dash/src/test/arith_uint256_tests.cpp
Wladimir J. van der Laan 92fd887fd4 tests: add a BasicTestingSetup and apply to all tests
Make sure that chainparams and logging is properly initialized. Doing
this for every test may be overkill, but this initialization is so
simple that that does not matter.

This should fix the travis issues.
2015-03-12 09:45:22 +01:00

568 lines
23 KiB
C++

// Copyright (c) 2011-2013 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <boost/test/unit_test.hpp>
#include <stdint.h>
#include <sstream>
#include <iomanip>
#include <limits>
#include <cmath>
#include "uint256.h"
#include "arith_uint256.h"
#include <string>
#include "version.h"
#include "test/test_bitcoin.h"
BOOST_FIXTURE_TEST_SUITE(arith_uint256_tests, BasicTestingSetup)
/// Convert vector to arith_uint256, via uint256 blob
inline arith_uint256 arith_uint256V(const std::vector<unsigned char>& vch)
{
return UintToArith256(uint256(vch));
}
const unsigned char R1Array[] =
"\x9c\x52\x4a\xdb\xcf\x56\x11\x12\x2b\x29\x12\x5e\x5d\x35\xd2\xd2"
"\x22\x81\xaa\xb5\x33\xf0\x08\x32\xd5\x56\xb1\xf9\xea\xe5\x1d\x7d";
const char R1ArrayHex[] = "7D1DE5EAF9B156D53208F033B5AA8122D2d2355d5e12292b121156cfdb4a529c";
const double R1Ldouble = 0.4887374590559308955; // R1L equals roughly R1Ldouble * 2^256
const arith_uint256 R1L = arith_uint256V(std::vector<unsigned char>(R1Array,R1Array+32));
const uint64_t R1LLow64 = 0x121156cfdb4a529cULL;
const unsigned char R2Array[] =
"\x70\x32\x1d\x7c\x47\xa5\x6b\x40\x26\x7e\x0a\xc3\xa6\x9c\xb6\xbf"
"\x13\x30\x47\xa3\x19\x2d\xda\x71\x49\x13\x72\xf0\xb4\xca\x81\xd7";
const arith_uint256 R2L = arith_uint256V(std::vector<unsigned char>(R2Array,R2Array+32));
const char R1LplusR2L[] = "549FB09FEA236A1EA3E31D4D58F1B1369288D204211CA751527CFC175767850C";
const unsigned char ZeroArray[] =
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00";
const arith_uint256 ZeroL = arith_uint256V(std::vector<unsigned char>(ZeroArray,ZeroArray+32));
const unsigned char OneArray[] =
"\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00";
const arith_uint256 OneL = arith_uint256V(std::vector<unsigned char>(OneArray,OneArray+32));
const unsigned char MaxArray[] =
"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff";
const arith_uint256 MaxL = arith_uint256V(std::vector<unsigned char>(MaxArray,MaxArray+32));
const arith_uint256 HalfL = (OneL << 255);
std::string ArrayToString(const unsigned char A[], unsigned int width)
{
std::stringstream Stream;
Stream << std::hex;
for (unsigned int i = 0; i < width; ++i)
{
Stream<<std::setw(2)<<std::setfill('0')<<(unsigned int)A[width-i-1];
}
return Stream.str();
}
BOOST_AUTO_TEST_CASE( basics ) // constructors, equality, inequality
{
BOOST_CHECK(1 == 0+1);
// constructor arith_uint256(vector<char>):
BOOST_CHECK(R1L.ToString() == ArrayToString(R1Array,32));
BOOST_CHECK(R2L.ToString() == ArrayToString(R2Array,32));
BOOST_CHECK(ZeroL.ToString() == ArrayToString(ZeroArray,32));
BOOST_CHECK(OneL.ToString() == ArrayToString(OneArray,32));
BOOST_CHECK(MaxL.ToString() == ArrayToString(MaxArray,32));
BOOST_CHECK(OneL.ToString() != ArrayToString(ZeroArray,32));
// == and !=
BOOST_CHECK(R1L != R2L);
BOOST_CHECK(ZeroL != OneL);
BOOST_CHECK(OneL != ZeroL);
BOOST_CHECK(MaxL != ZeroL);
BOOST_CHECK(~MaxL == ZeroL);
BOOST_CHECK( ((R1L ^ R2L) ^ R1L) == R2L);
uint64_t Tmp64 = 0xc4dab720d9c7acaaULL;
for (unsigned int i = 0; i < 256; ++i)
{
BOOST_CHECK(ZeroL != (OneL << i));
BOOST_CHECK((OneL << i) != ZeroL);
BOOST_CHECK(R1L != (R1L ^ (OneL << i)));
BOOST_CHECK(((arith_uint256(Tmp64) ^ (OneL << i) ) != Tmp64 ));
}
BOOST_CHECK(ZeroL == (OneL << 256));
// String Constructor and Copy Constructor
BOOST_CHECK(arith_uint256("0x"+R1L.ToString()) == R1L);
BOOST_CHECK(arith_uint256("0x"+R2L.ToString()) == R2L);
BOOST_CHECK(arith_uint256("0x"+ZeroL.ToString()) == ZeroL);
BOOST_CHECK(arith_uint256("0x"+OneL.ToString()) == OneL);
BOOST_CHECK(arith_uint256("0x"+MaxL.ToString()) == MaxL);
BOOST_CHECK(arith_uint256(R1L.ToString()) == R1L);
BOOST_CHECK(arith_uint256(" 0x"+R1L.ToString()+" ") == R1L);
BOOST_CHECK(arith_uint256("") == ZeroL);
BOOST_CHECK(R1L == arith_uint256(R1ArrayHex));
BOOST_CHECK(arith_uint256(R1L) == R1L);
BOOST_CHECK((arith_uint256(R1L^R2L)^R2L) == R1L);
BOOST_CHECK(arith_uint256(ZeroL) == ZeroL);
BOOST_CHECK(arith_uint256(OneL) == OneL);
// uint64_t constructor
BOOST_CHECK( (R1L & arith_uint256("0xffffffffffffffff")) == arith_uint256(R1LLow64));
BOOST_CHECK(ZeroL == arith_uint256(0));
BOOST_CHECK(OneL == arith_uint256(1));
BOOST_CHECK(arith_uint256("0xffffffffffffffff") = arith_uint256(0xffffffffffffffffULL));
// Assignment (from base_uint)
arith_uint256 tmpL = ~ZeroL; BOOST_CHECK(tmpL == ~ZeroL);
tmpL = ~OneL; BOOST_CHECK(tmpL == ~OneL);
tmpL = ~R1L; BOOST_CHECK(tmpL == ~R1L);
tmpL = ~R2L; BOOST_CHECK(tmpL == ~R2L);
tmpL = ~MaxL; BOOST_CHECK(tmpL == ~MaxL);
}
void shiftArrayRight(unsigned char* to, const unsigned char* from, unsigned int arrayLength, unsigned int bitsToShift)
{
for (unsigned int T=0; T < arrayLength; ++T)
{
unsigned int F = (T+bitsToShift/8);
if (F < arrayLength)
to[T] = from[F] >> (bitsToShift%8);
else
to[T] = 0;
if (F + 1 < arrayLength)
to[T] |= from[(F+1)] << (8-bitsToShift%8);
}
}
void shiftArrayLeft(unsigned char* to, const unsigned char* from, unsigned int arrayLength, unsigned int bitsToShift)
{
for (unsigned int T=0; T < arrayLength; ++T)
{
if (T >= bitsToShift/8)
{
unsigned int F = T-bitsToShift/8;
to[T] = from[F] << (bitsToShift%8);
if (T >= bitsToShift/8+1)
to[T] |= from[F-1] >> (8-bitsToShift%8);
}
else {
to[T] = 0;
}
}
}
BOOST_AUTO_TEST_CASE( shifts ) { // "<<" ">>" "<<=" ">>="
unsigned char TmpArray[32];
arith_uint256 TmpL;
for (unsigned int i = 0; i < 256; ++i)
{
shiftArrayLeft(TmpArray, OneArray, 32, i);
BOOST_CHECK(arith_uint256V(std::vector<unsigned char>(TmpArray,TmpArray+32)) == (OneL << i));
TmpL = OneL; TmpL <<= i;
BOOST_CHECK(TmpL == (OneL << i));
BOOST_CHECK((HalfL >> (255-i)) == (OneL << i));
TmpL = HalfL; TmpL >>= (255-i);
BOOST_CHECK(TmpL == (OneL << i));
shiftArrayLeft(TmpArray, R1Array, 32, i);
BOOST_CHECK(arith_uint256V(std::vector<unsigned char>(TmpArray,TmpArray+32)) == (R1L << i));
TmpL = R1L; TmpL <<= i;
BOOST_CHECK(TmpL == (R1L << i));
shiftArrayRight(TmpArray, R1Array, 32, i);
BOOST_CHECK(arith_uint256V(std::vector<unsigned char>(TmpArray,TmpArray+32)) == (R1L >> i));
TmpL = R1L; TmpL >>= i;
BOOST_CHECK(TmpL == (R1L >> i));
shiftArrayLeft(TmpArray, MaxArray, 32, i);
BOOST_CHECK(arith_uint256V(std::vector<unsigned char>(TmpArray,TmpArray+32)) == (MaxL << i));
TmpL = MaxL; TmpL <<= i;
BOOST_CHECK(TmpL == (MaxL << i));
shiftArrayRight(TmpArray, MaxArray, 32, i);
BOOST_CHECK(arith_uint256V(std::vector<unsigned char>(TmpArray,TmpArray+32)) == (MaxL >> i));
TmpL = MaxL; TmpL >>= i;
BOOST_CHECK(TmpL == (MaxL >> i));
}
arith_uint256 c1L = arith_uint256(0x0123456789abcdefULL);
arith_uint256 c2L = c1L << 128;
for (unsigned int i = 0; i < 128; ++i) {
BOOST_CHECK((c1L << i) == (c2L >> (128-i)));
}
for (unsigned int i = 128; i < 256; ++i) {
BOOST_CHECK((c1L << i) == (c2L << (i-128)));
}
}
BOOST_AUTO_TEST_CASE( unaryOperators ) // ! ~ -
{
BOOST_CHECK(!ZeroL);
BOOST_CHECK(!(!OneL));
for (unsigned int i = 0; i < 256; ++i)
BOOST_CHECK(!(!(OneL<<i)));
BOOST_CHECK(!(!R1L));
BOOST_CHECK(!(!MaxL));
BOOST_CHECK(~ZeroL == MaxL);
unsigned char TmpArray[32];
for (unsigned int i = 0; i < 32; ++i) { TmpArray[i] = ~R1Array[i]; }
BOOST_CHECK(arith_uint256V(std::vector<unsigned char>(TmpArray,TmpArray+32)) == (~R1L));
BOOST_CHECK(-ZeroL == ZeroL);
BOOST_CHECK(-R1L == (~R1L)+1);
for (unsigned int i = 0; i < 256; ++i)
BOOST_CHECK(-(OneL<<i) == (MaxL << i));
}
// Check if doing _A_ _OP_ _B_ results in the same as applying _OP_ onto each
// element of Aarray and Barray, and then converting the result into a arith_uint256.
#define CHECKBITWISEOPERATOR(_A_,_B_,_OP_) \
for (unsigned int i = 0; i < 32; ++i) { TmpArray[i] = _A_##Array[i] _OP_ _B_##Array[i]; } \
BOOST_CHECK(arith_uint256V(std::vector<unsigned char>(TmpArray,TmpArray+32)) == (_A_##L _OP_ _B_##L));
#define CHECKASSIGNMENTOPERATOR(_A_,_B_,_OP_) \
TmpL = _A_##L; TmpL _OP_##= _B_##L; BOOST_CHECK(TmpL == (_A_##L _OP_ _B_##L));
BOOST_AUTO_TEST_CASE( bitwiseOperators )
{
unsigned char TmpArray[32];
CHECKBITWISEOPERATOR(R1,R2,|)
CHECKBITWISEOPERATOR(R1,R2,^)
CHECKBITWISEOPERATOR(R1,R2,&)
CHECKBITWISEOPERATOR(R1,Zero,|)
CHECKBITWISEOPERATOR(R1,Zero,^)
CHECKBITWISEOPERATOR(R1,Zero,&)
CHECKBITWISEOPERATOR(R1,Max,|)
CHECKBITWISEOPERATOR(R1,Max,^)
CHECKBITWISEOPERATOR(R1,Max,&)
CHECKBITWISEOPERATOR(Zero,R1,|)
CHECKBITWISEOPERATOR(Zero,R1,^)
CHECKBITWISEOPERATOR(Zero,R1,&)
CHECKBITWISEOPERATOR(Max,R1,|)
CHECKBITWISEOPERATOR(Max,R1,^)
CHECKBITWISEOPERATOR(Max,R1,&)
arith_uint256 TmpL;
CHECKASSIGNMENTOPERATOR(R1,R2,|)
CHECKASSIGNMENTOPERATOR(R1,R2,^)
CHECKASSIGNMENTOPERATOR(R1,R2,&)
CHECKASSIGNMENTOPERATOR(R1,Zero,|)
CHECKASSIGNMENTOPERATOR(R1,Zero,^)
CHECKASSIGNMENTOPERATOR(R1,Zero,&)
CHECKASSIGNMENTOPERATOR(R1,Max,|)
CHECKASSIGNMENTOPERATOR(R1,Max,^)
CHECKASSIGNMENTOPERATOR(R1,Max,&)
CHECKASSIGNMENTOPERATOR(Zero,R1,|)
CHECKASSIGNMENTOPERATOR(Zero,R1,^)
CHECKASSIGNMENTOPERATOR(Zero,R1,&)
CHECKASSIGNMENTOPERATOR(Max,R1,|)
CHECKASSIGNMENTOPERATOR(Max,R1,^)
CHECKASSIGNMENTOPERATOR(Max,R1,&)
uint64_t Tmp64 = 0xe1db685c9a0b47a2ULL;
TmpL = R1L; TmpL |= Tmp64; BOOST_CHECK(TmpL == (R1L | arith_uint256(Tmp64)));
TmpL = R1L; TmpL |= 0; BOOST_CHECK(TmpL == R1L);
TmpL ^= 0; BOOST_CHECK(TmpL == R1L);
TmpL ^= Tmp64; BOOST_CHECK(TmpL == (R1L ^ arith_uint256(Tmp64)));
}
BOOST_AUTO_TEST_CASE( comparison ) // <= >= < >
{
arith_uint256 TmpL;
for (unsigned int i = 0; i < 256; ++i) {
TmpL= OneL<< i;
BOOST_CHECK( TmpL >= ZeroL && TmpL > ZeroL && ZeroL < TmpL && ZeroL <= TmpL);
BOOST_CHECK( TmpL >= 0 && TmpL > 0 && 0 < TmpL && 0 <= TmpL);
TmpL |= R1L;
BOOST_CHECK( TmpL >= R1L ); BOOST_CHECK( (TmpL == R1L) != (TmpL > R1L)); BOOST_CHECK( (TmpL == R1L) || !( TmpL <= R1L));
BOOST_CHECK( R1L <= TmpL ); BOOST_CHECK( (R1L == TmpL) != (R1L < TmpL)); BOOST_CHECK( (TmpL == R1L) || !( R1L >= TmpL));
BOOST_CHECK(! (TmpL < R1L)); BOOST_CHECK(! (R1L > TmpL));
}
}
BOOST_AUTO_TEST_CASE( plusMinus )
{
arith_uint256 TmpL = 0;
BOOST_CHECK(R1L+R2L == arith_uint256(R1LplusR2L));
TmpL += R1L;
BOOST_CHECK(TmpL == R1L);
TmpL += R2L;
BOOST_CHECK(TmpL == R1L + R2L);
BOOST_CHECK(OneL+MaxL == ZeroL);
BOOST_CHECK(MaxL+OneL == ZeroL);
for (unsigned int i = 1; i < 256; ++i) {
BOOST_CHECK( (MaxL >> i) + OneL == (HalfL >> (i-1)) );
BOOST_CHECK( OneL + (MaxL >> i) == (HalfL >> (i-1)) );
TmpL = (MaxL>>i); TmpL += OneL;
BOOST_CHECK( TmpL == (HalfL >> (i-1)) );
TmpL = (MaxL>>i); TmpL += 1;
BOOST_CHECK( TmpL == (HalfL >> (i-1)) );
TmpL = (MaxL>>i);
BOOST_CHECK( TmpL++ == (MaxL>>i) );
BOOST_CHECK( TmpL == (HalfL >> (i-1)));
}
BOOST_CHECK(arith_uint256(0xbedc77e27940a7ULL) + 0xee8d836fce66fbULL == arith_uint256(0xbedc77e27940a7ULL + 0xee8d836fce66fbULL));
TmpL = arith_uint256(0xbedc77e27940a7ULL); TmpL += 0xee8d836fce66fbULL;
BOOST_CHECK(TmpL == arith_uint256(0xbedc77e27940a7ULL+0xee8d836fce66fbULL));
TmpL -= 0xee8d836fce66fbULL; BOOST_CHECK(TmpL == 0xbedc77e27940a7ULL);
TmpL = R1L;
BOOST_CHECK(++TmpL == R1L+1);
BOOST_CHECK(R1L -(-R2L) == R1L+R2L);
BOOST_CHECK(R1L -(-OneL) == R1L+OneL);
BOOST_CHECK(R1L - OneL == R1L+(-OneL));
for (unsigned int i = 1; i < 256; ++i) {
BOOST_CHECK((MaxL>>i) - (-OneL) == (HalfL >> (i-1)));
BOOST_CHECK((HalfL >> (i-1)) - OneL == (MaxL>>i));
TmpL = (HalfL >> (i-1));
BOOST_CHECK(TmpL-- == (HalfL >> (i-1)));
BOOST_CHECK(TmpL == (MaxL >> i));
TmpL = (HalfL >> (i-1));
BOOST_CHECK(--TmpL == (MaxL >> i));
}
TmpL = R1L;
BOOST_CHECK(--TmpL == R1L-1);
}
BOOST_AUTO_TEST_CASE( multiply )
{
BOOST_CHECK((R1L * R1L).ToString() == "62a38c0486f01e45879d7910a7761bf30d5237e9873f9bff3642a732c4d84f10");
BOOST_CHECK((R1L * R2L).ToString() == "de37805e9986996cfba76ff6ba51c008df851987d9dd323f0e5de07760529c40");
BOOST_CHECK((R1L * ZeroL) == ZeroL);
BOOST_CHECK((R1L * OneL) == R1L);
BOOST_CHECK((R1L * MaxL) == -R1L);
BOOST_CHECK((R2L * R1L) == (R1L * R2L));
BOOST_CHECK((R2L * R2L).ToString() == "ac8c010096767d3cae5005dec28bb2b45a1d85ab7996ccd3e102a650f74ff100");
BOOST_CHECK((R2L * ZeroL) == ZeroL);
BOOST_CHECK((R2L * OneL) == R2L);
BOOST_CHECK((R2L * MaxL) == -R2L);
BOOST_CHECK(MaxL * MaxL == OneL);
BOOST_CHECK((R1L * 0) == 0);
BOOST_CHECK((R1L * 1) == R1L);
BOOST_CHECK((R1L * 3).ToString() == "7759b1c0ed14047f961ad09b20ff83687876a0181a367b813634046f91def7d4");
BOOST_CHECK((R2L * 0x87654321UL).ToString() == "23f7816e30c4ae2017257b7a0fa64d60402f5234d46e746b61c960d09a26d070");
}
BOOST_AUTO_TEST_CASE( divide )
{
arith_uint256 D1L("AD7133AC1977FA2B7");
arith_uint256 D2L("ECD751716");
BOOST_CHECK((R1L / D1L).ToString() == "00000000000000000b8ac01106981635d9ed112290f8895545a7654dde28fb3a");
BOOST_CHECK((R1L / D2L).ToString() == "000000000873ce8efec5b67150bad3aa8c5fcb70e947586153bf2cec7c37c57a");
BOOST_CHECK(R1L / OneL == R1L);
BOOST_CHECK(R1L / MaxL == ZeroL);
BOOST_CHECK(MaxL / R1L == 2);
BOOST_CHECK_THROW(R1L / ZeroL, uint_error);
BOOST_CHECK((R2L / D1L).ToString() == "000000000000000013e1665895a1cc981de6d93670105a6b3ec3b73141b3a3c5");
BOOST_CHECK((R2L / D2L).ToString() == "000000000e8f0abe753bb0afe2e9437ee85d280be60882cf0bd1aaf7fa3cc2c4");
BOOST_CHECK(R2L / OneL == R2L);
BOOST_CHECK(R2L / MaxL == ZeroL);
BOOST_CHECK(MaxL / R2L == 1);
BOOST_CHECK_THROW(R2L / ZeroL, uint_error);
}
bool almostEqual(double d1, double d2)
{
return fabs(d1-d2) <= 4*fabs(d1)*std::numeric_limits<double>::epsilon();
}
BOOST_AUTO_TEST_CASE( methods ) // GetHex SetHex size() GetLow64 GetSerializeSize, Serialize, Unserialize
{
BOOST_CHECK(R1L.GetHex() == R1L.ToString());
BOOST_CHECK(R2L.GetHex() == R2L.ToString());
BOOST_CHECK(OneL.GetHex() == OneL.ToString());
BOOST_CHECK(MaxL.GetHex() == MaxL.ToString());
arith_uint256 TmpL(R1L);
BOOST_CHECK(TmpL == R1L);
TmpL.SetHex(R2L.ToString()); BOOST_CHECK(TmpL == R2L);
TmpL.SetHex(ZeroL.ToString()); BOOST_CHECK(TmpL == 0);
TmpL.SetHex(HalfL.ToString()); BOOST_CHECK(TmpL == HalfL);
TmpL.SetHex(R1L.ToString());
BOOST_CHECK(R1L.size() == 32);
BOOST_CHECK(R2L.size() == 32);
BOOST_CHECK(ZeroL.size() == 32);
BOOST_CHECK(MaxL.size() == 32);
BOOST_CHECK(R1L.GetLow64() == R1LLow64);
BOOST_CHECK(HalfL.GetLow64() ==0x0000000000000000ULL);
BOOST_CHECK(OneL.GetLow64() ==0x0000000000000001ULL);
for (unsigned int i = 0; i < 255; ++i)
{
BOOST_CHECK((OneL << i).getdouble() == ldexp(1.0,i));
}
BOOST_CHECK(ZeroL.getdouble() == 0.0);
for (int i = 256; i > 53; --i)
BOOST_CHECK(almostEqual((R1L>>(256-i)).getdouble(), ldexp(R1Ldouble,i)));
uint64_t R1L64part = (R1L>>192).GetLow64();
for (int i = 53; i > 0; --i) // doubles can store all integers in {0,...,2^54-1} exactly
{
BOOST_CHECK((R1L>>(256-i)).getdouble() == (double)(R1L64part >> (64-i)));
}
}
BOOST_AUTO_TEST_CASE(bignum_SetCompact)
{
arith_uint256 num;
bool fNegative;
bool fOverflow;
num.SetCompact(0, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x00123456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x01003456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x02000056, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x03000000, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x04000000, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x00923456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x01803456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x02800056, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x03800000, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x04800000, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x01123456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000012");
BOOST_CHECK_EQUAL(num.GetCompact(), 0x01120000U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
// Make sure that we don't generate compacts with the 0x00800000 bit set
num = 0x80;
BOOST_CHECK_EQUAL(num.GetCompact(), 0x02008000U);
num.SetCompact(0x01fedcba, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "000000000000000000000000000000000000000000000000000000000000007e");
BOOST_CHECK_EQUAL(num.GetCompact(true), 0x01fe0000U);
BOOST_CHECK_EQUAL(fNegative, true);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x02123456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000001234");
BOOST_CHECK_EQUAL(num.GetCompact(), 0x02123400U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x03123456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000123456");
BOOST_CHECK_EQUAL(num.GetCompact(), 0x03123456U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x04123456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000012345600");
BOOST_CHECK_EQUAL(num.GetCompact(), 0x04123456U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x04923456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000012345600");
BOOST_CHECK_EQUAL(num.GetCompact(true), 0x04923456U);
BOOST_CHECK_EQUAL(fNegative, true);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x05009234, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000092340000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0x05009234U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x20123456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "1234560000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0x20123456U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0xff123456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, true);
}
BOOST_AUTO_TEST_CASE( getmaxcoverage ) // some more tests just to get 100% coverage
{
// ~R1L give a base_uint<256>
BOOST_CHECK((~~R1L >> 10) == (R1L >> 10));
BOOST_CHECK((~~R1L << 10) == (R1L << 10));
BOOST_CHECK(!(~~R1L < R1L));
BOOST_CHECK(~~R1L <= R1L);
BOOST_CHECK(!(~~R1L > R1L));
BOOST_CHECK(~~R1L >= R1L);
BOOST_CHECK(!(R1L < ~~R1L));
BOOST_CHECK(R1L <= ~~R1L);
BOOST_CHECK(!(R1L > ~~R1L));
BOOST_CHECK(R1L >= ~~R1L);
BOOST_CHECK(~~R1L + R2L == R1L + ~~R2L);
BOOST_CHECK(~~R1L - R2L == R1L - ~~R2L);
BOOST_CHECK(~R1L != R1L); BOOST_CHECK(R1L != ~R1L);
unsigned char TmpArray[32];
CHECKBITWISEOPERATOR(~R1,R2,|)
CHECKBITWISEOPERATOR(~R1,R2,^)
CHECKBITWISEOPERATOR(~R1,R2,&)
CHECKBITWISEOPERATOR(R1,~R2,|)
CHECKBITWISEOPERATOR(R1,~R2,^)
CHECKBITWISEOPERATOR(R1,~R2,&)
}
BOOST_AUTO_TEST_SUITE_END()