dash/test/functional/p2p_compactblocks.py
MarcoFalke 2cae37806b Merge #13424: Consistently validate txid / blockhash length and encoding in rpc calls
5eb20f81d9 Consistently use ParseHashV to validate hash inputs in rpc (Ben Woosley)

Pull request description:

  ParseHashV validates the length and encoding of the string and throws
  an informative RPC error on failure, which is as good or better than
  these alternative calls.

  Note I switched ParseHashV to check string length first, because
  IsHex tests that the length is even, and an error like:
  "must be of length 64 (not 63, for X)" is much more informative than
  "must be hexadecimal string (not X)" in that case.

  Split from #13420

Tree-SHA512: f0786b41c0d7793ff76e4b2bb35547873070bbf7561d510029e8edb93f59176277efcd4d183b3185532ea69fc0bbbf3dbe9e19362e8017007ae9d51266cd78ae
2023-04-06 20:14:58 +03:00

787 lines
35 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2016 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""CompactBlocksTest -- test compact blocks (BIP 152, without segwit support, version 1)
"""
import random
from test_framework.blocktools import create_block, create_coinbase
from test_framework.messages import BlockTransactions, BlockTransactionsRequest, calculate_shortid, CBlock, CBlockHeader, CInv, COutPoint, CTransaction, CTxIn, CTxOut, FromHex, HeaderAndShortIDs, msg_block, msg_blocktxn, msg_cmpctblock, msg_getblocktxn, msg_getdata, msg_getheaders, msg_headers, msg_inv, msg_sendcmpct, msg_sendheaders, msg_tx, MSG_BLOCK, MSG_CMPCT_BLOCK, NODE_NETWORK, P2PHeaderAndShortIDs, PrefilledTransaction, ToHex, NODE_HEADERS_COMPRESSED
from test_framework.mininode import mininode_lock, P2PInterface
from test_framework.script import CScript, OP_TRUE, OP_DROP
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import assert_equal, wait_until
# TestP2PConn: A peer we use to send messages to dashd, and store responses.
class TestP2PConn(P2PInterface):
def __init__(self, cmpct_version):
super().__init__()
self.last_sendcmpct = []
self.block_announced = False
# Store the hashes of blocks we've seen announced.
# This is for synchronizing the p2p message traffic,
# so we can eg wait until a particular block is announced.
self.announced_blockhashes = set()
self.cmpct_version = cmpct_version
def on_sendcmpct(self, message):
self.last_sendcmpct.append(message)
def on_cmpctblock(self, message):
self.block_announced = True
self.last_message["cmpctblock"].header_and_shortids.header.calc_sha256()
self.announced_blockhashes.add(self.last_message["cmpctblock"].header_and_shortids.header.sha256)
def on_headers(self, message):
self.block_announced = True
for x in self.last_message["headers"].headers:
x.calc_sha256()
self.announced_blockhashes.add(x.sha256)
def on_inv(self, message):
for x in self.last_message["inv"].inv:
if x.type == MSG_BLOCK:
self.block_announced = True
self.announced_blockhashes.add(x.hash)
# Requires caller to hold mininode_lock
def received_block_announcement(self):
return self.block_announced
def clear_block_announcement(self):
with mininode_lock:
self.block_announced = False
self.last_message.pop("inv", None)
self.last_message.pop("headers", None)
self.last_message.pop("cmpctblock", None)
def get_headers(self, locator, hashstop):
msg = msg_getheaders()
msg.locator.vHave = locator
msg.hashstop = hashstop
self.send_message(msg)
def send_header_for_blocks(self, new_blocks):
headers_message = msg_headers()
headers_message.headers = [CBlockHeader(b) for b in new_blocks]
self.send_message(headers_message)
def request_headers_and_sync(self, locator, hashstop=0):
self.clear_block_announcement()
self.get_headers(locator, hashstop)
wait_until(self.received_block_announcement, timeout=30, lock=mininode_lock)
self.clear_block_announcement()
# Block until a block announcement for a particular block hash is
# received.
def wait_for_block_announcement(self, block_hash, timeout=30):
def received_hash():
return (block_hash in self.announced_blockhashes)
wait_until(received_hash, timeout=timeout, lock=mininode_lock)
def send_await_disconnect(self, message, timeout=30):
"""Sends a message to the node and wait for disconnect.
This is used when we want to send a message into the node that we expect
will get us disconnected, eg an invalid block."""
self.send_message(message)
wait_until(lambda: not self.is_connected, timeout=timeout, lock=mininode_lock)
class CompactBlocksTest(BitcoinTestFramework):
def set_test_params(self):
self.setup_clean_chain = True
self.num_nodes = 1
self.extra_args = [[
# "-txindex",
"-acceptnonstdtxn=1",
]]
self.utxos = []
def skip_test_if_missing_module(self):
self.skip_if_no_wallet()
def build_block_on_tip(self, node):
height = node.getblockcount()
tip = node.getbestblockhash()
mtp = node.getblockheader(tip)['mediantime']
block = create_block(int(tip, 16), create_coinbase(height + 1), mtp + 1)
block.solve()
return block
# Create 10 more anyone-can-spend utxo's for testing.
def make_utxos(self):
block = self.build_block_on_tip(self.nodes[0])
self.test_node.send_and_ping(msg_block(block))
assert int(self.nodes[0].getbestblockhash(), 16) == block.sha256
self.nodes[0].generatetoaddress(100, self.nodes[0].getnewaddress())
total_value = block.vtx[0].vout[0].nValue
out_value = total_value // 10
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(block.vtx[0].sha256, 0), b''))
for i in range(10):
tx.vout.append(CTxOut(out_value, CScript([OP_TRUE])))
tx.rehash()
block2 = self.build_block_on_tip(self.nodes[0])
block2.vtx.append(tx)
block2.hashMerkleRoot = block2.calc_merkle_root()
block2.solve()
self.test_node.send_and_ping(msg_block(block2))
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block2.sha256)
self.utxos.extend([[tx.sha256, i, out_value] for i in range(10)])
# Test "sendcmpct" (between peers with the same version):
# - No compact block announcements unless sendcmpct is sent.
# - If sendcmpct is sent with boolean 0, then block announcements are not
# made with compact blocks.
# - If sendcmpct is then sent with boolean 1, then new block announcements
# are made with compact blocks.
# If old_node is passed in, request compact blocks with version=preferred-1
# and verify that it receives block announcements via compact block.
def test_sendcmpct(self, test_node, old_node=None):
preferred_version = test_node.cmpct_version
node = self.nodes[0]
# Make sure we get a SENDCMPCT message from our peer
def received_sendcmpct():
return (len(test_node.last_sendcmpct) > 0)
wait_until(received_sendcmpct, timeout=30, lock=mininode_lock)
with mininode_lock:
# Check that the first version received is the preferred one
assert_equal(test_node.last_sendcmpct[0].version, preferred_version)
# And that we receive versions down to 1.
assert_equal(test_node.last_sendcmpct[-1].version, 1)
test_node.last_sendcmpct = []
tip = int(node.getbestblockhash(), 16)
def check_announcement_of_new_block(node, peer, predicate):
peer.clear_block_announcement()
block_hash = int(node.generate(1)[0], 16)
peer.wait_for_block_announcement(block_hash, timeout=30)
assert peer.block_announced
with mininode_lock:
assert predicate(peer), (
"block_hash={!r}, cmpctblock={!r}, inv={!r}".format(
block_hash, peer.last_message.get("cmpctblock", None), peer.last_message.get("inv", None)))
# We shouldn't get any block announcements via cmpctblock yet.
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message)
# Try one more time, this time after requesting headers.
test_node.request_headers_and_sync(locator=[tip])
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message and "inv" in p.last_message)
# Test a few ways of using sendcmpct that should NOT
# result in compact block announcements.
# Before each test, sync the headers chain.
test_node.request_headers_and_sync(locator=[tip])
# Now try a SENDCMPCT message with too-high version
sendcmpct = msg_sendcmpct()
sendcmpct.version = preferred_version + 1
sendcmpct.announce = True
test_node.send_and_ping(sendcmpct)
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message)
# Headers sync before next test.
test_node.request_headers_and_sync(locator=[tip])
# Now try a SENDCMPCT message with valid version, but announce=False
sendcmpct.version = preferred_version
sendcmpct.announce = False
test_node.send_and_ping(sendcmpct)
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message)
# Headers sync before next test.
test_node.request_headers_and_sync(locator=[tip])
# Finally, try a SENDCMPCT message with announce=True
sendcmpct.version = preferred_version
sendcmpct.announce = True
test_node.send_and_ping(sendcmpct)
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)
# Try one more time (no headers sync should be needed!)
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)
# Try one more time, after turning on sendheaders
test_node.send_and_ping(msg_sendheaders())
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)
# Try one more time, after sending a version-1, announce=false message.
sendcmpct.version = preferred_version - 1
sendcmpct.announce = False
test_node.send_and_ping(sendcmpct)
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)
# Now turn off announcements
sendcmpct.version = preferred_version
sendcmpct.announce = False
test_node.send_and_ping(sendcmpct)
check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message and "headers" in p.last_message)
# This code should be enabled after increasing cmctblk version
to_validate = False
if to_validate and old_node is not None:
# Verify that a peer using an older protocol version can receive
# announcements from this node.
sendcmpct.version = preferred_version - 1
sendcmpct.announce = True
old_node.send_and_ping(sendcmpct)
# Header sync
old_node.request_headers_and_sync(locator=[tip])
check_announcement_of_new_block(node, old_node, lambda p: "cmpctblock" in p.last_message)
# This test actually causes dashd to (reasonably!) disconnect us, so do this last.
def test_invalid_cmpctblock_message(self):
self.nodes[0].generate(101)
block = self.build_block_on_tip(self.nodes[0])
cmpct_block = P2PHeaderAndShortIDs()
cmpct_block.header = CBlockHeader(block)
cmpct_block.prefilled_txn_length = 1
# This index will be too high
prefilled_txn = PrefilledTransaction(1, block.vtx[0])
cmpct_block.prefilled_txn = [prefilled_txn]
self.test_node.send_await_disconnect(msg_cmpctblock(cmpct_block))
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.hashPrevBlock)
# Compare the generated shortids to what we expect based on BIP 152, given
# dashd's choice of nonce.
def test_compactblock_construction(self, test_node):
version = test_node.cmpct_version
node = self.nodes[0]
# Generate a bunch of transactions.
node.generate(101)
num_transactions = 25
address = node.getnewaddress()
for i in range(num_transactions):
txid = node.sendtoaddress(address, 0.1)
hex_tx = node.gettransaction(txid)["hex"]
tx = FromHex(CTransaction(), hex_tx)
# Wait until we've seen the block announcement for the resulting tip
tip = int(node.getbestblockhash(), 16)
test_node.wait_for_block_announcement(tip)
# Make sure we will receive a fast-announce compact block
self.request_cb_announcements(test_node)
# Now mine a block, and look at the resulting compact block.
test_node.clear_block_announcement()
block_hash = int(node.generate(1)[0], 16)
# Store the raw block in our internal format.
block = FromHex(CBlock(), node.getblock("%064x" % block_hash, False))
for tx in block.vtx:
tx.calc_sha256()
block.rehash()
# Wait until the block was announced (via compact blocks)
wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30, lock=mininode_lock)
# Now fetch and check the compact block
header_and_shortids = None
with mininode_lock:
assert "cmpctblock" in test_node.last_message
# Convert the on-the-wire representation to absolute indexes
header_and_shortids = HeaderAndShortIDs(test_node.last_message["cmpctblock"].header_and_shortids)
self.check_compactblock_construction_from_block(version, header_and_shortids, block_hash, block)
# Now fetch the compact block using a normal non-announce getdata
with mininode_lock:
test_node.clear_block_announcement()
inv = CInv(MSG_CMPCT_BLOCK, block_hash) # 20 == "CompactBlock"
test_node.send_message(msg_getdata([inv]))
wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30, lock=mininode_lock)
# Now fetch and check the compact block
header_and_shortids = None
with mininode_lock:
assert "cmpctblock" in test_node.last_message
# Convert the on-the-wire representation to absolute indexes
header_and_shortids = HeaderAndShortIDs(test_node.last_message["cmpctblock"].header_and_shortids)
self.check_compactblock_construction_from_block(version, header_and_shortids, block_hash, block)
def check_compactblock_construction_from_block(self, version, header_and_shortids, block_hash, block):
# Check that we got the right block!
header_and_shortids.header.calc_sha256()
assert_equal(header_and_shortids.header.sha256, block_hash)
# Make sure the prefilled_txn appears to have included the coinbase
assert len(header_and_shortids.prefilled_txn) >= 1
assert_equal(header_and_shortids.prefilled_txn[0].index, 0)
# Check that all prefilled_txn entries match what's in the block.
for entry in header_and_shortids.prefilled_txn:
entry.tx.calc_sha256()
# This checks the tx agree
assert_equal(entry.tx.sha256, block.vtx[entry.index].sha256)
# Check that the cmpctblock message announced all the transactions.
assert_equal(len(header_and_shortids.prefilled_txn) + len(header_and_shortids.shortids), len(block.vtx))
# And now check that all the shortids are as expected as well.
# Determine the siphash keys to use.
[k0, k1] = header_and_shortids.get_siphash_keys()
index = 0
while index < len(block.vtx):
if (len(header_and_shortids.prefilled_txn) > 0 and
header_and_shortids.prefilled_txn[0].index == index):
# Already checked prefilled transactions above
header_and_shortids.prefilled_txn.pop(0)
else:
tx_hash = block.vtx[index].sha256
shortid = calculate_shortid(k0, k1, tx_hash)
assert_equal(shortid, header_and_shortids.shortids[0])
header_and_shortids.shortids.pop(0)
index += 1
# Test that dashd requests compact blocks when we announce new blocks
# via header or inv, and that responding to getblocktxn causes the block
# to be successfully reconstructed.
def test_compactblock_requests(self, test_node):
node = self.nodes[0]
# Try announcing a block with an inv or header, expect a compactblock
# request
for announce in ["inv", "header"]:
block = self.build_block_on_tip(node)
if announce == "inv":
test_node.send_message(msg_inv([CInv(MSG_BLOCK, block.sha256)]))
getheaders_key = "getheaders2" if test_node.nServices & NODE_HEADERS_COMPRESSED else "getheaders"
wait_until(lambda: getheaders_key in test_node.last_message, timeout=30, lock=mininode_lock)
test_node.send_header_for_blocks([block])
else:
test_node.send_header_for_blocks([block])
test_node.wait_for_getdata([block.sha256], timeout=30)
assert_equal(test_node.last_message["getdata"].inv[0].type, MSG_CMPCT_BLOCK)
# Send back a compactblock message that omits the coinbase
comp_block = HeaderAndShortIDs()
comp_block.header = CBlockHeader(block)
comp_block.nonce = 0
[k0, k1] = comp_block.get_siphash_keys()
comp_block.shortids = [
calculate_shortid(k0, k1, block.vtx[0].sha256) ]
test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock)
# Expect a getblocktxn message.
with mininode_lock:
assert "getblocktxn" in test_node.last_message
absolute_indexes = test_node.last_message["getblocktxn"].block_txn_request.to_absolute()
assert_equal(absolute_indexes, [0]) # should be a coinbase request
# Send the coinbase, and verify that the tip advances.
msg = msg_blocktxn()
msg.block_transactions.blockhash = block.sha256
msg.block_transactions.transactions = [block.vtx[0]]
test_node.send_and_ping(msg)
assert_equal(int(node.getbestblockhash(), 16), block.sha256)
# Create a chain of transactions from given utxo, and add to a new block.
def build_block_with_transactions(self, node, utxo, num_transactions):
block = self.build_block_on_tip(node)
for i in range(num_transactions):
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(utxo[0], utxo[1]), b''))
tx.vout.append(CTxOut(utxo[2] - 1000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))
tx.rehash()
utxo = [tx.sha256, 0, tx.vout[0].nValue]
block.vtx.append(tx)
block.hashMerkleRoot = block.calc_merkle_root()
block.solve()
return block
# Test that we only receive getblocktxn requests for transactions that the
# node needs, and that responding to them causes the block to be
# reconstructed.
def test_getblocktxn_requests(self, test_node):
node = self.nodes[0]
def test_getblocktxn_response(compact_block, peer, expected_result):
msg = msg_cmpctblock(compact_block.to_p2p())
peer.send_and_ping(msg)
with mininode_lock:
assert "getblocktxn" in peer.last_message
absolute_indexes = peer.last_message["getblocktxn"].block_txn_request.to_absolute()
assert_equal(absolute_indexes, expected_result)
def test_tip_after_message(node, peer, msg, tip):
peer.send_and_ping(msg)
assert_equal(int(node.getbestblockhash(), 16), tip)
# First try announcing compactblocks that won't reconstruct, and verify
# that we receive getblocktxn messages back.
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, 5)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block)
test_getblocktxn_response(comp_block, test_node, [1, 2, 3, 4, 5])
msg_bt = msg_blocktxn()
msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[1:])
test_tip_after_message(node, test_node, msg_bt, block.sha256)
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, 5)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
# Now try interspersing the prefilled transactions
comp_block.initialize_from_block(block, prefill_list=[0, 1, 5])
test_getblocktxn_response(comp_block, test_node, [2, 3, 4])
msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[2:5])
test_tip_after_message(node, test_node, msg_bt, block.sha256)
# Now try giving one transaction ahead of time.
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, 5)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
test_node.send_and_ping(msg_tx(block.vtx[1]))
assert block.vtx[1].hash in node.getrawmempool()
# Prefill 4 out of the 6 transactions, and verify that only the one
# that was not in the mempool is requested.
comp_block.initialize_from_block(block, prefill_list=[0, 2, 3, 4])
test_getblocktxn_response(comp_block, test_node, [5])
msg_bt.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]])
test_tip_after_message(node, test_node, msg_bt, block.sha256)
# Now provide all transactions to the node before the block is
# announced and verify reconstruction happens immediately.
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, 10)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
for tx in block.vtx[1:]:
test_node.send_message(msg_tx(tx))
test_node.sync_with_ping()
# Make sure all transactions were accepted.
mempool = node.getrawmempool()
for tx in block.vtx[1:]:
assert tx.hash in mempool
# Clear out last request.
with mininode_lock:
test_node.last_message.pop("getblocktxn", None)
# Send compact block
comp_block.initialize_from_block(block, prefill_list=[0])
test_tip_after_message(node, test_node, msg_cmpctblock(comp_block.to_p2p()), block.sha256)
with mininode_lock:
# Shouldn't have gotten a request for any transaction
assert "getblocktxn" not in test_node.last_message
# Incorrectly responding to a getblocktxn shouldn't cause the block to be
# permanently failed.
def test_incorrect_blocktxn_response(self, test_node):
node = self.nodes[0]
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, 10)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
# Relay the first 5 transactions from the block in advance
for tx in block.vtx[1:6]:
test_node.send_message(msg_tx(tx))
test_node.sync_with_ping()
# Make sure all transactions were accepted.
mempool = node.getrawmempool()
for tx in block.vtx[1:6]:
assert tx.hash in mempool
# Send compact block
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block, prefill_list=[0])
test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
absolute_indexes = []
with mininode_lock:
assert "getblocktxn" in test_node.last_message
absolute_indexes = test_node.last_message["getblocktxn"].block_txn_request.to_absolute()
assert_equal(absolute_indexes, [6, 7, 8, 9, 10])
# Now give an incorrect response.
# Note that it's possible for dashd to be smart enough to know we're
# lying, since it could check to see if the shortid matches what we're
# sending, and eg disconnect us for misbehavior. If that behavior
# change was made, we could just modify this test by having a
# different peer provide the block further down, so that we're still
# verifying that the block isn't marked bad permanently. This is good
# enough for now.
msg = msg_blocktxn()
msg.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]] + block.vtx[7:])
test_node.send_and_ping(msg)
# Tip should not have updated
assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock)
# We should receive a getdata request
test_node.wait_for_getdata([block.sha256], timeout=10)
assert test_node.last_message["getdata"].inv[0].type == MSG_BLOCK
# Deliver the block
test_node.send_and_ping(msg_block(block))
assert_equal(int(node.getbestblockhash(), 16), block.sha256)
def test_getblocktxn_handler(self, test_node):
node = self.nodes[0]
# dashd will not send blocktxn responses for blocks whose height is
# more than 10 blocks deep.
MAX_GETBLOCKTXN_DEPTH = 10
chain_height = node.getblockcount()
current_height = chain_height
while (current_height >= chain_height - MAX_GETBLOCKTXN_DEPTH):
block_hash = node.getblockhash(current_height)
block = FromHex(CBlock(), node.getblock(block_hash, False))
msg = msg_getblocktxn()
msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), [])
num_to_request = random.randint(1, len(block.vtx))
msg.block_txn_request.from_absolute(sorted(random.sample(range(len(block.vtx)), num_to_request)))
test_node.send_message(msg)
wait_until(lambda: "blocktxn" in test_node.last_message, timeout=10, lock=mininode_lock)
[tx.calc_sha256() for tx in block.vtx]
with mininode_lock:
assert_equal(test_node.last_message["blocktxn"].block_transactions.blockhash, int(block_hash, 16))
all_indices = msg.block_txn_request.to_absolute()
for index in all_indices:
tx = test_node.last_message["blocktxn"].block_transactions.transactions.pop(0)
tx.calc_sha256()
assert_equal(tx.sha256, block.vtx[index].sha256)
test_node.last_message.pop("blocktxn", None)
current_height -= 1
# Next request should send a full block response, as we're past the
# allowed depth for a blocktxn response.
block_hash = node.getblockhash(current_height)
msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), [0])
with mininode_lock:
test_node.last_message.pop("block", None)
test_node.last_message.pop("blocktxn", None)
test_node.send_and_ping(msg)
with mininode_lock:
test_node.last_message["block"].block.calc_sha256()
assert_equal(test_node.last_message["block"].block.sha256, int(block_hash, 16))
assert "blocktxn" not in test_node.last_message
def test_compactblocks_not_at_tip(self, test_node):
node = self.nodes[0]
# Test that requesting old compactblocks doesn't work.
MAX_CMPCTBLOCK_DEPTH = 5
new_blocks = []
for i in range(MAX_CMPCTBLOCK_DEPTH + 1):
test_node.clear_block_announcement()
new_blocks.append(node.generate(1)[0])
wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock)
test_node.clear_block_announcement()
test_node.send_message(msg_getdata([CInv(MSG_CMPCT_BLOCK, int(new_blocks[0], 16))]))
wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30, lock=mininode_lock)
test_node.clear_block_announcement()
node.generate(1)
wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock)
test_node.clear_block_announcement()
with mininode_lock:
test_node.last_message.pop("block", None)
test_node.send_message(msg_getdata([CInv(MSG_CMPCT_BLOCK, int(new_blocks[0], 16))]))
wait_until(lambda: "block" in test_node.last_message, timeout=30, lock=mininode_lock)
with mininode_lock:
test_node.last_message["block"].block.calc_sha256()
assert_equal(test_node.last_message["block"].block.sha256, int(new_blocks[0], 16))
# Generate an old compactblock, and verify that it's not accepted.
cur_height = node.getblockcount()
hashPrevBlock = int(node.getblockhash(cur_height - 5), 16)
block = self.build_block_on_tip(node)
block.hashPrevBlock = hashPrevBlock
block.solve()
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block)
test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
tips = node.getchaintips()
found = False
for x in tips:
if x["hash"] == block.hash:
assert_equal(x["status"], "headers-only")
found = True
break
assert found
# Requesting this block via getblocktxn should silently fail
# (to avoid fingerprinting attacks).
msg = msg_getblocktxn()
msg.block_txn_request = BlockTransactionsRequest(block.sha256, [0])
with mininode_lock:
test_node.last_message.pop("blocktxn", None)
test_node.send_and_ping(msg)
with mininode_lock:
assert "blocktxn" not in test_node.last_message
def test_end_to_end_block_relay(self, listeners):
node = self.nodes[0]
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, 10)
[l.clear_block_announcement() for l in listeners]
node.submitblock(ToHex(block))
for l in listeners:
wait_until(lambda: "cmpctblock" in l.last_message, timeout=30, lock=mininode_lock)
with mininode_lock:
for l in listeners:
assert "cmpctblock" in l.last_message
l.last_message["cmpctblock"].header_and_shortids.header.calc_sha256()
assert_equal(l.last_message["cmpctblock"].header_and_shortids.header.sha256, block.sha256)
# Test that we don't get disconnected if we relay a compact block with valid header,
# but invalid transactions.
def test_invalid_tx_in_compactblock(self, test_node):
node = self.nodes[0]
assert len(self.utxos)
utxo = self.utxos[0]
block = self.build_block_with_transactions(node, utxo, 5)
del block.vtx[3]
block.hashMerkleRoot = block.calc_merkle_root()
block.solve()
# Now send the compact block with all transactions prefilled, and
# verify that we don't get disconnected.
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block, prefill_list=[0, 1, 2, 3, 4])
msg = msg_cmpctblock(comp_block.to_p2p())
test_node.send_and_ping(msg)
# Check that the tip didn't advance
assert int(node.getbestblockhash(), 16) is not block.sha256
test_node.sync_with_ping()
# Helper for enabling cb announcements
# Send the sendcmpct request and sync headers
def request_cb_announcements(self, peer):
node = self.nodes[0]
tip = node.getbestblockhash()
peer.get_headers(locator=[int(tip, 16)], hashstop=0)
msg = msg_sendcmpct()
msg.version = peer.cmpct_version
msg.announce = True
peer.send_and_ping(msg)
def test_compactblock_reconstruction_multiple_peers(self, stalling_peer, delivery_peer):
node = self.nodes[0]
assert len(self.utxos)
def announce_cmpct_block(node, peer):
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(node, utxo, 5)
cmpct_block = HeaderAndShortIDs()
cmpct_block.initialize_from_block(block)
msg = msg_cmpctblock(cmpct_block.to_p2p())
peer.send_and_ping(msg)
with mininode_lock:
assert "getblocktxn" in peer.last_message
return block, cmpct_block
block, cmpct_block = announce_cmpct_block(node, stalling_peer)
for tx in block.vtx[1:]:
delivery_peer.send_message(msg_tx(tx))
delivery_peer.sync_with_ping()
mempool = node.getrawmempool()
for tx in block.vtx[1:]:
assert tx.hash in mempool
delivery_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p()))
assert_equal(int(node.getbestblockhash(), 16), block.sha256)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
# Now test that delivering an invalid compact block won't break relay
block, cmpct_block = announce_cmpct_block(node, stalling_peer)
for tx in block.vtx[1:]:
delivery_peer.send_message(msg_tx(tx))
delivery_peer.sync_with_ping()
cmpct_block.prefilled_txn[0].tx = CTxIn()
delivery_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p()))
assert int(node.getbestblockhash(), 16) != block.sha256
msg = msg_blocktxn()
msg.block_transactions.blockhash = block.sha256
msg.block_transactions.transactions = block.vtx[1:]
stalling_peer.send_and_ping(msg)
assert_equal(int(node.getbestblockhash(), 16), block.sha256)
def run_test(self):
# Setup the p2p connections
self.test_node = self.nodes[0].add_p2p_connection(TestP2PConn(cmpct_version=1))
self.old_node = self.nodes[0].add_p2p_connection(TestP2PConn(cmpct_version=1), services=NODE_NETWORK | NODE_HEADERS_COMPRESSED)
self.additional_test_node = self.nodes[0].add_p2p_connection(TestP2PConn(cmpct_version=1), services=NODE_NETWORK | NODE_HEADERS_COMPRESSED)
# We will need UTXOs to construct transactions in later tests.
self.make_utxos()
self.log.info("Testing SENDCMPCT p2p message... ")
self.test_sendcmpct(self.test_node, old_node=self.old_node)
self.test_sendcmpct(self.additional_test_node)
self.log.info("Testing compactblock construction...")
self.test_compactblock_construction(self.old_node)
self.test_compactblock_construction(self.test_node)
self.log.info("Testing compactblock requests... ")
self.test_getblocktxn_requests(self.test_node)
self.log.info("Testing getblocktxn handler...")
self.test_getblocktxn_handler(self.test_node)
self.test_getblocktxn_handler(self.old_node)
self.log.info("Testing compactblock requests/announcements not at chain tip...")
self.test_compactblocks_not_at_tip(self.test_node)
self.test_compactblocks_not_at_tip(self.old_node)
self.log.info("Testing handling of incorrect blocktxn responses...")
self.test_incorrect_blocktxn_response(self.test_node)
self.log.info("Testing reconstructing compact blocks from all peers...")
self.test_compactblock_reconstruction_multiple_peers(self.test_node, self.additional_test_node)
# End-to-end block relay tests
self.log.info("Testing end-to-end block relay...")
self.request_cb_announcements(self.old_node)
self.request_cb_announcements(self.test_node)
self.test_end_to_end_block_relay([self.test_node, self.old_node])
self.log.info("Testing handling of invalid compact blocks...")
self.test_invalid_tx_in_compactblock(self.test_node)
self.test_invalid_tx_in_compactblock(self.old_node)
self.log.info("Testing invalid index in cmpctblock message...")
self.test_invalid_cmpctblock_message()
if __name__ == '__main__':
CompactBlocksTest().main()