dash/src/immer/array_transient.hpp
Alexander Block e002c50b04 Add "immer" functional/immutable containers library (#2244)
Add "immer" functional/immutable containers library
2018-08-29 16:31:21 +03:00

188 lines
5.5 KiB
C++

//
// immer: immutable data structures for C++
// Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente
//
// This software is distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt
//
#pragma once
#include <immer/memory_policy.hpp>
#include <immer/detail/arrays/with_capacity.hpp>
namespace immer {
template <typename T, typename MemoryPolicy>
class array;
/*!
* Mutable version of `immer::array`.
*
* @rst
*
* Refer to :doc:`transients` to learn more about when and how to use
* the mutable versions of immutable containers.
*
* @endrst
*/
template <typename T, typename MemoryPolicy = default_memory_policy>
class array_transient
: MemoryPolicy::transience_t::owner
{
using impl_t = detail::arrays::with_capacity<T, MemoryPolicy>;
using impl_no_capacity_t = detail::arrays::no_capacity<T, MemoryPolicy>;
using owner_t = typename MemoryPolicy::transience_t::owner;
public:
using value_type = T;
using reference = const T&;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using const_reference = const T&;
using iterator = const T*;
using const_iterator = iterator;
using reverse_iterator = std::reverse_iterator<iterator>;
using memory_policy = MemoryPolicy;
using persistent_type = array<T, MemoryPolicy>;
/*!
* Default constructor. It creates a mutable array of `size() ==
* 0`. It does not allocate memory and its complexity is
* @f$ O(1) @f$.
*/
array_transient() = default;
/*!
* Returns an iterator pointing at the first element of the
* collection. It does not allocate memory and its complexity is
* @f$ O(1) @f$.
*/
iterator begin() const { return impl_.data(); }
/*!
* Returns an iterator pointing just after the last element of the
* collection. It does not allocate and its complexity is @f$ O(1) @f$.
*/
iterator end() const { return impl_.data() + impl_.size; }
/*!
* Returns an iterator that traverses the collection backwards,
* pointing at the first element of the reversed collection. It
* does not allocate memory and its complexity is @f$ O(1) @f$.
*/
reverse_iterator rbegin() const { return reverse_iterator{end()}; }
/*!
* Returns an iterator that traverses the collection backwards,
* pointing after the last element of the reversed collection. It
* does not allocate memory and its complexity is @f$ O(1) @f$.
*/
reverse_iterator rend() const { return reverse_iterator{begin()}; }
/*!
* Returns the number of elements in the container. It does
* not allocate memory and its complexity is @f$ O(1) @f$.
*/
std::size_t size() const { return impl_.size; }
/*!
* Returns `true` if there are no elements in the container. It
* does not allocate memory and its complexity is @f$ O(1) @f$.
*/
bool empty() const { return impl_.d->empty(); }
/*!
* Access the raw data.
*/
const T* data() const { return impl_.data(); }
/*!
* Access the last element.
*/
const T& back() const { return data()[size() - 1]; }
/*!
* Access the first element.
*/
const T& front() const { return data()[0]; }
/*!
* Returns a `const` reference to the element at position `index`.
* It is undefined when @f$ 0 index \geq size() @f$. It does not
* allocate memory and its complexity is *effectively* @f$ O(1)
* @f$.
*/
reference operator[] (size_type index) const
{ return impl_.get(index); }
/*!
* Returns a `const` reference to the element at position
* `index`. It throws an `std::out_of_range` exception when @f$
* index \geq size() @f$. It does not allocate memory and its
* complexity is *effectively* @f$ O(1) @f$.
*/
reference at(size_type index) const
{ return impl_.get_check(index); }
/*!
* Inserts `value` at the end. It may allocate memory and its
* complexity is *effectively* @f$ O(1) @f$.
*/
void push_back(value_type value)
{ impl_.push_back_mut(*this, std::move(value)); }
/*!
* Sets to the value `value` at position `idx`.
* Undefined for `index >= size()`.
* It may allocate memory and its complexity is
* *effectively* @f$ O(1) @f$.
*/
void set(size_type index, value_type value)
{ impl_.assoc_mut(*this, index, std::move(value)); }
/*!
* Updates the array to contain the result of the expression
* `fn((*this)[idx])` at position `idx`.
* Undefined for `0 >= size()`.
* It may allocate memory and its complexity is
* *effectively* @f$ O(1) @f$.
*/
template <typename FnT>
void update(size_type index, FnT&& fn)
{ impl_.update_mut(*this, index, std::forward<FnT>(fn)); }
/*!
* Resizes the array to only contain the first `min(elems, size())`
* elements. It may allocate memory and its complexity is
* *effectively* @f$ O(1) @f$.
*/
void take(size_type elems)
{ impl_.take_mut(*this, elems); }
/*!
* Returns an @a immutable form of this container, an
* `immer::array`.
*/
persistent_type persistent() &
{
this->owner_t::operator=(owner_t{});
return persistent_type{ impl_ };
}
persistent_type persistent() &&
{ return persistent_type{ std::move(impl_) }; }
private:
friend persistent_type;
array_transient(impl_t impl)
: impl_(std::move(impl))
{}
impl_t impl_ = impl_t::empty;
};
} // namespace immer