dash/src/net.h
2024-09-20 12:24:23 +00:00

1929 lines
77 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_NET_H
#define BITCOIN_NET_H
#include <addrman.h>
#include <bip324.h>
#include <bloom.h>
#include <chainparams.h>
#include <compat.h>
#include <fs.h>
#include <crypto/siphash.h>
#include <hash.h>
#include <i2p.h>
#include <limitedmap.h>
#include <net_permissions.h>
#include <netaddress.h>
#include <netbase.h>
#include <netgroup.h>
#include <node/connection_types.h>
#include <policy/feerate.h>
#include <protocol.h>
#include <random.h>
#include <saltedhasher.h>
#include <span.h>
#include <streams.h>
#include <sync.h>
#include <threadinterrupt.h>
#include <uint256.h>
#include <util/check.h>
#include <util/edge.h>
#include <util/sock.h>
#include <util/system.h>
#include <util/wpipe.h>
#include <consensus/params.h>
#include <atomic>
#include <condition_variable>
#include <cstdint>
#include <deque>
#include <functional>
#include <map>
#include <memory>
#include <optional>
#include <queue>
#include <thread>
#include <unordered_set>
#include <vector>
class CConnman;
class CDeterministicMNList;
class CDeterministicMNManager;
class CMasternodeMetaMan;
class CMasternodeSync;
class CScheduler;
class CNode;
class BanMan;
struct bilingual_str;
/** Default for -whitelistrelay. */
static const bool DEFAULT_WHITELISTRELAY = true;
/** Default for -whitelistforcerelay. */
static const bool DEFAULT_WHITELISTFORCERELAY = false;
/** Time after which to disconnect, after waiting for a ping response (or inactivity). */
static constexpr std::chrono::minutes TIMEOUT_INTERVAL{20};
/** Time to wait since m_connected before disconnecting a probe node. */
static const auto PROBE_WAIT_INTERVAL{5s};
/** Minimum time between warnings printed to log. */
static const int WARNING_INTERVAL = 10 * 60;
/** Run the feeler connection loop once every 2 minutes. **/
static constexpr auto FEELER_INTERVAL = 2min;
/** The maximum number of entries in an 'inv' protocol message */
static const unsigned int MAX_INV_SZ = 50000;
/** Run the extra block-relay-only connection loop once every 5 minutes. **/
static constexpr auto EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL = 5min;
/** Maximum length of incoming protocol messages (no message over 3 MiB is currently acceptable). */
static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH = 3 * 1024 * 1024;
/** Maximum length of the user agent string in `version` message */
static const unsigned int MAX_SUBVERSION_LENGTH = 256;
/** Maximum number of automatic outgoing nodes over which we'll relay everything (blocks, tx, addrs, etc) */
static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS = 8;
/** Maximum number of addnode outgoing nodes */
static const int MAX_ADDNODE_CONNECTIONS = 8;
/** Eviction protection time for incoming connections */
static const auto INBOUND_EVICTION_PROTECTION_TIME{1s};
/** Maximum number of block-relay-only outgoing connections */
static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS = 2;
/** Maximum number of onion connections we will try harder to connect to / protect from eviction */
static const int MAX_DESIRED_ONION_CONNECTIONS = 2;
/** Maximum number of feeler connections */
static const int MAX_FEELER_CONNECTIONS = 1;
/** -listen default */
static const bool DEFAULT_LISTEN = true;
/** The maximum number of peer connections to maintain.
* Masternodes are forced to accept at least this many connections
*/
static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 125;
/** The default for -maxuploadtarget. 0 = Unlimited */
static constexpr uint64_t DEFAULT_MAX_UPLOAD_TARGET = 0;
/** Default for blocks only*/
static const bool DEFAULT_BLOCKSONLY = false;
/** -peertimeout default */
static const int64_t DEFAULT_PEER_CONNECT_TIMEOUT = 60;
/** Number of file descriptors required for message capture **/
static const int NUM_FDS_MESSAGE_CAPTURE = 1;
static const bool DEFAULT_FORCEDNSSEED = false;
static const bool DEFAULT_DNSSEED = true;
static const bool DEFAULT_FIXEDSEEDS = true;
static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000;
static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000;
#if defined USE_KQUEUE
#define DEFAULT_SOCKETEVENTS "kqueue"
#elif defined USE_EPOLL
#define DEFAULT_SOCKETEVENTS "epoll"
#elif defined USE_POLL
#define DEFAULT_SOCKETEVENTS "poll"
#else
#define DEFAULT_SOCKETEVENTS "select"
#endif
typedef int64_t NodeId;
struct AddedNodeInfo
{
std::string strAddedNode;
CService resolvedAddress;
bool fConnected;
bool fInbound;
};
class CNodeStats;
class CClientUIInterface;
struct CSerializedNetMsg {
CSerializedNetMsg() = default;
CSerializedNetMsg(CSerializedNetMsg&&) = default;
CSerializedNetMsg& operator=(CSerializedNetMsg&&) = default;
// No implicit copying, only moves.
CSerializedNetMsg(const CSerializedNetMsg& msg) = delete;
CSerializedNetMsg& operator=(const CSerializedNetMsg&) = delete;
CSerializedNetMsg Copy() const
{
CSerializedNetMsg copy;
copy.data = data;
copy.m_type = m_type;
return copy;
}
std::vector<unsigned char> data;
std::string m_type;
/** Compute total memory usage of this object (own memory + any dynamic memory). */
size_t GetMemoryUsage() const noexcept;
};
/**
* Look up IP addresses from all interfaces on the machine and add them to the
* list of local addresses to self-advertise.
* The loopback interface is skipped and only the first address from each
* interface is used.
*/
void Discover();
uint16_t GetListenPort();
enum
{
LOCAL_NONE, // unknown
LOCAL_IF, // address a local interface listens on
LOCAL_BIND, // address explicit bound to
LOCAL_MAPPED, // address reported by UPnP or NAT-PMP
LOCAL_MANUAL, // address explicitly specified (-externalip=)
LOCAL_MAX
};
bool IsPeerAddrLocalGood(CNode *pnode);
/** Returns a local address that we should advertise to this peer. */
std::optional<CService> GetLocalAddrForPeer(CNode& node);
/**
* Mark a network as reachable or unreachable (no automatic connects to it)
* @note Networks are reachable by default
*/
void SetReachable(enum Network net, bool reachable);
/** @returns true if the network is reachable, false otherwise */
bool IsReachable(enum Network net);
/** @returns true if the address is in a reachable network, false otherwise */
bool IsReachable(const CNetAddr& addr);
bool AddLocal(const CService& addr, int nScore = LOCAL_NONE);
bool AddLocal(const CNetAddr& addr, int nScore = LOCAL_NONE);
void RemoveLocal(const CService& addr);
bool SeenLocal(const CService& addr);
bool IsLocal(const CService& addr);
bool GetLocal(CService& addr, const CNode& peer);
CService GetLocalAddress(const CNode& peer);
extern bool fDiscover;
extern bool fListen;
/** Subversion as sent to the P2P network in `version` messages */
extern std::string strSubVersion;
struct LocalServiceInfo {
int nScore;
uint16_t nPort;
};
extern Mutex g_maplocalhost_mutex;
extern std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
extern const std::string NET_MESSAGE_TYPE_OTHER;
using mapMsgTypeSize = std::map</* message type */ std::string, /* total bytes */ uint64_t>;
class CNodeStats
{
public:
NodeId nodeid;
std::chrono::seconds m_last_send;
std::chrono::seconds m_last_recv;
std::chrono::seconds m_last_tx_time;
std::chrono::seconds m_last_block_time;
std::chrono::seconds m_connected;
int64_t nTimeOffset;
std::string m_addr_name;
int nVersion;
std::string cleanSubVer;
bool fInbound;
bool m_manual_connection;
bool m_bip152_highbandwidth_to;
bool m_bip152_highbandwidth_from;
int m_starting_height;
uint64_t nSendBytes;
mapMsgTypeSize mapSendBytesPerMsgType;
uint64_t nRecvBytes;
mapMsgTypeSize mapRecvBytesPerMsgType;
NetPermissionFlags m_permission_flags;
bool m_legacyWhitelisted;
std::chrono::microseconds m_last_ping_time;
std::chrono::microseconds m_min_ping_time;
// Our address, as reported by the peer
std::string addrLocal;
// Address of this peer
CAddress addr;
// Bind address of our side of the connection
CAddress addrBind;
// Network the peer connected through
Network m_network;
uint32_t m_mapped_as;
// In case this is a verified MN, this value is the proTx of the MN
uint256 verifiedProRegTxHash;
// In case this is a verified MN, this value is the hashed operator pubkey of the MN
uint256 verifiedPubKeyHash;
bool m_masternode_connection;
ConnectionType m_conn_type;
};
/** Transport protocol agnostic message container.
* Ideally it should only contain receive time, payload,
* type and size.
*/
class CNetMessage {
public:
CDataStream m_recv; //!< received message data
std::chrono::microseconds m_time{0}; //!< time of message receipt
uint32_t m_message_size{0}; //!< size of the payload
uint32_t m_raw_message_size{0}; //!< used wire size of the message (including header/checksum)
std::string m_type;
CNetMessage(CDataStream&& recv_in) : m_recv(std::move(recv_in)) {}
// Only one CNetMessage object will exist for the same message on either
// the receive or processing queue. For performance reasons we therefore
// delete the copy constructor and assignment operator to avoid the
// possibility of copying CNetMessage objects.
CNetMessage(CNetMessage&&) = default;
CNetMessage(const CNetMessage&) = delete;
CNetMessage& operator=(CNetMessage&&) = default;
CNetMessage& operator=(const CNetMessage&) = delete;
void SetVersion(int nVersionIn)
{
m_recv.SetVersion(nVersionIn);
}
};
/** The Transport converts one connection's sent messages to wire bytes, and received bytes back. */
class Transport {
public:
virtual ~Transport() {}
// 1. Receiver side functions, for decoding bytes received on the wire into transport protocol
// agnostic CNetMessage (message type & payload) objects.
/** Returns true if the current message is complete (so GetReceivedMessage can be called). */
virtual bool ReceivedMessageComplete() const = 0;
/** Feed wire bytes to the transport.
*
* @return false if some bytes were invalid, in which case the transport can't be used anymore.
*
* Consumed bytes are chopped off the front of msg_bytes.
*/
virtual bool ReceivedBytes(Span<const uint8_t>& msg_bytes) = 0;
/** Retrieve a completed message from transport.
*
* This can only be called when ReceivedMessageComplete() is true.
*
* If reject_message=true is returned the message itself is invalid, but (other than false
* returned by ReceivedBytes) the transport is not in an inconsistent state.
*/
virtual CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) = 0;
// 2. Sending side functions, for converting messages into bytes to be sent over the wire.
/** Set the next message to send.
*
* If no message can currently be set (perhaps because the previous one is not yet done being
* sent), returns false, and msg will be unmodified. Otherwise msg is enqueued (and
* possibly moved-from) and true is returned.
*/
virtual bool SetMessageToSend(CSerializedNetMsg& msg) noexcept = 0;
/** Return type for GetBytesToSend, consisting of:
* - Span<const uint8_t> to_send: span of bytes to be sent over the wire (possibly empty).
* - bool more: whether there will be more bytes to be sent after the ones in to_send are
* all sent (as signaled by MarkBytesSent()).
* - const std::string& m_type: message type on behalf of which this is being sent
* ("" for bytes that are not on behalf of any message).
*/
using BytesToSend = std::tuple<
Span<const uint8_t> /*to_send*/,
bool /*more*/,
const std::string& /*m_type*/
>;
/** Get bytes to send on the wire, if any, along with other information about it.
*
* As a const function, it does not modify the transport's observable state, and is thus safe
* to be called multiple times.
*
* @param[in] have_next_message If true, the "more" return value reports whether more will
* be sendable after a SetMessageToSend call. It is set by the caller when they know
* they have another message ready to send, and only care about what happens
* after that. The have_next_message argument only affects this "more" return value
* and nothing else.
*
* Effectively, there are three possible outcomes about whether there are more bytes
* to send:
* - Yes: the transport itself has more bytes to send later. For example, for
* V1Transport this happens during the sending of the header of a
* message, when there is a non-empty payload that follows.
* - No: the transport itself has no more bytes to send, but will have bytes to
* send if handed a message through SetMessageToSend. In V1Transport this
* happens when sending the payload of a message.
* - Blocked: the transport itself has no more bytes to send, and is also incapable
* of sending anything more at all now, if it were handed another
* message to send. This occurs in V2Transport before the handshake is
* complete, as the encryption ciphers are not set up for sending
* messages before that point.
*
* The boolean 'more' is true for Yes, false for Blocked, and have_next_message
* controls what is returned for No.
*
* @return a BytesToSend object. The to_send member returned acts as a stream which is only
* ever appended to. This means that with the exception of MarkBytesSent (which pops
* bytes off the front of later to_sends), operations on the transport can only append
* to what is being returned. Also note that m_type and to_send refer to data that is
* internal to the transport, and calling any non-const function on this object may
* invalidate them.
*/
virtual BytesToSend GetBytesToSend(bool have_next_message) const noexcept = 0;
/** Report how many bytes returned by the last GetBytesToSend() have been sent.
*
* bytes_sent cannot exceed to_send.size() of the last GetBytesToSend() result.
*
* If bytes_sent=0, this call has no effect.
*/
virtual void MarkBytesSent(size_t bytes_sent) noexcept = 0;
/** Return the memory usage of this transport attributable to buffered data to send. */
virtual size_t GetSendMemoryUsage() const noexcept = 0;
};
class V1Transport final : public Transport
{
private:
CMessageHeader::MessageStartChars m_magic_bytes;
const NodeId m_node_id; // Only for logging
mutable Mutex m_recv_mutex; //!< Lock for receive state
mutable CHash256 hasher GUARDED_BY(m_recv_mutex);
mutable uint256 data_hash GUARDED_BY(m_recv_mutex);
bool in_data GUARDED_BY(m_recv_mutex); // parsing header (false) or data (true)
CDataStream hdrbuf GUARDED_BY(m_recv_mutex); // partially received header
CMessageHeader hdr GUARDED_BY(m_recv_mutex); // complete header
CDataStream vRecv GUARDED_BY(m_recv_mutex); // received message data
unsigned int nHdrPos GUARDED_BY(m_recv_mutex);
unsigned int nDataPos GUARDED_BY(m_recv_mutex);
const uint256& GetMessageHash() const EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
int readHeader(Span<const uint8_t> msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
int readData(Span<const uint8_t> msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
void Reset() EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex) {
AssertLockHeld(m_recv_mutex);
vRecv.clear();
hdrbuf.clear();
hdrbuf.resize(24);
in_data = false;
nHdrPos = 0;
nDataPos = 0;
data_hash.SetNull();
hasher.Reset();
}
bool CompleteInternal() const noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
{
AssertLockHeld(m_recv_mutex);
if (!in_data) return false;
return hdr.nMessageSize == nDataPos;
}
/** Lock for sending state. */
mutable Mutex m_send_mutex;
/** The header of the message currently being sent. */
std::vector<uint8_t> m_header_to_send GUARDED_BY(m_send_mutex);
/** The data of the message currently being sent. */
CSerializedNetMsg m_message_to_send GUARDED_BY(m_send_mutex);
/** Whether we're currently sending header bytes or message bytes. */
bool m_sending_header GUARDED_BY(m_send_mutex) {false};
/** How many bytes have been sent so far (from m_header_to_send, or from m_message_to_send.data). */
size_t m_bytes_sent GUARDED_BY(m_send_mutex) {0};
public:
V1Transport(const NodeId node_id, int nTypeIn, int nVersionIn) noexcept;
bool ReceivedMessageComplete() const override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
{
AssertLockNotHeld(m_recv_mutex);
return WITH_LOCK(m_recv_mutex, return CompleteInternal());
}
bool ReceivedBytes(Span<const uint8_t>& msg_bytes) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
{
AssertLockNotHeld(m_recv_mutex);
LOCK(m_recv_mutex);
int ret = in_data ? readData(msg_bytes) : readHeader(msg_bytes);
if (ret < 0) {
Reset();
} else {
msg_bytes = msg_bytes.subspan(ret);
}
return ret >= 0;
}
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
bool SetMessageToSend(CSerializedNetMsg& msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
};
class V2Transport final : public Transport
{
private:
/** Contents of the version packet to send. BIP324 stipulates that senders should leave this
* empty, and receivers should ignore it. Future extensions can change what is sent as long as
* an empty version packet contents is interpreted as no extensions supported. */
static constexpr std::array<std::byte, 0> VERSION_CONTENTS = {};
/** The length of the V1 prefix to match bytes initially received by responders with to
* determine if their peer is speaking V1 or V2. */
static constexpr size_t V1_PREFIX_LEN = 12;
// The sender side and receiver side of V2Transport are state machines that are transitioned
// through, based on what has been received. The receive state corresponds to the contents of,
// and bytes received to, the receive buffer. The send state controls what can be appended to
// the send buffer and what can be sent from it.
/** State type that defines the current contents of the receive buffer and/or how the next
* received bytes added to it will be interpreted.
*
* Diagram:
*
* start(responder)
* |
* | start(initiator) /---------\
* | | | |
* v v v |
* KEY_MAYBE_V1 -> KEY -> GARB_GARBTERM -> VERSION -> APP -> APP_READY
* |
* \-------> V1
*/
enum class RecvState : uint8_t {
/** (Responder only) either v2 public key or v1 header.
*
* This is the initial state for responders, before data has been received to distinguish
* v1 from v2 connections. When that happens, the state becomes either KEY (for v2) or V1
* (for v1). */
KEY_MAYBE_V1,
/** Public key.
*
* This is the initial state for initiators, during which the other side's public key is
* received. When that information arrives, the ciphers get initialized and the state
* becomes GARB_GARBTERM. */
KEY,
/** Garbage and garbage terminator.
*
* Whenever a byte is received, the last 16 bytes are compared with the expected garbage
* terminator. When that happens, the state becomes VERSION. If no matching terminator is
* received in 4111 bytes (4095 for the maximum garbage length, and 16 bytes for the
* terminator), the connection aborts. */
GARB_GARBTERM,
/** Version packet.
*
* A packet is received, and decrypted/verified. If that fails, the connection aborts. The
* first received packet in this state (whether it's a decoy or not) is expected to
* authenticate the garbage received during the GARB_GARBTERM state as associated
* authenticated data (AAD). The first non-decoy packet in this state is interpreted as
* version negotiation (currently, that means ignoring the contents, but it can be used for
* negotiating future extensions), and afterwards the state becomes APP. */
VERSION,
/** Application packet.
*
* A packet is received, and decrypted/verified. If that succeeds, the state becomes
* APP_READY and the decrypted contents is kept in m_recv_decode_buffer until it is
* retrieved as a message by GetMessage(). */
APP,
/** Nothing (an application packet is available for GetMessage()).
*
* Nothing can be received in this state. When the message is retrieved by GetMessage,
* the state becomes APP again. */
APP_READY,
/** Nothing (this transport is using v1 fallback).
*
* All receive operations are redirected to m_v1_fallback. */
V1,
};
/** State type that controls the sender side.
*
* Diagram:
*
* start(responder)
* |
* | start(initiator)
* | |
* v v
* MAYBE_V1 -> AWAITING_KEY -> READY
* |
* \-----> V1
*/
enum class SendState : uint8_t {
/** (Responder only) Not sending until v1 or v2 is detected.
*
* This is the initial state for responders. The send buffer is empty.
* When the receiver determines whether this
* is a V1 or V2 connection, the sender state becomes AWAITING_KEY (for v2) or V1 (for v1).
*/
MAYBE_V1,
/** Waiting for the other side's public key.
*
* This is the initial state for initiators. The public key and garbage is sent out. When
* the receiver receives the other side's public key and transitions to GARB_GARBTERM, the
* sender state becomes READY. */
AWAITING_KEY,
/** Normal sending state.
*
* In this state, the ciphers are initialized, so packets can be sent. When this state is
* entered, the garbage terminator and version packet are appended to the send buffer (in
* addition to the key and garbage which may still be there). In this state a message can be
* provided if the send buffer is empty. */
READY,
/** This transport is using v1 fallback.
*
* All send operations are redirected to m_v1_fallback. */
V1,
};
/** Cipher state. */
BIP324Cipher m_cipher;
/** Whether we are the initiator side. */
const bool m_initiating;
/** NodeId (for debug logging). */
const NodeId m_nodeid;
/** Encapsulate a V1Transport to fall back to. */
V1Transport m_v1_fallback;
/** Lock for receiver-side fields. */
mutable Mutex m_recv_mutex ACQUIRED_BEFORE(m_send_mutex);
/** In {VERSION, APP}, the decrypted packet length, if m_recv_buffer.size() >=
* BIP324Cipher::LENGTH_LEN. Unspecified otherwise. */
uint32_t m_recv_len GUARDED_BY(m_recv_mutex) {0};
/** Receive buffer; meaning is determined by m_recv_state. */
std::vector<uint8_t> m_recv_buffer GUARDED_BY(m_recv_mutex);
/** AAD expected in next received packet (currently used only for garbage). */
std::vector<uint8_t> m_recv_aad GUARDED_BY(m_recv_mutex);
/** Buffer to put decrypted contents in, for converting to CNetMessage. */
std::vector<uint8_t> m_recv_decode_buffer GUARDED_BY(m_recv_mutex);
/** Deserialization type. */
const int m_recv_type;
/** Deserialization version number. */
const int m_recv_version;
/** Current receiver state. */
RecvState m_recv_state GUARDED_BY(m_recv_mutex);
/** Lock for sending-side fields. If both sending and receiving fields are accessed,
* m_recv_mutex must be acquired before m_send_mutex. */
mutable Mutex m_send_mutex ACQUIRED_AFTER(m_recv_mutex);
/** The send buffer; meaning is determined by m_send_state. */
std::vector<uint8_t> m_send_buffer GUARDED_BY(m_send_mutex);
/** How many bytes from the send buffer have been sent so far. */
uint32_t m_send_pos GUARDED_BY(m_send_mutex) {0};
/** The garbage sent, or to be sent (MAYBE_V1 and AWAITING_KEY state only). */
std::vector<uint8_t> m_send_garbage GUARDED_BY(m_send_mutex);
/** Type of the message being sent. */
std::string m_send_type GUARDED_BY(m_send_mutex);
/** Current sender state. */
SendState m_send_state GUARDED_BY(m_send_mutex);
/** Change the receive state. */
void SetReceiveState(RecvState recv_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
/** Change the send state. */
void SetSendState(SendState send_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex);
/** Given a packet's contents, find the message type (if valid), and strip it from contents. */
static std::optional<std::string> GetMessageType(Span<const uint8_t>& contents) noexcept;
/** Determine how many received bytes can be processed in one go (not allowed in V1 state). */
size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
/** Put our public key + garbage in the send buffer. */
void StartSendingHandshake() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex);
/** Process bytes in m_recv_buffer, while in KEY_MAYBE_V1 state. */
void ProcessReceivedMaybeV1Bytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex, !m_send_mutex);
/** Process bytes in m_recv_buffer, while in KEY state. */
bool ProcessReceivedKeyBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex, !m_send_mutex);
/** Process bytes in m_recv_buffer, while in GARB_GARBTERM state. */
bool ProcessReceivedGarbageBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
/** Process bytes in m_recv_buffer, while in VERSION/APP state. */
bool ProcessReceivedPacketBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
public:
static constexpr uint32_t MAX_GARBAGE_LEN = 4095;
/** Construct a V2 transport with securely generated random keys.
*
* @param[in] nodeid the node's NodeId (only for debug log output).
* @param[in] initiating whether we are the initiator side.
* @param[in] type_in the serialization type of returned CNetMessages.
* @param[in] version_in the serialization version of returned CNetMessages.
*/
V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept;
/** Construct a V2 transport with specified keys and garbage (test use only). */
V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept;
// Receive side functions.
bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
bool ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex, !m_send_mutex);
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
// Send side functions.
bool SetMessageToSend(CSerializedNetMsg& msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
};
struct CNodeOptions
{
NetPermissionFlags permission_flags = NetPermissionFlags::None;
std::unique_ptr<i2p::sam::Session> i2p_sam_session = nullptr;
bool prefer_evict = false;
size_t recv_flood_size{DEFAULT_MAXRECEIVEBUFFER * 1000};
};
/** Information about a peer */
class CNode
{
public:
/** Transport serializer/deserializer. The receive side functions are only called under cs_vRecv, while
* the sending side functions are only called under cs_vSend. */
const std::unique_ptr<Transport> m_transport;
const NetPermissionFlags m_permission_flags;
/**
* Socket used for communication with the node.
* May not own a Sock object (after `CloseSocketDisconnect()` or during tests).
* `shared_ptr` (instead of `unique_ptr`) is used to avoid premature close of
* the underlying file descriptor by one thread while another thread is
* poll(2)-ing it for activity.
* @see https://github.com/bitcoin/bitcoin/issues/21744 for details.
*/
std::shared_ptr<Sock> m_sock GUARDED_BY(m_sock_mutex);
/** Sum of GetMemoryUsage of all vSendMsg entries. */
size_t m_send_memusage GUARDED_BY(cs_vSend){0};
/** Total number of bytes sent on the wire to this peer. */
uint64_t nSendBytes GUARDED_BY(cs_vSend){0};
/** Messages still to be fed to m_transport->SetMessageToSend. */
std::deque<CSerializedNetMsg> vSendMsg GUARDED_BY(cs_vSend);
std::atomic<size_t> nSendMsgSize{0};
Mutex cs_vSend;
Mutex m_sock_mutex;
Mutex cs_vRecv;
uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0};
std::atomic<std::chrono::seconds> m_last_send{0s};
std::atomic<std::chrono::seconds> m_last_recv{0s};
//! Unix epoch time at peer connection
const std::chrono::seconds m_connected;
std::atomic<int64_t> nTimeOffset{0};
std::atomic<int64_t> nLastWarningTime{0};
std::atomic<int64_t> nTimeFirstMessageReceived{0};
std::atomic<bool> fFirstMessageIsMNAUTH{false};
// Address of this peer
const CAddress addr;
// Bind address of our side of the connection
const CAddress addrBind;
const std::string m_addr_name;
//! Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
const bool m_inbound_onion;
std::atomic<int> nNumWarningsSkipped{0};
std::atomic<int> nVersion{0};
Mutex m_subver_mutex;
/**
* cleanSubVer is a sanitized string of the user agent byte array we read
* from the wire. This cleaned string can safely be logged or displayed.
*/
std::string cleanSubVer GUARDED_BY(m_subver_mutex){};
const bool m_prefer_evict{false}; // This peer is preferred for eviction.
bool HasPermission(NetPermissionFlags permission) const {
return NetPermissions::HasFlag(m_permission_flags, permission);
}
// This boolean is unusued in actual processing, only present for backward compatibility at RPC/QT level
bool m_legacyWhitelisted{false};
/** fSuccessfullyConnected is set to true on receiving VERACK from the peer. */
std::atomic_bool fSuccessfullyConnected{false};
// Setting fDisconnect to true will cause the node to be disconnected the
// next time DisconnectNodes() runs
std::atomic_bool fDisconnect{false};
std::atomic<int64_t> nDisconnectLingerTime{0};
std::atomic_bool fSocketShutdown{false};
std::atomic_bool fOtherSideDisconnected { false };
// If 'true' this node will be disconnected on CMasternodeMan::ProcessMasternodeConnections()
std::atomic<bool> m_masternode_connection{false};
/**
* If 'true' this node will be disconnected after MNAUTH (outbound only) or
* after PROBE_WAIT_INTERVAL seconds since m_connected
*/
std::atomic<bool> m_masternode_probe_connection{false};
// If 'true', we identified it as an intra-quorum relay connection
std::atomic<bool> m_masternode_iqr_connection{false};
CSemaphoreGrant grantOutbound;
std::atomic<int> nRefCount{0};
const uint64_t nKeyedNetGroup;
std::atomic_bool fPauseRecv{false};
std::atomic_bool fPauseSend{false};
std::atomic_bool fHasRecvData{false};
std::atomic_bool fCanSendData{false};
const ConnectionType m_conn_type;
/** Move all messages from the received queue to the processing queue. */
void MarkReceivedMsgsForProcessing()
EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex);
/** Poll the next message from the processing queue of this connection.
*
* Returns std::nullopt if the processing queue is empty, or a pair
* consisting of the message and a bool that indicates if the processing
* queue has more entries. */
std::optional<std::pair<CNetMessage, bool>> PollMessage()
EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex);
/** Account for the total size of a sent message in the per msg type connection stats. */
void AccountForSentBytes(const std::string& msg_type, size_t sent_bytes)
EXCLUSIVE_LOCKS_REQUIRED(cs_vSend)
{
mapSendBytesPerMsgType[msg_type] += sent_bytes;
}
/** Update a supplied map with bytes sent for each msg type for this node */
void UpdateSentMapWithStats(mapMsgTypeSize& map_sentbytes_msg)
EXCLUSIVE_LOCKS_REQUIRED(cs_vSend)
{
for (auto& [msg_type, bytes] : mapSendBytesPerMsgType) {
map_sentbytes_msg[msg_type] += bytes;
}
}
/** Update a supplied map with bytes recv for each msg type for this node */
void UpdateRecvMapWithStats(mapMsgTypeSize& map_recvbytes_msg)
EXCLUSIVE_LOCKS_REQUIRED(cs_vRecv)
{
for (auto& [msg_type, bytes] : mapRecvBytesPerMsgType) {
map_recvbytes_msg[msg_type] += bytes;
}
}
/**
* Get network the peer connected through.
*
* Returns Network::NET_ONION for *inbound* onion connections,
* and CNetAddr::GetNetClass() otherwise. The latter cannot be used directly
* because it doesn't detect the former, and it's not the responsibility of
* the CNetAddr class to know the actual network a peer is connected through.
*
* @return network the peer connected through.
*/
Network ConnectedThroughNetwork() const;
bool IsOutboundOrBlockRelayConn() const {
switch (m_conn_type) {
case ConnectionType::OUTBOUND_FULL_RELAY:
case ConnectionType::BLOCK_RELAY:
return true;
case ConnectionType::INBOUND:
case ConnectionType::MANUAL:
case ConnectionType::ADDR_FETCH:
case ConnectionType::FEELER:
return false;
} // no default case, so the compiler can warn about missing cases
assert(false);
}
bool IsFullOutboundConn() const {
return m_conn_type == ConnectionType::OUTBOUND_FULL_RELAY;
}
bool IsManualConn() const {
return m_conn_type == ConnectionType::MANUAL;
}
bool IsBlockOnlyConn() const {
return m_conn_type == ConnectionType::BLOCK_RELAY;
}
bool IsFeelerConn() const {
return m_conn_type == ConnectionType::FEELER;
}
bool IsAddrFetchConn() const {
return m_conn_type == ConnectionType::ADDR_FETCH;
}
bool IsInboundConn() const {
return m_conn_type == ConnectionType::INBOUND;
}
bool ExpectServicesFromConn() const {
switch (m_conn_type) {
case ConnectionType::INBOUND:
case ConnectionType::MANUAL:
case ConnectionType::FEELER:
return false;
case ConnectionType::OUTBOUND_FULL_RELAY:
case ConnectionType::BLOCK_RELAY:
case ConnectionType::ADDR_FETCH:
return true;
} // no default case, so the compiler can warn about missing cases
assert(false);
}
public:
// We selected peer as (compact blocks) high-bandwidth peer (BIP152)
std::atomic<bool> m_bip152_highbandwidth_to{false};
// Peer selected us as (compact blocks) high-bandwidth peer (BIP152)
std::atomic<bool> m_bip152_highbandwidth_from{false};
/** Whether this peer provides all services that we want. Used for eviction decisions */
std::atomic_bool m_has_all_wanted_services{false};
/** Whether we should relay transactions to this peer (their version
* message did not include fRelay=false and this is not a block-relay-only
* connection). This only changes from false to true. It will never change
* back to false. Used only in inbound eviction logic. */
std::atomic_bool m_relays_txs{false};
/** Whether this peer has loaded a bloom filter. Used only in inbound
* eviction logic. */
std::atomic_bool m_bloom_filter_loaded{false};
/** UNIX epoch time of the last block received from this peer that we had
* not yet seen (e.g. not already received from another peer), that passed
* preliminary validity checks and was saved to disk, even if we don't
* connect the block or it eventually fails connection. Used as an inbound
* peer eviction criterium in CConnman::AttemptToEvictConnection. */
std::atomic<std::chrono::seconds> m_last_block_time{0s};
/** UNIX epoch time of the last transaction received from this peer that we
* had not yet seen (e.g. not already received from another peer) and that
* was accepted into our mempool. Used as an inbound peer eviction criterium
* in CConnman::AttemptToEvictConnection. */
std::atomic<std::chrono::seconds> m_last_tx_time{0s};
/** Last measured round-trip time. Used only for RPC/GUI stats/debugging.*/
std::atomic<std::chrono::microseconds> m_last_ping_time{0us};
/** Lowest measured round-trip time. Used as an inbound peer eviction
* criterium in CConnman::AttemptToEvictConnection. */
std::atomic<std::chrono::microseconds> m_min_ping_time{std::chrono::microseconds::max()};
// If true, we will send him CoinJoin queue messages
std::atomic<bool> fSendDSQueue{false};
// If true, we will announce/send him plain recovered sigs (usually true for full nodes)
std::atomic<bool> fSendRecSigs{false};
// If true, we will send him all quorum related messages, even if he is not a member of our quorums
std::atomic<bool> qwatch{false};
bool IsBlockRelayOnly() const;
CNode(NodeId id,
std::shared_ptr<Sock> sock,
const CAddress &addrIn,
uint64_t nKeyedNetGroupIn,
uint64_t nLocalHostNonceIn,
const CAddress &addrBindIn,
const std::string &addrNameIn,
ConnectionType conn_type_in,
bool inbound_onion,
CNodeOptions&& node_opts = {});
CNode(const CNode&) = delete;
CNode& operator=(const CNode&) = delete;
NodeId GetId() const {
return id;
}
uint64_t GetLocalNonce() const {
return nLocalHostNonce;
}
int GetRefCount() const
{
assert(nRefCount >= 0);
return nRefCount;
}
/**
* Receive bytes from the buffer and deserialize them into messages.
*
* @param[in] msg_bytes The raw data
* @param[out] complete Set True if at least one message has been
* deserialized and is ready to be processed
* @return True if the peer should stay connected,
* False if the peer should be disconnected from.
*/
bool ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete) EXCLUSIVE_LOCKS_REQUIRED(!cs_vRecv);
void SetCommonVersion(int greatest_common_version)
{
Assume(m_greatest_common_version == INIT_PROTO_VERSION);
m_greatest_common_version = greatest_common_version;
}
int GetCommonVersion() const
{
return m_greatest_common_version;
}
CService GetAddrLocal() const EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex);
//! May not be called more than once
void SetAddrLocal(const CService& addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex);
CNode* AddRef()
{
nRefCount++;
return this;
}
void Release()
{
nRefCount--;
}
void CloseSocketDisconnect(CConnman* connman) EXCLUSIVE_LOCKS_REQUIRED(!m_sock_mutex);
void CopyStats(CNodeStats& stats) EXCLUSIVE_LOCKS_REQUIRED(!m_subver_mutex, !m_addr_local_mutex, !cs_vSend, !cs_vRecv);
std::string ConnectionTypeAsString() const { return ::ConnectionTypeAsString(m_conn_type); }
/** A ping-pong round trip has completed successfully. Update latest and minimum ping times. */
void PongReceived(std::chrono::microseconds ping_time) {
m_last_ping_time = ping_time;
m_min_ping_time = std::min(m_min_ping_time.load(), ping_time);
}
std::string GetLogString() const;
bool CanRelay() const { return !m_masternode_connection || m_masternode_iqr_connection; }
uint256 GetSentMNAuthChallenge() const {
LOCK(cs_mnauth);
return sentMNAuthChallenge;
}
uint256 GetReceivedMNAuthChallenge() const {
LOCK(cs_mnauth);
return receivedMNAuthChallenge;
}
uint256 GetVerifiedProRegTxHash() const {
LOCK(cs_mnauth);
return verifiedProRegTxHash;
}
uint256 GetVerifiedPubKeyHash() const {
LOCK(cs_mnauth);
return verifiedPubKeyHash;
}
void SetSentMNAuthChallenge(const uint256& newSentMNAuthChallenge) {
LOCK(cs_mnauth);
sentMNAuthChallenge = newSentMNAuthChallenge;
}
void SetReceivedMNAuthChallenge(const uint256& newReceivedMNAuthChallenge) {
LOCK(cs_mnauth);
receivedMNAuthChallenge = newReceivedMNAuthChallenge;
}
void SetVerifiedProRegTxHash(const uint256& newVerifiedProRegTxHash) {
LOCK(cs_mnauth);
verifiedProRegTxHash = newVerifiedProRegTxHash;
}
void SetVerifiedPubKeyHash(const uint256& newVerifiedPubKeyHash) {
LOCK(cs_mnauth);
verifiedPubKeyHash = newVerifiedPubKeyHash;
}
private:
const NodeId id;
const uint64_t nLocalHostNonce;
std::atomic<int> m_greatest_common_version{INIT_PROTO_VERSION};
const size_t m_recv_flood_size;
std::list<CNetMessage> vRecvMsg; // Used only by SocketHandler thread
Mutex m_msg_process_queue_mutex;
std::list<CNetMessage> m_msg_process_queue GUARDED_BY(m_msg_process_queue_mutex);
size_t m_msg_process_queue_size GUARDED_BY(m_msg_process_queue_mutex){0};
// Our address, as reported by the peer
CService addrLocal GUARDED_BY(m_addr_local_mutex);
mutable Mutex m_addr_local_mutex;
// Challenge sent in VERSION to be answered with MNAUTH (only happens between MNs)
mutable Mutex cs_mnauth;
uint256 sentMNAuthChallenge GUARDED_BY(cs_mnauth);
uint256 receivedMNAuthChallenge GUARDED_BY(cs_mnauth);
uint256 verifiedProRegTxHash GUARDED_BY(cs_mnauth);
uint256 verifiedPubKeyHash GUARDED_BY(cs_mnauth);
mapMsgTypeSize mapSendBytesPerMsgType GUARDED_BY(cs_vSend);
mapMsgTypeSize mapRecvBytesPerMsgType GUARDED_BY(cs_vRecv);
/**
* If an I2P session is created per connection (for outbound transient I2P
* connections) then it is stored here so that it can be destroyed when the
* socket is closed. I2P sessions involve a data/transport socket (in `m_sock`)
* and a control socket (in `m_i2p_sam_session`). For transient sessions, once
* the data socket is closed, the control socket is not going to be used anymore
* and is just taking up resources. So better close it as soon as `m_sock` is
* closed.
* Otherwise this unique_ptr is empty.
*/
std::unique_ptr<i2p::sam::Session> m_i2p_sam_session GUARDED_BY(m_sock_mutex);
};
/**
* Interface for message handling
*/
class NetEventsInterface
{
public:
/** Mutex for anything that is only accessed via the msg processing thread */
static Mutex g_msgproc_mutex;
/** Initialize a peer (setup state, queue any initial messages) */
virtual void InitializeNode(CNode& node, ServiceFlags our_services) = 0;
/** Handle removal of a peer (clear state) */
virtual void FinalizeNode(const CNode& node) = 0;
/**
* Process protocol messages received from a given node
*
* @param[in] pnode The node which we have received messages from.
* @param[in] interrupt Interrupt condition for processing threads
* @return True if there is more work to be done
*/
virtual bool ProcessMessages(CNode* pnode, std::atomic<bool>& interrupt) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) = 0;
/**
* Send queued protocol messages to a given node.
*
* @param[in] pnode The node which we are sending messages to.
* @return True if there is more work to be done
*/
virtual bool SendMessages(CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) = 0;
protected:
/**
* Protected destructor so that instances can only be deleted by derived classes.
* If that restriction is no longer desired, this should be made public and virtual.
*/
~NetEventsInterface() = default;
};
class CConnman
{
friend class CNode;
public:
struct Options
{
ServiceFlags nLocalServices = NODE_NONE;
int nMaxConnections = 0;
int m_max_outbound_full_relay = 0;
int m_max_outbound_block_relay = 0;
int m_max_outbound_onion = 0;
int nMaxAddnode = 0;
int nMaxFeeler = 0;
CClientUIInterface* uiInterface = nullptr;
NetEventsInterface* m_msgproc = nullptr;
BanMan* m_banman = nullptr;
unsigned int nSendBufferMaxSize = 0;
unsigned int nReceiveFloodSize = 0;
uint64_t nMaxOutboundLimit = 0;
int64_t m_peer_connect_timeout = DEFAULT_PEER_CONNECT_TIMEOUT;
std::vector<std::string> vSeedNodes;
std::vector<NetWhitelistPermissions> vWhitelistedRange;
std::vector<NetWhitebindPermissions> vWhiteBinds;
std::vector<CService> vBinds;
std::vector<CService> onion_binds;
/// True if the user did not specify -bind= or -whitebind= and thus
/// we should bind on `0.0.0.0` (IPv4) and `::` (IPv6).
bool bind_on_any;
bool m_use_addrman_outgoing = true;
std::vector<std::string> m_specified_outgoing;
std::vector<std::string> m_added_nodes;
SocketEventsMode socketEventsMode = SocketEventsMode::Select;
bool m_i2p_accept_incoming;
};
void Init(const Options& connOptions) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex, !m_total_bytes_sent_mutex)
{
AssertLockNotHeld(m_total_bytes_sent_mutex);
nLocalServices = connOptions.nLocalServices;
nMaxConnections = connOptions.nMaxConnections;
m_max_outbound_full_relay = std::min(connOptions.m_max_outbound_full_relay, connOptions.nMaxConnections);
m_max_outbound_block_relay = connOptions.m_max_outbound_block_relay;
m_max_outbound_onion = connOptions.m_max_outbound_onion;
m_use_addrman_outgoing = connOptions.m_use_addrman_outgoing;
nMaxAddnode = connOptions.nMaxAddnode;
nMaxFeeler = connOptions.nMaxFeeler;
m_max_outbound = m_max_outbound_full_relay + m_max_outbound_block_relay + nMaxFeeler;
clientInterface = connOptions.uiInterface;
m_banman = connOptions.m_banman;
m_msgproc = connOptions.m_msgproc;
nSendBufferMaxSize = connOptions.nSendBufferMaxSize;
nReceiveFloodSize = connOptions.nReceiveFloodSize;
m_peer_connect_timeout = std::chrono::seconds{connOptions.m_peer_connect_timeout};
{
LOCK(m_total_bytes_sent_mutex);
nMaxOutboundLimit = connOptions.nMaxOutboundLimit;
}
vWhitelistedRange = connOptions.vWhitelistedRange;
{
LOCK(m_added_nodes_mutex);
m_added_nodes = connOptions.m_added_nodes;
}
socketEventsMode = connOptions.socketEventsMode;
m_onion_binds = connOptions.onion_binds;
}
CConnman(uint64_t seed0, uint64_t seed1, AddrMan& addrman, const NetGroupManager& netgroupman,
bool network_active = true);
~CConnman();
bool Start(CDeterministicMNManager& dmnman, CMasternodeMetaMan& mn_metaman, CMasternodeSync& mn_sync,
CScheduler& scheduler, const Options& options)
EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex, !m_added_nodes_mutex, !m_addr_fetches_mutex, !mutexMsgProc);
void StopThreads();
void StopNodes();
void Stop()
{
StopThreads();
StopNodes();
};
void Interrupt() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc);
bool GetNetworkActive() const { return fNetworkActive; };
bool GetUseAddrmanOutgoing() const { return m_use_addrman_outgoing; };
void SetNetworkActive(bool active, CMasternodeSync* const mn_sync);
SocketEventsMode GetSocketEventsMode() const { return socketEventsMode; }
enum class MasternodeConn {
IsNotConnection,
IsConnection,
};
enum class MasternodeProbeConn {
IsNotConnection,
IsConnection,
};
void OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant* grantOutbound,
const char* strDest, ConnectionType conn_type,
MasternodeConn masternode_connection = MasternodeConn::IsNotConnection,
MasternodeProbeConn masternode_probe_connection = MasternodeProbeConn::IsNotConnection)
EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex, !mutexMsgProc);
void OpenMasternodeConnection(const CAddress& addrConnect, MasternodeProbeConn probe = MasternodeProbeConn::IsConnection)
EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex, !mutexMsgProc);
bool CheckIncomingNonce(uint64_t nonce);
struct CFullyConnectedOnly {
bool operator() (const CNode* pnode) const {
return NodeFullyConnected(pnode);
}
};
constexpr static const CFullyConnectedOnly FullyConnectedOnly{};
struct CAllNodes {
bool operator() (const CNode*) const {return true;}
};
constexpr static const CAllNodes AllNodes{};
bool ForNode(NodeId id, std::function<bool(const CNode* pnode)> cond, std::function<bool(CNode* pnode)> func);
bool ForNode(const CService& addr, std::function<bool(const CNode* pnode)> cond, std::function<bool(CNode* pnode)> func);
template<typename Callable>
bool ForNode(const CService& addr, Callable&& func)
{
return ForNode(addr, FullyConnectedOnly, func);
}
template<typename Callable>
bool ForNode(NodeId id, Callable&& func)
{
return ForNode(id, FullyConnectedOnly, func);
}
bool IsConnected(const CService& addr, std::function<bool(const CNode* pnode)> cond)
{
return ForNode(addr, cond, [](CNode* pnode){
return true;
});
}
bool IsMasternodeOrDisconnectRequested(const CService& addr);
void PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc, !m_total_bytes_sent_mutex);
template<typename Condition, typename Callable>
bool ForEachNodeContinueIf(const Condition& cond, Callable&& func)
{
LOCK(m_nodes_mutex);
for (auto&& node : m_nodes)
if (cond(node))
if(!func(node))
return false;
return true;
};
template<typename Callable>
bool ForEachNodeContinueIf(Callable&& func)
{
return ForEachNodeContinueIf(FullyConnectedOnly, func);
}
template<typename Condition, typename Callable>
bool ForEachNodeContinueIf(const Condition& cond, Callable&& func) const
{
LOCK(m_nodes_mutex);
for (const auto& node : m_nodes)
if (cond(node))
if(!func(node))
return false;
return true;
};
template<typename Callable>
bool ForEachNodeContinueIf(Callable&& func) const
{
return ForEachNodeContinueIf(FullyConnectedOnly, func);
}
template<typename Condition, typename Callable>
void ForEachNode(const Condition& cond, Callable&& func)
{
LOCK(m_nodes_mutex);
for (auto&& node : m_nodes) {
if (cond(node))
func(node);
}
};
template<typename Callable>
void ForEachNode(Callable&& func)
{
ForEachNode(FullyConnectedOnly, func);
}
template<typename Condition, typename Callable>
void ForEachNode(const Condition& cond, Callable&& func) const
{
LOCK(m_nodes_mutex);
for (auto&& node : m_nodes) {
if (cond(node))
func(node);
}
};
template<typename Callable>
void ForEachNode(Callable&& func) const
{
ForEachNode(FullyConnectedOnly, func);
}
template<typename Condition, typename Callable, typename CallableAfter>
void ForEachNodeThen(const Condition& cond, Callable&& pre, CallableAfter&& post)
{
LOCK(m_nodes_mutex);
for (auto&& node : m_nodes) {
if (cond(node))
pre(node);
}
post();
};
template<typename Callable, typename CallableAfter>
void ForEachNodeThen(Callable&& pre, CallableAfter&& post)
{
ForEachNodeThen(FullyConnectedOnly, pre, post);
}
template<typename Condition, typename Callable, typename CallableAfter>
void ForEachNodeThen(const Condition& cond, Callable&& pre, CallableAfter&& post) const
{
LOCK(m_nodes_mutex);
for (auto&& node : m_nodes) {
if (cond(node))
pre(node);
}
post();
};
template<typename Callable, typename CallableAfter>
void ForEachNodeThen(Callable&& pre, CallableAfter&& post) const
{
ForEachNodeThen(FullyConnectedOnly, pre, post);
}
// Addrman functions
/**
* Return all or many randomly selected addresses, optionally by network.
*
* @param[in] max_addresses Maximum number of addresses to return (0 = all).
* @param[in] max_pct Maximum percentage of addresses to return (0 = all).
* @param[in] network Select only addresses of this network (nullopt = all).
*/
std::vector<CAddress> GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network) const;
/**
* Cache is used to minimize topology leaks, so it should
* be used for all non-trusted calls, for example, p2p.
* A non-malicious call (from RPC or a peer with addr permission) should
* call the function without a parameter to avoid using the cache.
*/
std::vector<CAddress> GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct);
// This allows temporarily exceeding m_max_outbound_full_relay, with the goal of finding
// a peer that is better than all our current peers.
void SetTryNewOutboundPeer(bool flag);
bool GetTryNewOutboundPeer() const;
void StartExtraBlockRelayPeers() {
LogPrint(BCLog::NET, "net: enabling extra block-relay-only peers\n");
m_start_extra_block_relay_peers = true;
}
// Return the number of outbound peers we have in excess of our target (eg,
// if we previously called SetTryNewOutboundPeer(true), and have since set
// to false, we may have extra peers that we wish to disconnect). This may
// return a value less than (num_outbound_connections - num_outbound_slots)
// in cases where some outbound connections are not yet fully connected, or
// not yet fully disconnected.
int GetExtraFullOutboundCount() const;
// Count the number of block-relay-only peers we have over our limit.
int GetExtraBlockRelayCount() const;
bool AddNode(const std::string& node) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex);
bool RemoveAddedNode(const std::string& node) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex);
std::vector<AddedNodeInfo> GetAddedNodeInfo() const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex);
/**
* Attempts to open a connection. Currently only used from tests.
*
* @param[in] address Address of node to try connecting to
* @param[in] conn_type ConnectionType::OUTBOUND or ConnectionType::BLOCK_RELAY
* or ConnectionType::ADDR_FETCH
* @return bool Returns false if there are no available
* slots for this connection:
* - conn_type not a supported ConnectionType
* - Max total outbound connection capacity filled
* - Max connection capacity for type is filled
*/
bool AddConnection(const std::string& address, ConnectionType conn_type)
EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex, !mutexMsgProc);
bool AddPendingMasternode(const uint256& proTxHash);
void SetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set<uint256>& proTxHashes);
void SetMasternodeQuorumRelayMembers(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set<uint256>& proTxHashes);
bool HasMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash);
std::set<uint256> GetMasternodeQuorums(Consensus::LLMQType llmqType);
// also returns QWATCH nodes
std::set<NodeId> GetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash) const;
void RemoveMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash);
bool IsMasternodeQuorumNode(const CNode* pnode, const CDeterministicMNList& tip_mn_list);
bool IsMasternodeQuorumRelayMember(const uint256& protxHash);
void AddPendingProbeConnections(const std::set<uint256>& proTxHashes);
size_t GetNodeCount(ConnectionDirection) const;
size_t GetMaxOutboundNodeCount();
size_t GetMaxOutboundOnionNodeCount();
void GetNodeStats(std::vector<CNodeStats>& vstats) const;
bool DisconnectNode(const std::string& node);
bool DisconnectNode(const CSubNet& subnet);
bool DisconnectNode(const CNetAddr& addr);
bool DisconnectNode(NodeId id);
//! Used to convey which local services we are offering peers during node
//! connection.
//!
//! The data returned by this is used in CNode construction,
//! which is used to advertise which services we are offering
//! that peer during `net_processing.cpp:PushNodeVersion()`.
ServiceFlags GetLocalServices() const;
uint64_t GetMaxOutboundTarget() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex);
std::chrono::seconds GetMaxOutboundTimeframe() const;
//! check if the outbound target is reached
//! if param historicalBlockServingLimit is set true, the function will
//! response true if the limit for serving historical blocks has been reached
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex);
//! response the bytes left in the current max outbound cycle
//! in case of no limit, it will always response 0
uint64_t GetOutboundTargetBytesLeft() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex);
std::chrono::seconds GetMaxOutboundTimeLeftInCycle() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex);
uint64_t GetTotalBytesRecv() const;
uint64_t GetTotalBytesSent() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex);
/** Get a unique deterministic randomizer. */
CSipHasher GetDeterministicRandomizer(uint64_t id) const;
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc);
/** Return true if we should disconnect the peer for failing an inactivity check. */
bool ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const;
/**
* RAII helper to atomically create a copy of `m_nodes` and add a reference
* to each of the nodes. The nodes are released when this object is destroyed.
*/
class NodesSnapshot
{
public:
explicit NodesSnapshot(const CConnman& connman, std::function<bool(const CNode* pnode)> cond = AllNodes,
bool shuffle = false);
~NodesSnapshot();
const std::vector<CNode*>& Nodes() const
{
return m_nodes_copy;
}
private:
std::vector<CNode*> m_nodes_copy;
};
private:
struct ListenSocket {
public:
std::shared_ptr<Sock> sock;
inline void AddSocketPermissionFlags(NetPermissionFlags& flags) const { NetPermissions::AddFlag(flags, m_permissions); }
ListenSocket(std::shared_ptr<Sock> sock_, NetPermissionFlags permissions_)
: sock{sock_}, m_permissions{permissions_}
{
}
private:
NetPermissionFlags m_permissions;
};
//! returns the time left in the current max outbound cycle
//! in case of no limit, it will always return 0
std::chrono::seconds GetMaxOutboundTimeLeftInCycle_() const EXCLUSIVE_LOCKS_REQUIRED(m_total_bytes_sent_mutex);
bool BindListenPort(const CService& bindAddr, bilingual_str& strError, NetPermissionFlags permissions);
bool Bind(const CService& addr, unsigned int flags, NetPermissionFlags permissions);
bool InitBinds(const Options& options);
void ThreadOpenAddedConnections()
EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex, !m_unused_i2p_sessions_mutex, !mutexMsgProc);
void AddAddrFetch(const std::string& strDest) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex);
void ProcessAddrFetch()
EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex, !m_unused_i2p_sessions_mutex, !mutexMsgProc);
void ThreadOpenConnections(const std::vector<std::string> connect, CDeterministicMNManager& dmnman)
EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex, !m_added_nodes_mutex, !m_nodes_mutex, !m_unused_i2p_sessions_mutex, !mutexMsgProc);
void ThreadMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc);
void ThreadI2PAcceptIncoming(CMasternodeSync& mn_sync) EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc);
void AcceptConnection(const ListenSocket& hListenSocket, CMasternodeSync& mn_sync)
EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc);
/**
* Create a `CNode` object from a socket that has just been accepted and add the node to
* the `m_nodes` member.
* @param[in] sock Connected socket to communicate with the peer.
* @param[in] permission_flags The peer's permissions.
* @param[in] addr_bind The address and port at our side of the connection.
* @param[in] addr The address and port at the peer's side of the connection.
*/
void CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
NetPermissionFlags permission_flags,
const CAddress& addr_bind,
const CAddress& addr,
CMasternodeSync& mn_sync) EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc);
void DisconnectNodes();
void NotifyNumConnectionsChanged(CMasternodeSync& mn_sync);
void CalculateNumConnectionsChangedStats();
/** Return true if the peer is inactive and should be disconnected. */
bool InactivityCheck(const CNode& node) const;
/**
* Generate a collection of sockets to check for IO readiness.
* @param[in] nodes Select from these nodes' sockets.
* @param[out] recv_set Sockets to check for read readiness.
* @param[out] send_set Sockets to check for write readiness.
* @param[out] error_set Sockets to check for errors.
* @return true if at least one socket is to be checked (the returned set is not empty)
*/
bool GenerateSelectSet(const std::vector<CNode*>& nodes,
std::set<SOCKET>& recv_set,
std::set<SOCKET>& send_set,
std::set<SOCKET>& error_set);
/**
* Check which sockets are ready for IO.
* @param[in] nodes Select from these nodes' sockets (in supported event methods).
* @param[in] only_poll Permit zero timeout polling
* @param[out] recv_set Sockets which are ready for read.
* @param[out] send_set Sockets which are ready for write.
* @param[out] error_set Sockets which have errors.
* This calls `GenerateSelectSet()` to gather a list of sockets to check.
*/
void SocketEvents(const std::vector<CNode*>& nodes,
std::set<SOCKET>& recv_set,
std::set<SOCKET>& send_set,
std::set<SOCKET>& error_set,
bool only_poll);
#ifdef USE_KQUEUE
void SocketEventsKqueue(std::set<SOCKET>& recv_set,
std::set<SOCKET>& send_set,
std::set<SOCKET>& error_set,
bool only_poll);
#endif
#ifdef USE_EPOLL
void SocketEventsEpoll(std::set<SOCKET>& recv_set,
std::set<SOCKET>& send_set,
std::set<SOCKET>& error_set,
bool only_poll);
#endif
#ifdef USE_POLL
void SocketEventsPoll(const std::vector<CNode*>& nodes,
std::set<SOCKET>& recv_set,
std::set<SOCKET>& send_set,
std::set<SOCKET>& error_set,
bool only_poll);
#endif
void SocketEventsSelect(const std::vector<CNode*>& nodes,
std::set<SOCKET>& recv_set,
std::set<SOCKET>& send_set,
std::set<SOCKET>& error_set,
bool only_poll);
/**
* Check connected and listening sockets for IO readiness and process them accordingly.
*/
void SocketHandler(CMasternodeSync& mn_sync) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex, !mutexMsgProc);
/**
* Do the read/write for connected sockets that are ready for IO.
* @param[in] recv_set Sockets that are ready for read.
* @param[in] send_set Sockets that are ready for send.
* @param[in] error_set Sockets that have an exceptional condition (error).
*/
void SocketHandlerConnected(const std::set<SOCKET>& recv_set,
const std::set<SOCKET>& send_set,
const std::set<SOCKET>& error_set)
EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex, !mutexMsgProc);
/**
* Accept incoming connections, one from each read-ready listening socket.
* @param[in] recv_set Sockets that are ready for read.
*/
void SocketHandlerListening(const std::set<SOCKET>& recv_set, CMasternodeSync& mn_sync)
EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc);
void ThreadSocketHandler(CMasternodeSync& mn_sync) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex, !mutexMsgProc);
void ThreadDNSAddressSeed() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex, !m_nodes_mutex);
void ThreadOpenMasternodeConnections(CDeterministicMNManager& dmnman, CMasternodeMetaMan& mn_metaman,
CMasternodeSync& mn_sync)
EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex, !m_nodes_mutex, !m_unused_i2p_sessions_mutex, !mutexMsgProc);
uint64_t CalculateKeyedNetGroup(const CAddress& ad) const;
CNode* FindNode(const CNetAddr& ip, bool fExcludeDisconnecting = true);
CNode* FindNode(const CSubNet& subNet, bool fExcludeDisconnecting = true);
CNode* FindNode(const std::string& addrName, bool fExcludeDisconnecting = true);
CNode* FindNode(const CService& addr, bool fExcludeDisconnecting = true);
/**
* Determine whether we're already connected to a given address, in order to
* avoid initiating duplicate connections.
*/
bool AlreadyConnectedToAddress(const CAddress& addr);
bool AttemptToEvictConnection();
CNode* ConnectNode(CAddress addrConnect, const char *pszDest = nullptr, bool fCountFailure = false, ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY)
EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex);
void AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr) const;
void DeleteNode(CNode* pnode);
NodeId GetNewNodeId();
/** (Try to) send data from node's vSendMsg. Returns (bytes_sent, data_left). */
std::pair<size_t, bool> SocketSendData(CNode& node) const EXCLUSIVE_LOCKS_REQUIRED(node.cs_vSend);
size_t SocketRecvData(CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc);
void DumpAddresses();
// Network stats
void RecordBytesRecv(uint64_t bytes);
void RecordBytesSent(uint64_t bytes) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex);
/**
Return reachable networks for which we have no addresses in addrman and therefore
may require loading fixed seeds.
*/
std::unordered_set<Network> GetReachableEmptyNetworks() const;
/**
* Return vector of current BLOCK_RELAY peers.
*/
std::vector<CAddress> GetCurrentBlockRelayOnlyConns() const;
// Whether the node should be passed out in ForEach* callbacks
static bool NodeFullyConnected(const CNode* pnode);
// Network usage totals
mutable Mutex m_total_bytes_sent_mutex;
std::atomic<uint64_t> nTotalBytesRecv{0};
uint64_t nTotalBytesSent GUARDED_BY(m_total_bytes_sent_mutex) {0};
// outbound limit & stats
uint64_t nMaxOutboundTotalBytesSentInCycle GUARDED_BY(m_total_bytes_sent_mutex) {0};
std::chrono::seconds nMaxOutboundCycleStartTime GUARDED_BY(m_total_bytes_sent_mutex) {0};
uint64_t nMaxOutboundLimit GUARDED_BY(m_total_bytes_sent_mutex);
// P2P timeout in seconds
std::chrono::seconds m_peer_connect_timeout;
// Whitelisted ranges. Any node connecting from these is automatically
// whitelisted (as well as those connecting to whitelisted binds).
std::vector<NetWhitelistPermissions> vWhitelistedRange;
unsigned int nSendBufferMaxSize{0};
unsigned int nReceiveFloodSize{0};
std::vector<ListenSocket> vhListenSocket;
std::atomic<bool> fNetworkActive{true};
bool fAddressesInitialized{false};
AddrMan& addrman;
const NetGroupManager& m_netgroupman;
std::deque<std::string> m_addr_fetches GUARDED_BY(m_addr_fetches_mutex);
Mutex m_addr_fetches_mutex;
std::vector<std::string> m_added_nodes GUARDED_BY(m_added_nodes_mutex);
mutable Mutex m_added_nodes_mutex;
std::vector<CNode*> m_nodes GUARDED_BY(m_nodes_mutex);
std::list<CNode*> m_nodes_disconnected;
mutable RecursiveMutex m_nodes_mutex;
std::atomic<NodeId> nLastNodeId{0};
unsigned int nPrevNodeCount{0};
std::vector<uint256> vPendingMasternodes;
mutable RecursiveMutex cs_vPendingMasternodes;
std::map<std::pair<Consensus::LLMQType, uint256>, std::set<uint256>> masternodeQuorumNodes GUARDED_BY(cs_vPendingMasternodes);
std::map<std::pair<Consensus::LLMQType, uint256>, std::set<uint256>> masternodeQuorumRelayMembers GUARDED_BY(cs_vPendingMasternodes);
std::set<uint256> masternodePendingProbes GUARDED_BY(cs_vPendingMasternodes);
mutable Mutex cs_mapSocketToNode;
std::unordered_map<SOCKET, CNode*> mapSocketToNode GUARDED_BY(cs_mapSocketToNode);
/**
* Cache responses to addr requests to minimize privacy leak.
* Attack example: scraping addrs in real-time may allow an attacker
* to infer new connections of the victim by detecting new records
* with fresh timestamps (per self-announcement).
*/
struct CachedAddrResponse {
std::vector<CAddress> m_addrs_response_cache;
std::chrono::microseconds m_cache_entry_expiration{0};
};
/**
* Addr responses stored in different caches
* per (network, local socket) prevent cross-network node identification.
* If a node for example is multi-homed under Tor and IPv6,
* a single cache (or no cache at all) would let an attacker
* to easily detect that it is the same node by comparing responses.
* Indexing by local socket prevents leakage when a node has multiple
* listening addresses on the same network.
*
* The used memory equals to 1000 CAddress records (or around 40 bytes) per
* distinct Network (up to 5) we have/had an inbound peer from,
* resulting in at most ~196 KB. Every separate local socket may
* add up to ~196 KB extra.
*/
std::map<uint64_t, CachedAddrResponse> m_addr_response_caches;
/**
* Services this node offers.
*
* This data is replicated in each Peer instance we create.
*
* This data is not marked const, but after being set it should not
* change.
*
* \sa Peer::our_services
*/
ServiceFlags nLocalServices;
std::unique_ptr<CSemaphore> semOutbound;
std::unique_ptr<CSemaphore> semAddnode;
int nMaxConnections;
// How many full-relay (tx, block, addr) outbound peers we want
int m_max_outbound_full_relay;
// How many block-relay only outbound peers we want
// We do not relay tx or addr messages with these peers
int m_max_outbound_block_relay;
// How many onion outbound peers we want; don't care if full or block only; does not increase m_max_outbound
int m_max_outbound_onion;
int nMaxAddnode;
int nMaxFeeler;
int m_max_outbound;
bool m_use_addrman_outgoing;
CClientUIInterface* clientInterface;
NetEventsInterface* m_msgproc;
/** Pointer to this node's banman. May be nullptr - check existence before dereferencing. */
BanMan* m_banman;
/**
* Addresses that were saved during the previous clean shutdown. We'll
* attempt to make block-relay-only connections to them.
*/
std::vector<CAddress> m_anchors;
/** SipHasher seeds for deterministic randomness */
const uint64_t nSeed0, nSeed1;
/** flag for waking the message processor. */
bool fMsgProcWake GUARDED_BY(mutexMsgProc);
std::condition_variable condMsgProc;
Mutex mutexMsgProc;
std::atomic<bool> flagInterruptMsgProc{false};
/**
* This is signaled when network activity should cease.
* A pointer to it is saved in `m_i2p_sam_session`, so make sure that
* the lifetime of `interruptNet` is not shorter than
* the lifetime of `m_i2p_sam_session`.
*/
CThreadInterrupt interruptNet;
/**
* I2P SAM session.
* Used to accept incoming and make outgoing I2P connections from a persistent
* address.
*/
std::unique_ptr<i2p::sam::Session> m_i2p_sam_session;
SocketEventsMode socketEventsMode;
std::unique_ptr<EdgeTriggeredEvents> m_edge_trig_events{nullptr};
std::unique_ptr<WakeupPipe> m_wakeup_pipe{nullptr};
template <typename Callable>
void ToggleWakeupPipe(Callable&& func)
{
if (m_wakeup_pipe) {
m_wakeup_pipe->Toggle(func);
} else {
func();
}
}
Mutex cs_sendable_receivable_nodes;
std::unordered_map<NodeId, CNode*> mapReceivableNodes GUARDED_BY(cs_sendable_receivable_nodes);
std::unordered_map<NodeId, CNode*> mapSendableNodes GUARDED_BY(cs_sendable_receivable_nodes);
/** Protected by cs_mapNodesWithDataToSend */
std::unordered_map<NodeId, CNode*> mapNodesWithDataToSend GUARDED_BY(cs_mapNodesWithDataToSend);
mutable RecursiveMutex cs_mapNodesWithDataToSend;
std::thread threadDNSAddressSeed;
std::thread threadSocketHandler;
std::thread threadOpenAddedConnections;
std::thread threadOpenConnections;
std::thread threadOpenMasternodeConnections;
std::thread threadMessageHandler;
std::thread threadI2PAcceptIncoming;
/** flag for deciding to connect to an extra outbound peer,
* in excess of m_max_outbound_full_relay
* This takes the place of a feeler connection */
std::atomic_bool m_try_another_outbound_peer;
/** flag for initiating extra block-relay-only peer connections.
* this should only be enabled after initial chain sync has occurred,
* as these connections are intended to be short-lived and low-bandwidth.
*/
std::atomic_bool m_start_extra_block_relay_peers{false};
/**
* A vector of -bind=<address>:<port>=onion arguments each of which is
* an address and port that are designated for incoming Tor connections.
*/
std::vector<CService> m_onion_binds;
/**
* Mutex protecting m_i2p_sam_sessions.
*/
Mutex m_unused_i2p_sessions_mutex;
/**
* A pool of created I2P SAM transient sessions that should be used instead
* of creating new ones in order to reduce the load on the I2P network.
* Creating a session in I2P is not cheap, thus if this is not empty, then
* pick an entry from it instead of creating a new session. If connecting to
* a host fails, then the created session is put to this pool for reuse.
*/
std::queue<std::unique_ptr<i2p::sam::Session>> m_unused_i2p_sessions GUARDED_BY(m_unused_i2p_sessions_mutex);
/**
* Cap on the size of `m_unused_i2p_sessions`, to ensure it does not
* unexpectedly use too much memory.
*/
static constexpr size_t MAX_UNUSED_I2P_SESSIONS_SIZE{10};
friend struct CConnmanTest;
friend struct ConnmanTestMsg;
};
/** Dump binary message to file, with timestamp */
void CaptureMessageToFile(const CAddress& addr,
const std::string& msg_type,
Span<const unsigned char> data,
bool is_incoming);
/** Defaults to `CaptureMessageToFile()`, but can be overridden by unit tests. */
extern std::function<void(const CAddress& addr,
const std::string& msg_type,
Span<const unsigned char> data,
bool is_incoming)>
CaptureMessage;
class CExplicitNetCleanup
{
public:
static void callCleanup();
};
#endif // BITCOIN_NET_H