
|
||
* The used memory equals to 1000 CAddress records (or around 40 bytes) per
|
||
* distinct Network (up to 5) we have/had an inbound peer from,
|
||
* resulting in at most ~196 KB. Every separate local socket may
|
||
* add up to ~196 KB extra.
|
||
*/
|
||
std::map<uint64_t, CachedAddrResponse> m_addr_response_caches;
|
||
|
||
/**
|
||
* Services this instance offers.
|
||
*
|
||
* This data is replicated in each CNode instance we create during peer
|
||
* connection (in ConnectNode()) under a member also called
|
||
* nLocalServices.
|
||
*
|
||
* This data is not marked const, but after being set it should not
|
||
* change. See the note in CNode::nLocalServices documentation.
|
||
*
|
||
* \sa CNode::nLocalServices
|
||
*/
|
||
ServiceFlags nLocalServices;
|
||
|
||
std::unique_ptr<CSemaphore> semOutbound;
|
||
std::unique_ptr<CSemaphore> semAddnode;
|
||
int nMaxConnections;
|
||
|
||
// How many full-relay (tx, block, addr) outbound peers we want
|
||
int m_max_outbound_full_relay;
|
||
|
||
// How many block-relay only outbound peers we want
|
||
// We do not relay tx or addr messages with these peers
|
||
int m_max_outbound_block_relay;
|
||
|
||
int nMaxAddnode;
|
||
int nMaxFeeler;
|
||
int m_max_outbound;
|
||
bool m_use_addrman_outgoing;
|
||
CClientUIInterface* clientInterface;
|
||
NetEventsInterface* m_msgproc;
|
||
/** Pointer to this node's banman. May be nullptr - check existence before dereferencing. */
|
||
BanMan* m_banman;
|
||
|
||
/**
|
||
* Addresses that were saved during the previous clean shutdown. We'll
|
||
* attempt to make block-relay-only connections to them.
|
||
*/
|
||
std::vector<CAddress> m_anchors;
|
||
|
||
/** SipHasher seeds for deterministic randomness */
|
||
const uint64_t nSeed0, nSeed1;
|
||
|
||
/** flag for waking the message processor. */
|
||
bool fMsgProcWake GUARDED_BY(mutexMsgProc);
|
||
|
||
std::condition_variable condMsgProc;
|
||
Mutex mutexMsgProc;
|
||
std::atomic<bool> flagInterruptMsgProc{false};
|
||
|
||
/**
|
||
* This is signaled when network activity should cease.
|
||
* A pointer to it is saved in `m_i2p_sam_session`, so make sure that
|
||
* the lifetime of `interruptNet` is not shorter than
|
||
* the lifetime of `m_i2p_sam_session`.
|
||
*/
|
||
CThreadInterrupt interruptNet;
|
||
|
||
/**
|
||
* I2P SAM session.
|
||
* Used to accept incoming and make outgoing I2P connections.
|
||
*/
|
||
std::unique_ptr<i2p::sam::Session> m_i2p_sam_session;
|
||
|
||
#ifdef USE_WAKEUP_PIPE
|
||
/** a pipe which is added to select() calls to wakeup before the timeout */
|
||
int wakeupPipe[2]{-1,-1};
|
||
#endif
|
||
std::atomic<bool> wakeupSelectNeeded{false};
|
||
|
||
SocketEventsMode socketEventsMode;
|
||
#ifdef USE_KQUEUE
|
||
int kqueuefd{-1};
|
||
#endif
|
||
#ifdef USE_EPOLL
|
||
int epollfd{-1};
|
||
#endif
|
||
|
||
/** Protected by cs_vNodes */
|
||
std::unordered_map<NodeId, CNode*> mapReceivableNodes GUARDED_BY(cs_vNodes);
|
||
std::unordered_map<NodeId, CNode*> mapSendableNodes GUARDED_BY(cs_vNodes);
|
||
/** Protected by cs_mapNodesWithDataToSend */
|
||
std::unordered_map<NodeId, CNode*> mapNodesWithDataToSend GUARDED_BY(cs_mapNodesWithDataToSend);
|
||
mutable RecursiveMutex cs_mapNodesWithDataToSend;
|
||
|
||
std::thread threadDNSAddressSeed;
|
||
std::thread threadSocketHandler;
|
||
std::thread threadOpenAddedConnections;
|
||
std::thread threadOpenConnections;
|
||
std::thread threadOpenMasternodeConnections;
|
||
std::thread threadMessageHandler;
|
||
std::thread threadI2PAcceptIncoming;
|
||
|
||
/** flag for deciding to connect to an extra outbound peer,
|
||
* in excess of m_max_outbound_full_relay
|
||
* This takes the place of a feeler connection */
|
||
std::atomic_bool m_try_another_outbound_peer;
|
||
|
||
std::atomic<int64_t> m_next_send_inv_to_incoming{0};
|
||
|
||
/**
|
||
* A vector of -bind=<address>:<port>=onion arguments each of which is
|
||
* an address and port that are designated for incoming Tor connections.
|
||
*/
|
||
std::vector<CService> m_onion_binds;
|
||
|
||
friend struct CConnmanTest;
|
||
friend struct ConnmanTestMsg;
|
||
};
|
||
void Discover();
|
||
uint16_t GetListenPort();
|
||
|
||
/**
|
||
* Interface for message handling
|
||
*/
|
||
class NetEventsInterface
|
||
{
|
||
public:
|
||
/** Initialize a peer (setup state, queue any initial messages) */
|
||
virtual void InitializeNode(CNode* pnode) = 0;
|
||
|
||
/** Handle removal of a peer (clear state) */
|
||
virtual void FinalizeNode(const CNode& node) = 0;
|
||
|
||
/**
|
||
* Process protocol messages received from a given node
|
||
*
|
||
* @param[in] pnode The node which we have received messages from.
|
||
* @param[in] interrupt Interrupt condition for processing threads
|
||
* @return True if there is more work to be done
|
||
*/
|
||
virtual bool ProcessMessages(CNode* pnode, std::atomic<bool>& interrupt) = 0;
|
||
|
||
/**
|
||
* Send queued protocol messages to a given node.
|
||
*
|
||
* @param[in] pnode The node which we are sending messages to.
|
||
* @return True if there is more work to be done
|
||
*/
|
||
virtual bool SendMessages(CNode* pnode) = 0;
|
||
|
||
|
||
protected:
|
||
/**
|
||
* Protected destructor so that instances can only be deleted by derived classes.
|
||
* If that restriction is no longer desired, this should be made public and virtual.
|
||
*/
|
||
~NetEventsInterface() = default;
|
||
};
|
||
|
||
enum
|
||
{
|
||
LOCAL_NONE, // unknown
|
||
LOCAL_IF, // address a local interface listens on
|
||
LOCAL_BIND, // address explicit bound to
|
||
LOCAL_MAPPED, // address reported by UPnP or NAT-PMP
|
||
LOCAL_MANUAL, // address explicitly specified (-externalip=)
|
||
|
||
LOCAL_MAX
|
||
};
|
||
|
||
bool IsPeerAddrLocalGood(CNode *pnode);
|
||
/** Returns a local address that we should advertise to this peer */
|
||
std::optional<CAddress> GetLocalAddrForPeer(CNode *pnode);
|
||
|
||
/**
|
||
* Mark a network as reachable or unreachable (no automatic connects to it)
|
||
* @note Networks are reachable by default
|
||
*/
|
||
void SetReachable(enum Network net, bool reachable);
|
||
/** @returns true if the network is reachable, false otherwise */
|
||
bool IsReachable(enum Network net);
|
||
/** @returns true if the address is in a reachable network, false otherwise */
|
||
bool IsReachable(const CNetAddr& addr);
|
||
|
||
bool AddLocal(const CService& addr, int nScore = LOCAL_NONE);
|
||
bool AddLocal(const CNetAddr& addr, int nScore = LOCAL_NONE);
|
||
void RemoveLocal(const CService& addr);
|
||
bool SeenLocal(const CService& addr);
|
||
bool IsLocal(const CService& addr);
|
||
bool GetLocal(CService &addr, const CNetAddr *paddrPeer = nullptr);
|
||
CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices);
|
||
|
||
|
||
extern bool fDiscover;
|
||
extern bool fListen;
|
||
|
||
/** Subversion as sent to the P2P network in `version` messages */
|
||
extern std::string strSubVersion;
|
||
|
||
struct LocalServiceInfo {
|
||
int nScore;
|
||
uint16_t nPort;
|
||
};
|
||
|
||
extern Mutex g_maplocalhost_mutex;
|
||
extern std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
|
||
|
||
extern const std::string NET_MESSAGE_COMMAND_OTHER;
|
||
typedef std::map<std::string, uint64_t> mapMsgCmdSize; //command, total bytes
|
||
|
||
class CNodeStats
|
||
{
|
||
public:
|
||
NodeId nodeid;
|
||
ServiceFlags nServices;
|
||
bool fRelayTxes;
|
||
int64_t nLastSend;
|
||
int64_t nLastRecv;
|
||
int64_t nLastTXTime;
|
||
int64_t nLastBlockTime;
|
||
int64_t nTimeConnected;
|
||
int64_t nTimeOffset;
|
||
std::string addrName;
|
||
int nVersion;
|
||
std::string cleanSubVer;
|
||
bool fInbound;
|
||
bool m_manual_connection;
|
||
int nStartingHeight;
|
||
uint64_t nSendBytes;
|
||
mapMsgCmdSize mapSendBytesPerMsgCmd;
|
||
uint64_t nRecvBytes;
|
||
mapMsgCmdSize mapRecvBytesPerMsgCmd;
|
||
NetPermissionFlags m_permissionFlags;
|
||
bool m_legacyWhitelisted;
|
||
int64_t m_ping_usec;
|
||
int64_t m_ping_wait_usec;
|
||
int64_t m_min_ping_usec;
|
||
// Our address, as reported by the peer
|
||
std::string addrLocal;
|
||
// Address of this peer
|
||
CAddress addr;
|
||
// Bind address of our side of the connection
|
||
CAddress addrBind;
|
||
// Network the peer connected through
|
||
Network m_network;
|
||
uint32_t m_mapped_as;
|
||
// In case this is a verified MN, this value is the proTx of the MN
|
||
uint256 verifiedProRegTxHash;
|
||
// In case this is a verified MN, this value is the hashed operator pubkey of the MN
|
||
uint256 verifiedPubKeyHash;
|
||
bool m_masternode_connection;
|
||
std::string m_conn_type_string;
|
||
};
|
||
|
||
|
||
|
||
/** Transport protocol agnostic message container.
|
||
* Ideally it should only contain receive time, payload,
|
||
* command and size.
|
||
*/
|
||
class CNetMessage {
|
||
public:
|
||
CDataStream m_recv; // received message data
|
||
int64_t m_time = 0; // time (in microseconds) of message receipt.
|
||
uint32_t m_message_size = 0; // size of the payload
|
||
uint32_t m_raw_message_size = 0; // used wire size of the message (including header/checksum)
|
||
std::string m_command;
|
||
|
||
CNetMessage(CDataStream&& recv_in) : m_recv(std::move(recv_in)) {}
|
||
|
||
void SetVersion(int nVersionIn)
|
||
{
|
||
m_recv.SetVersion(nVersionIn);
|
||
}
|
||
};
|
||
|
||
/** The TransportDeserializer takes care of holding and deserializing the
|
||
* network receive buffer. It can deserialize the network buffer into a
|
||
* transport protocol agnostic CNetMessage (command & payload)
|
||
*/
|
||
class TransportDeserializer {
|
||
public:
|
||
// returns true if the current deserialization is complete
|
||
virtual bool Complete() const = 0;
|
||
// set the serialization context version
|
||
virtual void SetVersion(int version) = 0;
|
||
/** read and deserialize data, advances msg_bytes data pointer */
|
||
virtual int Read(Span<const uint8_t>& msg_bytes) = 0;
|
||
// decomposes a message from the context
|
||
virtual std::optional<CNetMessage> GetMessage(int64_t time, uint32_t& out_err) = 0;
|
||
virtual ~TransportDeserializer() {}
|
||
};
|
||
|
||
class V1TransportDeserializer final : public TransportDeserializer
|
||
{
|
||
private:
|
||
const CChainParams& m_chain_params;
|
||
const NodeId m_node_id; // Only for logging
|
||
mutable CHash256 hasher;
|
||
mutable uint256 data_hash;
|
||
bool in_data; // parsing header (false) or data (true)
|
||
CDataStream hdrbuf; // partially received header
|
||
CMessageHeader hdr; // complete header
|
||
CDataStream vRecv; // received message data
|
||
unsigned int nHdrPos;
|
||
unsigned int nDataPos;
|
||
|
||
const uint256& GetMessageHash() const;
|
||
int readHeader(Span<const uint8_t> msg_bytes);
|
||
int readData(Span<const uint8_t> msg_bytes);
|
||
|
||
void Reset() {
|
||
vRecv.clear();
|
||
hdrbuf.clear();
|
||
hdrbuf.resize(24);
|
||
in_data = false;
|
||
nHdrPos = 0;
|
||
nDataPos = 0;
|
||
data_hash.SetNull();
|
||
hasher.Reset();
|
||
}
|
||
|
||
public:
|
||
V1TransportDeserializer(const CChainParams& chain_params, const NodeId node_id, int nTypeIn, int nVersionIn)
|
||
: m_chain_params(chain_params),
|
||
m_node_id(node_id),
|
||
hdrbuf(nTypeIn, nVersionIn),
|
||
vRecv(nTypeIn, nVersionIn)
|
||
{
|
||
Reset();
|
||
}
|
||
|
||
bool Complete() const override
|
||
{
|
||
if (!in_data)
|
||
return false;
|
||
return (hdr.nMessageSize == nDataPos);
|
||
}
|
||
void SetVersion(int nVersionIn) override
|
||
{
|
||
hdrbuf.SetVersion(nVersionIn);
|
||
vRecv.SetVersion(nVersionIn);
|
||
}
|
||
int Read(Span<const uint8_t>& msg_bytes) override
|
||
{
|
||
int ret = in_data ? readData(msg_bytes) : readHeader(msg_bytes);
|
||
if (ret < 0) {
|
||
Reset();
|
||
} else {
|
||
msg_bytes = msg_bytes.subspan(ret);
|
||
}
|
||
return ret;
|
||
}
|
||
std::optional<CNetMessage> GetMessage(int64_t time, uint32_t& out_err_raw_size) override;
|
||
};
|
||
|
||
/** The TransportSerializer prepares messages for the network transport
|
||
*/
|
||
class TransportSerializer {
|
||
public:
|
||
// prepare message for transport (header construction, error-correction computation, payload encryption, etc.)
|
||
virtual void prepareForTransport(CSerializedNetMsg& msg, std::vector<unsigned char>& header) = 0;
|
||
virtual ~TransportSerializer() {}
|
||
};
|
||
|
||
class V1TransportSerializer : public TransportSerializer {
|
||
public:
|
||
void prepareForTransport(CSerializedNetMsg& msg, std::vector<unsigned char>& header) override;
|
||
};
|
||
|
||
/** Information about a peer */
|
||
class CNode
|
||
{
|
||
friend class CConnman;
|
||
friend struct ConnmanTestMsg;
|
||
|
||
public:
|
||
std::unique_ptr<TransportDeserializer> m_deserializer;
|
||
std::unique_ptr<TransportSerializer> m_serializer;
|
||
|
||
NetPermissionFlags m_permissionFlags{ PF_NONE };
|
||
std::atomic<ServiceFlags> nServices{NODE_NONE};
|
||
SOCKET hSocket GUARDED_BY(cs_hSocket);
|
||
/** Total size of all vSendMsg entries */
|
||
size_t nSendSize GUARDED_BY(cs_vSend){0};
|
||
/** Offset inside the first vSendMsg already sent */
|
||
size_t nSendOffset GUARDED_BY(cs_vSend){0};
|
||
uint64_t nSendBytes GUARDED_BY(cs_vSend){0};
|
||
std::list<std::vector<unsigned char>> vSendMsg GUARDED_BY(cs_vSend);
|
||
std::atomic<size_t> nSendMsgSize{0};
|
||
RecursiveMutex cs_vSend;
|
||
RecursiveMutex cs_hSocket;
|
||
RecursiveMutex cs_vRecv;
|
||
|
||
RecursiveMutex cs_vProcessMsg;
|
||
std::list<CNetMessage> vProcessMsg GUARDED_BY(cs_vProcessMsg);
|
||
size_t nProcessQueueSize{0};
|
||
|
||
RecursiveMutex cs_sendProcessing;
|
||
|
||
uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0};
|
||
|
||
std::atomic<int64_t> nLastSend{0};
|
||
std::atomic<int64_t> nLastRecv{0};
|
||
const int64_t nTimeConnected;
|
||
std::atomic<int64_t> nTimeOffset{0};
|
||
std::atomic<int64_t> nLastWarningTime{0};
|
||
std::atomic<int64_t> nTimeFirstMessageReceived{0};
|
||
std::atomic<bool> fFirstMessageIsMNAUTH{false};
|
||
// Address of this peer
|
||
const CAddress addr;
|
||
// Bind address of our side of the connection
|
||
const CAddress addrBind;
|
||
std::atomic<int> nNumWarningsSkipped{0};
|
||
std::atomic<int> nVersion{0};
|
||
/**
|
||
* cleanSubVer is a sanitized string of the user agent byte array we read
|
||
* from the wire. This cleaned string can safely be logged or displayed.
|
||
*/
|
||
std::string cleanSubVer GUARDED_BY(cs_SubVer){};
|
||
RecursiveMutex cs_SubVer; // used for both cleanSubVer and strSubVer
|
||
bool m_prefer_evict{false}; // This peer is preferred for eviction.
|
||
bool HasPermission(NetPermissionFlags permission) const {
|
||
return NetPermissions::HasFlag(m_permissionFlags, permission);
|
||
}
|
||
// This boolean is unusued in actual processing, only present for backward compatibility at RPC/QT level
|
||
bool m_legacyWhitelisted{false};
|
||
bool fClient{false}; // set by version message
|
||
bool m_limited_node{false}; //after BIP159, set by version message
|
||
|
||
/**
|
||
* Whether the peer has signaled support for receiving ADDRv2 (BIP155)
|
||
* messages, implying a preference to receive ADDRv2 instead of ADDR ones.
|
||
*/
|
||
std::atomic_bool m_wants_addrv2{false};
|
||
std::atomic_bool fSuccessfullyConnected{false};
|
||
// Setting fDisconnect to true will cause the node to be disconnected the
|
||
// next time DisconnectNodes() runs
|
||
std::atomic_bool fDisconnect{false};
|
||
std::atomic<int64_t> nDisconnectLingerTime{0};
|
||
std::atomic_bool fSocketShutdown{false};
|
||
std::atomic_bool fOtherSideDisconnected { false };
|
||
bool fSentAddr{false};
|
||
// If 'true' this node will be disconnected on CMasternodeMan::ProcessMasternodeConnections()
|
||
std::atomic<bool> m_masternode_connection{false};
|
||
/**
|
||
* If 'true' this node will be disconnected after MNAUTH (outbound only) or
|
||
* after PROBE_WAIT_INTERVAL seconds since nTimeConnected
|
||
*/
|
||
std::atomic<bool> m_masternode_probe_connection{false};
|
||
// If 'true', we identified it as an intra-quorum relay connection
|
||
std::atomic<bool> m_masternode_iqr_connection{false};
|
||
CSemaphoreGrant grantOutbound;
|
||
std::atomic<int> nRefCount{0};
|
||
|
||
const uint64_t nKeyedNetGroup;
|
||
|
||
std::atomic_bool fPauseRecv{false};
|
||
std::atomic_bool fPauseSend{false};
|
||
|
||
std::atomic_bool fHasRecvData{false};
|
||
std::atomic_bool fCanSendData{false};
|
||
|
||
/**
|
||
* Get network the peer connected through.
|
||
*
|
||
* Returns Network::NET_ONION for *inbound* onion connections,
|
||
* and CNetAddr::GetNetClass() otherwise. The latter cannot be used directly
|
||
* because it doesn't detect the former, and it's not the responsibility of
|
||
* the CNetAddr class to know the actual network a peer is connected through.
|
||
*
|
||
* @return network the peer connected through.
|
||
*/
|
||
Network ConnectedThroughNetwork() const;
|
||
bool IsOutboundOrBlockRelayConn() const {
|
||
switch (m_conn_type) {
|
||
case ConnectionType::OUTBOUND_FULL_RELAY:
|
||
case ConnectionType::BLOCK_RELAY:
|
||
return true;
|
||
case ConnectionType::INBOUND:
|
||
case ConnectionType::MANUAL:
|
||
case ConnectionType::ADDR_FETCH:
|
||
case ConnectionType::FEELER:
|
||
return false;
|
||
} // no default case, so the compiler can warn about missing cases
|
||
|
||
assert(false);
|
||
}
|
||
|
||
bool IsFullOutboundConn() const {
|
||
return m_conn_type == ConnectionType::OUTBOUND_FULL_RELAY;
|
||
}
|
||
|
||
bool IsManualConn() const {
|
||
return m_conn_type == ConnectionType::MANUAL;
|
||
}
|
||
|
||
bool IsBlockOnlyConn() const {
|
||
return m_conn_type == ConnectionType::BLOCK_RELAY;
|
||
}
|
||
|
||
bool IsFeelerConn() const {
|
||
return m_conn_type == ConnectionType::FEELER;
|
||
}
|
||
|
||
bool IsAddrFetchConn() const {
|
||
return m_conn_type == ConnectionType::ADDR_FETCH;
|
||
}
|
||
|
||
bool IsInboundConn() const {
|
||
return m_conn_type == ConnectionType::INBOUND;
|
||
}
|
||
|
||
/* Whether we send addr messages over this connection */
|
||
bool RelayAddrsWithConn() const
|
||
{
|
||
return m_conn_type != ConnectionType::BLOCK_RELAY;
|
||
}
|
||
|
||
bool ExpectServicesFromConn() const {
|
||
switch (m_conn_type) {
|
||
case ConnectionType::INBOUND:
|
||
case ConnectionType::MANUAL:
|
||
case ConnectionType::FEELER:
|
||
return false;
|
||
case ConnectionType::OUTBOUND_FULL_RELAY:
|
||
case ConnectionType::BLOCK_RELAY:
|
||
case ConnectionType::ADDR_FETCH:
|
||
return true;
|
||
} // no default case, so the compiler can warn about missing cases
|
||
|
||
assert(false);
|
||
}
|
||
|
||
protected:
|
||
mapMsgCmdSize mapSendBytesPerMsgCmd GUARDED_BY(cs_vSend);
|
||
mapMsgCmdSize mapRecvBytesPerMsgCmd GUARDED_BY(cs_vRecv);
|
||
|
||
public:
|
||
uint256 hashContinue;
|
||
std::atomic<int> nStartingHeight{-1};
|
||
|
||
// flood relay
|
||
std::vector<CAddress> vAddrToSend;
|
||
std::unique_ptr<CRollingBloomFilter> m_addr_known{nullptr};
|
||
bool fGetAddr{false};
|
||
std::chrono::microseconds m_next_addr_send GUARDED_BY(cs_sendProcessing){0};
|
||
std::chrono::microseconds m_next_local_addr_send GUARDED_BY(cs_sendProcessing){0};
|
||
|
||
bool IsBlockRelayOnly() const;
|
||
|
||
// List of block ids we still have announce.
|
||
// There is no final sorting before sending, as they are always sent immediately
|
||
// and in the order requested.
|
||
std::vector<uint256> vInventoryBlockToSend GUARDED_BY(cs_inventory);
|
||
Mutex cs_inventory;
|
||
/** UNIX epoch time of the last block received from this peer that we had
|
||
* not yet seen (e.g. not already received from another peer), that passed
|
||
* preliminary validity checks and was saved to disk, even if we don't
|
||
* connect the block or it eventually fails connection. Used as an inbound
|
||
* peer eviction criterium in CConnman::AttemptToEvictConnection. */
|
||
std::atomic<int64_t> nLastBlockTime{0};
|
||
|
||
/** UNIX epoch time of the last transaction received from this peer that we
|
||
* had not yet seen (e.g. not already received from another peer) and that
|
||
* was accepted into our mempool. Used as an inbound peer eviction criterium
|
||
* in CConnman::AttemptToEvictConnection. */
|
||
std::atomic<int64_t> nLastTXTime{0};
|
||
|
||
struct TxRelay {
|
||
mutable RecursiveMutex cs_filter;
|
||
// We use fRelayTxes for two purposes -
|
||
// a) it allows us to not relay tx invs before receiving the peer's version message
|
||
// b) the peer may tell us in its version message that we should not relay tx invs
|
||
// unless it loads a bloom filter.
|
||
bool fRelayTxes GUARDED_BY(cs_filter){false};
|
||
std::unique_ptr<CBloomFilter> pfilter PT_GUARDED_BY(cs_filter) GUARDED_BY(cs_filter){nullptr};
|
||
|
||
mutable RecursiveMutex cs_tx_inventory;
|
||
// inventory based relay
|
||
CRollingBloomFilter filterInventoryKnown GUARDED_BY(cs_tx_inventory){50000, 0.000001};
|
||
// Set of transaction ids we still have to announce.
|
||
// They are sorted by the mempool before relay, so the order is not important.
|
||
std::set<uint256> setInventoryTxToSend GUARDED_BY(cs_tx_inventory);
|
||
// List of non-tx/non-block inventory items
|
||
std::vector<CInv> vInventoryOtherToSend GUARDED_BY(cs_tx_inventory);
|
||
// Used for BIP35 mempool sending, also protected by cs_tx_inventory
|
||
bool fSendMempool GUARDED_BY(cs_tx_inventory){false};
|
||
// Last time a "MEMPOOL" request was serviced.
|
||
std::atomic<std::chrono::seconds> m_last_mempool_req{0s};
|
||
std::chrono::microseconds nNextInvSend{0};
|
||
};
|
||
|
||
// in bitcoin: m_tx_relay == nullptr if we're not relaying transactions with this peer
|
||
// in dash: m_tx_relay should never be nullptr, use `RelayAddrsWithConn() == false` instead
|
||
std::unique_ptr<TxRelay> m_tx_relay{std::make_unique<TxRelay>()};
|
||
|
||
// Used for headers announcements - unfiltered blocks to relay
|
||
std::vector<uint256> vBlockHashesToAnnounce GUARDED_BY(cs_inventory);
|
||
|
||
// Ping time measurement:
|
||
// The pong reply we're expecting, or 0 if no pong expected.
|
||
std::atomic<uint64_t> nPingNonceSent{0};
|
||
// Time (in usec) the last ping was sent, or 0 if no ping was ever sent.
|
||
std::atomic<int64_t> nPingUsecStart{0};
|
||
// Last measured round-trip time.
|
||
std::atomic<int64_t> nPingUsecTime{0};
|
||
// Best measured round-trip time.
|
||
std::atomic<int64_t> nMinPingUsecTime{std::numeric_limits<int64_t>::max()};
|
||
// Whether a ping is requested.
|
||
std::atomic<bool> fPingQueued{false};
|
||
|
||
// If true, we will send him CoinJoin queue messages
|
||
std::atomic<bool> fSendDSQueue{false};
|
||
|
||
// If true, we will announce/send him plain recovered sigs (usually true for full nodes)
|
||
std::atomic<bool> fSendRecSigs{false};
|
||
// If true, we will send him all quorum related messages, even if he is not a member of our quorums
|
||
std::atomic<bool> qwatch{false};
|
||
|
||
CNode(NodeId id, ServiceFlags nLocalServicesIn, SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string &addrNameIn, ConnectionType conn_type_in, bool inbound_onion = false);
|
||
~CNode();
|
||
CNode(const CNode&) = delete;
|
||
CNode& operator=(const CNode&) = delete;
|
||
|
||
private:
|
||
const NodeId id;
|
||
const uint64_t nLocalHostNonce;
|
||
const ConnectionType m_conn_type;
|
||
std::atomic<int> m_greatest_common_version{INIT_PROTO_VERSION};
|
||
|
||
//! Services offered to this peer.
|
||
//!
|
||
//! This is supplied by the parent CConnman during peer connection
|
||
//! (CConnman::ConnectNode()) from its attribute of the same name.
|
||
//!
|
||
//! This is const because there is no protocol defined for renegotiating
|
||
//! services initially offered to a peer. The set of local services we
|
||
//! offer should not change after initialization.
|
||
//!
|
||
//! An interesting example of this is NODE_NETWORK and initial block
|
||
//! download: a node which starts up from scratch doesn't have any blocks
|
||
//! to serve, but still advertises NODE_NETWORK because it will eventually
|
||
//! fulfill this role after IBD completes. P2P code is written in such a
|
||
//! way that it can gracefully handle peers who don't make good on their
|
||
//! service advertisements.
|
||
const ServiceFlags nLocalServices;
|
||
|
||
std::list<CNetMessage> vRecvMsg; // Used only by SocketHandler thread
|
||
|
||
mutable RecursiveMutex cs_addrName;
|
||
std::string addrName GUARDED_BY(cs_addrName);
|
||
|
||
// Our address, as reported by the peer
|
||
CService addrLocal GUARDED_BY(cs_addrLocal);
|
||
mutable RecursiveMutex cs_addrLocal;
|
||
|
||
//! Whether this peer connected via our Tor onion service.
|
||
const bool m_inbound_onion{false};
|
||
|
||
// Challenge sent in VERSION to be answered with MNAUTH (only happens between MNs)
|
||
mutable RecursiveMutex cs_mnauth;
|
||
uint256 sentMNAuthChallenge GUARDED_BY(cs_mnauth);
|
||
uint256 receivedMNAuthChallenge GUARDED_BY(cs_mnauth);
|
||
uint256 verifiedProRegTxHash GUARDED_BY(cs_mnauth);
|
||
uint256 verifiedPubKeyHash GUARDED_BY(cs_mnauth);
|
||
|
||
public:
|
||
|
||
NodeId GetId() const {
|
||
return id;
|
||
}
|
||
|
||
uint64_t GetLocalNonce() const {
|
||
return nLocalHostNonce;
|
||
}
|
||
|
||
int GetRefCount() const
|
||
{
|
||
assert(nRefCount >= 0);
|
||
return nRefCount;
|
||
}
|
||
|
||
/**
|
||
* Receive bytes from the buffer and deserialize them into messages.
|
||
*
|
||
* @param[in] msg_bytes The raw data
|
||
* @param[out] complete Set True if at least one message has been
|
||
* deserialized and is ready to be processed
|
||
* @return True if the peer should stay connected,
|
||
* False if the peer should be disconnected from.
|
||
*/
|
||
bool ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete);
|
||
|
||
void SetCommonVersion(int greatest_common_version)
|
||
{
|
||
m_greatest_common_version = greatest_common_version;
|
||
}
|
||
int GetCommonVersion() const
|
||
{
|
||
return m_greatest_common_version;
|
||
}
|
||
|
||
CService GetAddrLocal() const;
|
||
//! May not be called more than once
|
||
void SetAddrLocal(const CService& addrLocalIn);
|
||
|
||
CNode* AddRef()
|
||
{
|
||
nRefCount++;
|
||
return this;
|
||
}
|
||
|
||
void Release()
|
||
{
|
||
nRefCount--;
|
||
}
|
||
|
||
|
||
|
||
void AddAddressKnown(const CAddress& _addr)
|
||
{
|
||
assert(m_addr_known);
|
||
m_addr_known->insert(_addr.GetKey());
|
||
}
|
||
|
||
/**
|
||
* Whether the peer supports the address. For example, a peer that does not
|
||
* implement BIP155 cannot receive Tor v3 addresses because it requires
|
||
* ADDRv2 (BIP155) encoding.
|
||
*/
|
||
bool IsAddrCompatible(const CAddress& addr) const
|
||
{
|
||
return m_wants_addrv2 || addr.IsAddrV1Compatible();
|
||
}
|
||
|
||
void PushAddress(const CAddress& _addr, FastRandomContext &insecure_rand)
|
||
{
|
||
// Known checking here is only to save space from duplicates.
|
||
// SendMessages will filter it again for knowns that were added
|
||
// after addresses were pushed.
|
||
assert(m_addr_known);
|
||
if (_addr.IsValid() && !m_addr_known->contains(_addr.GetKey()) && IsAddrCompatible(_addr)) {
|
||
if (vAddrToSend.size() >= MAX_ADDR_TO_SEND) {
|
||
vAddrToSend[insecure_rand.randrange(vAddrToSend.size())] = _addr;
|
||
} else {
|
||
vAddrToSend.push_back(_addr);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void AddKnownInventory(const uint256& hash)
|
||
{
|
||
LOCK(m_tx_relay->cs_tx_inventory);
|
||
m_tx_relay->filterInventoryKnown.insert(hash);
|
||
}
|
||
|
||
void PushInventory(const CInv& inv)
|
||
{
|
||
ASSERT_IF_DEBUG(inv.type != MSG_BLOCK);
|
||
if (inv.type == MSG_BLOCK) {
|
||
LogPrintf("%s -- WARNING: using PushInventory for BLOCK inv, peer=%d\n", __func__, id);
|
||
return;
|
||
}
|
||
|
||
LOCK(m_tx_relay->cs_tx_inventory);
|
||
if (m_tx_relay->filterInventoryKnown.contains(inv.hash)) {
|
||
LogPrint(BCLog::NET, "%s -- skipping known inv: %s peer=%d\n", __func__, inv.ToString(), id);
|
||
return;
|
||
}
|
||
LogPrint(BCLog::NET, "%s -- adding new inv: %s peer=%d\n", __func__, inv.ToString(), id);
|
||
if (inv.type == MSG_TX || inv.type == MSG_DSTX) {
|
||
m_tx_relay->setInventoryTxToSend.insert(inv.hash);
|
||
return;
|
||
}
|
||
m_tx_relay->vInventoryOtherToSend.push_back(inv);
|
||
}
|
||
|
||
void CloseSocketDisconnect(CConnman* connman);
|
||
|
||
void copyStats(CNodeStats &stats, const std::vector<bool> &m_asmap);
|
||
|
||
ServiceFlags GetLocalServices() const
|
||
{
|
||
return nLocalServices;
|
||
}
|
||
|
||
std::string GetAddrName() const;
|
||
//! Sets the addrName only if it was not previously set
|
||
void MaybeSetAddrName(const std::string& addrNameIn);
|
||
|
||
|
||
std::string ConnectionTypeAsString() const;
|
||
std::string GetLogString() const;
|
||
|
||
bool CanRelay() const { return !m_masternode_connection || m_masternode_iqr_connection; }
|
||
|
||
uint256 GetSentMNAuthChallenge() const {
|
||
LOCK(cs_mnauth);
|
||
return sentMNAuthChallenge;
|
||
}
|
||
|
||
uint256 GetReceivedMNAuthChallenge() const {
|
||
LOCK(cs_mnauth);
|
||
return receivedMNAuthChallenge;
|
||
}
|
||
|
||
uint256 GetVerifiedProRegTxHash() const {
|
||
LOCK(cs_mnauth);
|
||
return verifiedProRegTxHash;
|
||
}
|
||
|
||
uint256 GetVerifiedPubKeyHash() const {
|
||
LOCK(cs_mnauth);
|
||
return verifiedPubKeyHash;
|
||
}
|
||
|
||
void SetSentMNAuthChallenge(const uint256& newSentMNAuthChallenge) {
|
||
LOCK(cs_mnauth);
|
||
sentMNAuthChallenge = newSentMNAuthChallenge;
|
||
}
|
||
|
||
void SetReceivedMNAuthChallenge(const uint256& newReceivedMNAuthChallenge) {
|
||
LOCK(cs_mnauth);
|
||
receivedMNAuthChallenge = newReceivedMNAuthChallenge;
|
||
}
|
||
|
||
void SetVerifiedProRegTxHash(const uint256& newVerifiedProRegTxHash) {
|
||
LOCK(cs_mnauth);
|
||
verifiedProRegTxHash = newVerifiedProRegTxHash;
|
||
}
|
||
|
||
void SetVerifiedPubKeyHash(const uint256& newVerifiedPubKeyHash) {
|
||
LOCK(cs_mnauth);
|
||
verifiedPubKeyHash = newVerifiedPubKeyHash;
|
||
}
|
||
};
|
||
|
||
class CExplicitNetCleanup
|
||
{
|
||
public:
|
||
static void callCleanup();
|
||
};
|
||
|
||
/** Return a timestamp in the future (in microseconds) for exponentially distributed events. */
|
||
int64_t PoissonNextSend(int64_t now, int average_interval_seconds);
|
||
|
||
/** Wrapper to return mockable type */
|
||
inline std::chrono::microseconds PoissonNextSend(std::chrono::microseconds now, std::chrono::seconds average_interval)
|
||
{
|
||
return std::chrono::microseconds{PoissonNextSend(now.count(), average_interval.count())};
|
||
}
|
||
|
||
extern RecursiveMutex cs_main;
|
||
void EraseObjectRequest(NodeId nodeId, const CInv& inv) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
||
void RequestObject(NodeId nodeId, const CInv& inv, std::chrono::microseconds current_time, bool fForce=false) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
||
size_t GetRequestedObjectCount(NodeId nodeId) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
||
|
||
#endif // BITCOIN_NET_H
|