mirror of
https://github.com/dashpay/dash.git
synced 2024-12-28 13:32:47 +01:00
4536148b15
Add a pool for locked memory chunks, replacing LockedPageManager. This is something I've been wanting to do for a long time. The current approach of locking objects where they happen to be on the stack or heap in-place causes a lot of mlock/munlock system call overhead, slowing down any handling of keys. Also locked memory is a limited resource on many operating systems (and using a lot of it bogs down the system), so the previous approach of locking every page that may contain any key information (but also other information) is wasteful.
252 lines
8.1 KiB
C++
252 lines
8.1 KiB
C++
// Copyright (c) 2016 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#ifndef BITCOIN_SUPPORT_LOCKEDPOOL_H
|
|
#define BITCOIN_SUPPORT_LOCKEDPOOL_H
|
|
|
|
#include <stdint.h>
|
|
#include <list>
|
|
#include <map>
|
|
#include <mutex>
|
|
#include <memory>
|
|
|
|
/**
|
|
* OS-dependent allocation and deallocation of locked/pinned memory pages.
|
|
* Abstract base class.
|
|
*/
|
|
class LockedPageAllocator
|
|
{
|
|
public:
|
|
virtual ~LockedPageAllocator() {}
|
|
/** Allocate and lock memory pages.
|
|
* If len is not a multiple of the system page size, it is rounded up.
|
|
* Returns 0 in case of allocation failure.
|
|
*
|
|
* If locking the memory pages could not be accomplished it will still
|
|
* return the memory, however the lockingSuccess flag will be false.
|
|
* lockingSuccess is undefined if the allocation fails.
|
|
*/
|
|
virtual void* AllocateLocked(size_t len, bool *lockingSuccess) = 0;
|
|
|
|
/** Unlock and free memory pages.
|
|
* Clear the memory before unlocking.
|
|
*/
|
|
virtual void FreeLocked(void* addr, size_t len) = 0;
|
|
|
|
/** Get the total limit on the amount of memory that may be locked by this
|
|
* process, in bytes. Return size_t max if there is no limit or the limit
|
|
* is unknown. Return 0 if no memory can be locked at all.
|
|
*/
|
|
virtual size_t GetLimit() = 0;
|
|
};
|
|
|
|
/* An arena manages a contiguous region of memory by dividing it into
|
|
* chunks.
|
|
*/
|
|
class Arena
|
|
{
|
|
public:
|
|
Arena(void *base, size_t size, size_t alignment);
|
|
virtual ~Arena();
|
|
|
|
/** A chunk of memory.
|
|
*/
|
|
struct Chunk
|
|
{
|
|
/** Most significant bit of size_t. This is used to mark
|
|
* in-usedness of chunk.
|
|
*/
|
|
const static size_t SIZE_MSB = 1LLU << ((sizeof(size_t)*8)-1);
|
|
/** Maximum size of a chunk */
|
|
const static size_t MAX_SIZE = SIZE_MSB - 1;
|
|
|
|
Chunk(size_t size_in, bool used_in):
|
|
size(size_in | (used_in ? SIZE_MSB : 0)) {}
|
|
|
|
bool isInUse() const { return size & SIZE_MSB; }
|
|
void setInUse(bool used_in) { size = (size & ~SIZE_MSB) | (used_in ? SIZE_MSB : 0); }
|
|
size_t getSize() const { return size & ~SIZE_MSB; }
|
|
void setSize(size_t size_in) { size = (size & SIZE_MSB) | size_in; }
|
|
private:
|
|
size_t size;
|
|
};
|
|
/** Memory statistics. */
|
|
struct Stats
|
|
{
|
|
size_t used;
|
|
size_t free;
|
|
size_t total;
|
|
size_t chunks_used;
|
|
size_t chunks_free;
|
|
};
|
|
|
|
/** Allocate size bytes from this arena.
|
|
* Returns pointer on success, or 0 if memory is full or
|
|
* the application tried to allocate 0 bytes.
|
|
*/
|
|
void* alloc(size_t size);
|
|
|
|
/** Free a previously allocated chunk of memory.
|
|
* Freeing the zero pointer has no effect.
|
|
* Raises std::runtime_error in case of error.
|
|
*/
|
|
void free(void *ptr);
|
|
|
|
/** Get arena usage statistics */
|
|
Stats stats() const;
|
|
|
|
#ifdef ARENA_DEBUG
|
|
void walk() const;
|
|
#endif
|
|
|
|
/** Return whether a pointer points inside this arena.
|
|
* This returns base <= ptr < (base+size) so only use it for (inclusive)
|
|
* chunk starting addresses.
|
|
*/
|
|
bool addressInArena(void *ptr) const { return ptr >= base && ptr < end; }
|
|
private:
|
|
Arena(const Arena& other) = delete; // non construction-copyable
|
|
Arena& operator=(const Arena&) = delete; // non copyable
|
|
|
|
/** Map of chunk address to chunk information. This class makes use of the
|
|
* sorted order to merge previous and next chunks during deallocation.
|
|
*/
|
|
std::map<char*, Chunk> chunks;
|
|
/** Base address of arena */
|
|
char* base;
|
|
/** End address of arena */
|
|
char* end;
|
|
/** Minimum chunk alignment */
|
|
size_t alignment;
|
|
};
|
|
|
|
/** Pool for locked memory chunks.
|
|
*
|
|
* To avoid sensitive key data from being swapped to disk, the memory in this pool
|
|
* is locked/pinned.
|
|
*
|
|
* An arena manages a contiguous region of memory. The pool starts out with one arena
|
|
* but can grow to multiple arenas if the need arises.
|
|
*
|
|
* Unlike a normal C heap, the administrative structures are seperate from the managed
|
|
* memory. This has been done as the sizes and bases of objects are not in themselves sensitive
|
|
* information, as to conserve precious locked memory. In some operating systems
|
|
* the amount of memory that can be locked is small.
|
|
*/
|
|
class LockedPool
|
|
{
|
|
public:
|
|
/** Size of one arena of locked memory. This is a compromise.
|
|
* Do not set this too low, as managing many arenas will increase
|
|
* allocation and deallocation overhead. Setting it too high allocates
|
|
* more locked memory from the OS than strictly necessary.
|
|
*/
|
|
static const size_t ARENA_SIZE = 256*1024;
|
|
/** Chunk alignment. Another compromise. Setting this too high will waste
|
|
* memory, setting it too low will facilitate fragmentation.
|
|
*/
|
|
static const size_t ARENA_ALIGN = 16;
|
|
|
|
/** Callback when allocation succeeds but locking fails.
|
|
*/
|
|
typedef bool (*LockingFailed_Callback)();
|
|
|
|
/** Memory statistics. */
|
|
struct Stats
|
|
{
|
|
size_t used;
|
|
size_t free;
|
|
size_t total;
|
|
size_t locked;
|
|
size_t chunks_used;
|
|
size_t chunks_free;
|
|
};
|
|
|
|
/** Create a new LockedPool. This takes ownership of the MemoryPageLocker,
|
|
* you can only instantiate this with LockedPool(std::move(...)).
|
|
*
|
|
* The second argument is an optional callback when locking a newly allocated arena failed.
|
|
* If this callback is provided and returns false, the allocation fails (hard fail), if
|
|
* it returns true the allocation proceeds, but it could warn.
|
|
*/
|
|
LockedPool(std::unique_ptr<LockedPageAllocator> allocator, LockingFailed_Callback lf_cb_in = 0);
|
|
~LockedPool();
|
|
|
|
/** Allocate size bytes from this arena.
|
|
* Returns pointer on success, or 0 if memory is full or
|
|
* the application tried to allocate 0 bytes.
|
|
*/
|
|
void* alloc(size_t size);
|
|
|
|
/** Free a previously allocated chunk of memory.
|
|
* Freeing the zero pointer has no effect.
|
|
* Raises std::runtime_error in case of error.
|
|
*/
|
|
void free(void *ptr);
|
|
|
|
/** Get pool usage statistics */
|
|
Stats stats() const;
|
|
private:
|
|
LockedPool(const LockedPool& other) = delete; // non construction-copyable
|
|
LockedPool& operator=(const LockedPool&) = delete; // non copyable
|
|
|
|
std::unique_ptr<LockedPageAllocator> allocator;
|
|
|
|
/** Create an arena from locked pages */
|
|
class LockedPageArena: public Arena
|
|
{
|
|
public:
|
|
LockedPageArena(LockedPageAllocator *alloc_in, void *base_in, size_t size, size_t align);
|
|
~LockedPageArena();
|
|
private:
|
|
void *base;
|
|
size_t size;
|
|
LockedPageAllocator *allocator;
|
|
};
|
|
|
|
bool new_arena(size_t size, size_t align);
|
|
|
|
std::list<LockedPageArena> arenas;
|
|
LockingFailed_Callback lf_cb;
|
|
size_t cumulative_bytes_locked;
|
|
/** Mutex protects access to this pool's data structures, including arenas.
|
|
*/
|
|
mutable std::mutex mutex;
|
|
};
|
|
|
|
/**
|
|
* Singleton class to keep track of locked (ie, non-swappable) memory, for use in
|
|
* std::allocator templates.
|
|
*
|
|
* Some implementations of the STL allocate memory in some constructors (i.e., see
|
|
* MSVC's vector<T> implementation where it allocates 1 byte of memory in the allocator.)
|
|
* Due to the unpredictable order of static initializers, we have to make sure the
|
|
* LockedPoolManager instance exists before any other STL-based objects that use
|
|
* secure_allocator are created. So instead of having LockedPoolManager also be
|
|
* static-initialized, it is created on demand.
|
|
*/
|
|
class LockedPoolManager : public LockedPool
|
|
{
|
|
public:
|
|
/** Return the current instance, or create it once */
|
|
static LockedPoolManager& Instance()
|
|
{
|
|
std::call_once(LockedPoolManager::init_flag, LockedPoolManager::CreateInstance);
|
|
return *LockedPoolManager::_instance;
|
|
}
|
|
|
|
private:
|
|
LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator);
|
|
|
|
/** Create a new LockedPoolManager specialized to the OS */
|
|
static void CreateInstance();
|
|
/** Called when locking fails, warn the user here */
|
|
static bool LockingFailed();
|
|
|
|
static LockedPoolManager* _instance;
|
|
static std::once_flag init_flag;
|
|
};
|
|
|
|
#endif // BITCOIN_SUPPORT_LOCKEDPOOL_H
|