241f76f9bf
* Merge #13176: Improve CRollingBloomFilter performance: replace modulus with FastMod 9aac9f90d5e56752cc6cbfac48063ad29a01143c replace modulus with FastMod (Martin Ankerl) Pull request description: Not sure if this is optimization is necessary, but anyway I have some spare time so here it is. This replaces the slow modulo operation with a much faster 64bit multiplication & shift. This works when the hash is uniformly distributed between 0 and 2^32-1. This speeds up the benchmark by a factor of about 1.3: ``` RollingBloom, 5, 1500000, 3.73733, 4.97569e-07, 4.99002e-07, 4.98372e-07 # before RollingBloom, 5, 1500000, 2.86842, 3.81630e-07, 3.83730e-07, 3.82473e-07 # FastMod ``` Be aware that this changes the internal data of the filter, so this should probably not be used for CBloomFilter because of interoperability problems. Tree-SHA512: 04104f3fb09f56c9d14458a6aad919aeb0a5af944e8ee6a31f00e93c753e22004648c1cd65bf36752b6addec528d19fb665c27b955ce1666a85a928e17afa47a * Use unordered_map in CSporkManager In one of my profiling sessions with many InstantSend transactions happening, calls into CSporkManager added up to about 1% of total CPU time. This is easily avoidable by using unordered maps. * Use std::unordered_map instead of std::map in limitedmap * Use unordered_set for CNode::setAskFor * Add serialization support for unordered maps and sets * Use unordered_map for mapArgs and mapMultiArgs * Let limitedmap prune in batches and use unordered_multimap Due to the batched pruning, there is no need to maintain an ordered map of values anymore. Only when nPruneAfterSize, there is a need to create a temporary ordered vector of values to figure out what can be removed. * Instead of using a multimap for mapAskFor, use a vector which we sort on demand CNode::AskFor will now push entries into an initially unordered vector instead of an ordered multimap. Only when we later want to use vecAskFor in SendMessages, we sort the vector. The vector will actually be mostly sorted in most cases as insertion order usually mimics the desired ordering. Only the last few entries might need some shuffling around. Doing the sort on-demand should be less wasteful then trying to maintain correct order all the time. * Fix compilation of tests * Fix limitedmap tests * Rename limitedmap to unordered_limitedmap to ensure backports conflict This ensures that future backports that depends on limitedmap's ordering conflict so that we are made aware of needed action. * Fix compilation error on Travis |
||
---|---|---|
.github | ||
.tx | ||
build-aux/m4 | ||
ci | ||
contrib | ||
depends | ||
doc | ||
docker | ||
qa | ||
share | ||
src | ||
.gitattributes | ||
.gitignore | ||
.travis.yml | ||
autogen.sh | ||
CMakeLists.txt | ||
configure.ac | ||
CONTRIBUTING.md | ||
COPYING | ||
INSTALL.md | ||
Jenkinsfile | ||
Jenkinsfile.gitian | ||
libdashconsensus.pc.in | ||
Makefile.am | ||
README.md |
Dash Core staging tree 0.14.0
What is Dash?
Dash is an experimental digital currency that enables anonymous, instant payments to anyone, anywhere in the world. Dash uses peer-to-peer technology to operate with no central authority: managing transactions and issuing money are carried out collectively by the network. Dash Core is the name of the open source software which enables the use of this currency.
For more information, as well as an immediately useable, binary version of the Dash Core software, see https://www.dash.org/get-dash/.
License
Dash Core is released under the terms of the MIT license. See COPYING for more information or see https://opensource.org/licenses/MIT.
Development Process
The master
branch is meant to be stable. Development is normally done in separate branches.
Tags are created to indicate new official,
stable release versions of Dash Core.
The contribution workflow is described in CONTRIBUTING.md.
Testing
Testing and code review is the bottleneck for development; we get more pull requests than we can review and test on short notice. Please be patient and help out by testing other people's pull requests, and remember this is a security-critical project where any mistake might cost people lots of money.
Automated Testing
Developers are strongly encouraged to write unit tests for new code, and to
submit new unit tests for old code. Unit tests can be compiled and run
(assuming they weren't disabled in configure) with: make check
. Further details on running
and extending unit tests can be found in /src/test/README.md.
There are also regression and integration tests of the RPC interface, written
in Python, that are run automatically on the build server.
These tests can be run (if the test dependencies are installed) with: qa/pull-tester/rpc-tests.py
The Travis CI system makes sure that every pull request is built for Windows, Linux, and OS X, and that unit/sanity tests are run automatically.
Manual Quality Assurance (QA) Testing
Changes should be tested by somebody other than the developer who wrote the code. This is especially important for large or high-risk changes. It is useful to add a test plan to the pull request description if testing the changes is not straightforward.
Translations
Changes to translations as well as new translations can be submitted to Dash Core's Transifex page.
Translations are periodically pulled from Transifex and merged into the git repository. See the translation process for details on how this works.
Important: We do not accept translation changes as GitHub pull requests because the next pull from Transifex would automatically overwrite them again.
Translators should also follow the forum.