dash/src/net.h
2023-07-24 20:45:49 +03:00

1410 lines
50 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_NET_H
#define BITCOIN_NET_H
#include <addrdb.h>
#include <addrman.h>
#include <bloom.h>
#include <chainparams.h>
#include <compat.h>
#include <fs.h>
#include <crypto/siphash.h>
#include <hash.h>
#include <limitedmap.h>
#include <net_permissions.h>
#include <netaddress.h>
#include <policy/feerate.h>
#include <protocol.h>
#include <random.h>
#include <saltedhasher.h>
#include <streams.h>
#include <sync.h>
#include <threadinterrupt.h>
#include <uint256.h>
#include <util/system.h>
#include <consensus/params.h>
#include <atomic>
#include <cstdint>
#include <deque>
#include <map>
#include <thread>
#include <memory>
#include <condition_variable>
#include <unordered_set>
#include <optional>
#include <queue>
#ifndef WIN32
#include <arpa/inet.h>
#endif
#ifndef WIN32
#define USE_WAKEUP_PIPE
#endif
class CScheduler;
class CNode;
class BanMan;
struct bilingual_str;
/** Default for -whitelistrelay. */
static const bool DEFAULT_WHITELISTRELAY = true;
/** Default for -whitelistforcerelay. */
static const bool DEFAULT_WHITELISTFORCERELAY = false;
/** Time after which to disconnect, after waiting for a ping response (or inactivity). */
static const int TIMEOUT_INTERVAL = 20 * 60;
/** Minimum time between warnings printed to log. */
static const int WARNING_INTERVAL = 10 * 60;
/** Run the feeler connection loop once every 2 minutes or 120 seconds. **/
static const int FEELER_INTERVAL = 120;
/** The maximum number of entries in an 'inv' protocol message */
static const unsigned int MAX_INV_SZ = 50000;
/** The maximum number of addresses from our addrman to return in response to a getaddr message. */
static constexpr size_t MAX_ADDR_TO_SEND = 1000;
/** Maximum length of incoming protocol messages (no message over 3 MiB is currently acceptable). */
static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH = 3 * 1024 * 1024;
/** Maximum length of the user agent string in `version` message */
static const unsigned int MAX_SUBVERSION_LENGTH = 256;
/** Maximum number of automatic outgoing nodes over which we'll relay everything (blocks, tx, addrs, etc) */
static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS = 8;
/** Maximum number of addnode outgoing nodes */
static const int MAX_ADDNODE_CONNECTIONS = 8;
/** Eviction protection time for incoming connections */
static const int INBOUND_EVICTION_PROTECTION_TIME = 1;
/** Maximum number of block-relay-only outgoing connections */
static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS = 2;
/** Maximum number of feeler connections */
static const int MAX_FEELER_CONNECTIONS = 1;
/** -listen default */
static const bool DEFAULT_LISTEN = true;
/** The maximum number of peer connections to maintain.
* Masternodes are forced to accept at least this many connections
*/
static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 125;
/** The default for -maxuploadtarget. 0 = Unlimited */
static constexpr uint64_t DEFAULT_MAX_UPLOAD_TARGET = 0;
/** Default for blocks only*/
static const bool DEFAULT_BLOCKSONLY = false;
/** -peertimeout default */
static const int64_t DEFAULT_PEER_CONNECT_TIMEOUT = 60;
static const bool DEFAULT_FORCEDNSSEED = false;
static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000;
static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000;
#if defined USE_KQUEUE
#define DEFAULT_SOCKETEVENTS "kqueue"
#elif defined USE_EPOLL
#define DEFAULT_SOCKETEVENTS "epoll"
#elif defined USE_POLL
#define DEFAULT_SOCKETEVENTS "poll"
#else
#define DEFAULT_SOCKETEVENTS "select"
#endif
typedef int64_t NodeId;
struct AddedNodeInfo
{
std::string strAddedNode;
CService resolvedAddress;
bool fConnected;
bool fInbound;
};
class CNodeStats;
class CClientUIInterface;
struct CSerializedNetMsg
{
CSerializedNetMsg() = default;
CSerializedNetMsg(CSerializedNetMsg&&) = default;
CSerializedNetMsg& operator=(CSerializedNetMsg&&) = default;
// No copying, only moves.
CSerializedNetMsg(const CSerializedNetMsg& msg) = delete;
CSerializedNetMsg& operator=(const CSerializedNetMsg&) = delete;
std::vector<unsigned char> data;
std::string command;
};
class NetEventsInterface;
class CConnman
{
friend class CNode;
public:
enum NumConnections {
CONNECTIONS_NONE = 0,
CONNECTIONS_IN = (1U << 0),
CONNECTIONS_OUT = (1U << 1),
CONNECTIONS_ALL = (CONNECTIONS_IN | CONNECTIONS_OUT),
CONNECTIONS_VERIFIED = (1U << 2),
CONNECTIONS_VERIFIED_IN = (CONNECTIONS_VERIFIED | CONNECTIONS_IN),
CONNECTIONS_VERIFIED_OUT = (CONNECTIONS_VERIFIED | CONNECTIONS_OUT),
};
enum SocketEventsMode {
SOCKETEVENTS_SELECT = 0,
SOCKETEVENTS_POLL = 1,
SOCKETEVENTS_EPOLL = 2,
SOCKETEVENTS_KQUEUE = 3,
};
struct Options
{
ServiceFlags nLocalServices = NODE_NONE;
int nMaxConnections = 0;
int m_max_outbound_full_relay = 0;
int m_max_outbound_block_relay = 0;
int nMaxAddnode = 0;
int nMaxFeeler = 0;
CClientUIInterface* uiInterface = nullptr;
NetEventsInterface* m_msgproc = nullptr;
BanMan* m_banman = nullptr;
unsigned int nSendBufferMaxSize = 0;
unsigned int nReceiveFloodSize = 0;
uint64_t nMaxOutboundLimit = 0;
int64_t m_peer_connect_timeout = DEFAULT_PEER_CONNECT_TIMEOUT;
std::vector<std::string> vSeedNodes;
std::vector<NetWhitelistPermissions> vWhitelistedRange;
std::vector<NetWhitebindPermissions> vWhiteBinds;
std::vector<CService> vBinds;
std::vector<CService> onion_binds;
bool m_use_addrman_outgoing = true;
std::vector<std::string> m_specified_outgoing;
std::vector<std::string> m_added_nodes;
SocketEventsMode socketEventsMode = SOCKETEVENTS_SELECT;
std::vector<bool> m_asmap;
};
void Init(const Options& connOptions) {
nLocalServices = connOptions.nLocalServices;
nMaxConnections = connOptions.nMaxConnections;
m_max_outbound_full_relay = std::min(connOptions.m_max_outbound_full_relay, connOptions.nMaxConnections);
m_max_outbound_block_relay = connOptions.m_max_outbound_block_relay;
m_use_addrman_outgoing = connOptions.m_use_addrman_outgoing;
nMaxAddnode = connOptions.nMaxAddnode;
nMaxFeeler = connOptions.nMaxFeeler;
m_max_outbound = m_max_outbound_full_relay + m_max_outbound_block_relay + nMaxFeeler;
clientInterface = connOptions.uiInterface;
m_banman = connOptions.m_banman;
m_msgproc = connOptions.m_msgproc;
nSendBufferMaxSize = connOptions.nSendBufferMaxSize;
nReceiveFloodSize = connOptions.nReceiveFloodSize;
m_peer_connect_timeout = connOptions.m_peer_connect_timeout;
{
LOCK(cs_totalBytesSent);
nMaxOutboundLimit = connOptions.nMaxOutboundLimit;
}
vWhitelistedRange = connOptions.vWhitelistedRange;
{
LOCK(cs_vAddedNodes);
vAddedNodes = connOptions.m_added_nodes;
}
socketEventsMode = connOptions.socketEventsMode;
m_onion_binds = connOptions.onion_binds;
}
CConnman(uint64_t seed0, uint64_t seed1, CAddrMan& addrman);
~CConnman();
bool Start(CScheduler& scheduler, const Options& options);
void StopThreads();
void StopNodes();
void Stop()
{
StopThreads();
StopNodes();
};
void Interrupt();
bool GetNetworkActive() const { return fNetworkActive; };
bool GetUseAddrmanOutgoing() const { return m_use_addrman_outgoing; };
void SetNetworkActive(bool active);
SocketEventsMode GetSocketEventsMode() const { return socketEventsMode; }
enum class MasternodeConn {
IsNotConnection,
IsConnection,
};
enum class MasternodeProbeConn {
IsNotConnection,
IsConnection,
};
void OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound = nullptr, const char *strDest = nullptr, bool fOneShot = false, bool fFeeler = false, bool manual_connection = false, bool block_relay_only = false, MasternodeConn masternode_connection = MasternodeConn::IsNotConnection, MasternodeProbeConn masternode_probe_connection = MasternodeProbeConn::IsNotConnection);
void OpenMasternodeConnection(const CAddress& addrConnect, MasternodeProbeConn probe = MasternodeProbeConn::IsConnection);
bool CheckIncomingNonce(uint64_t nonce);
struct CFullyConnectedOnly {
bool operator() (const CNode* pnode) const {
return NodeFullyConnected(pnode);
}
};
constexpr static const CFullyConnectedOnly FullyConnectedOnly{};
struct CAllNodes {
bool operator() (const CNode*) const {return true;}
};
constexpr static const CAllNodes AllNodes{};
bool ForNode(NodeId id, std::function<bool(const CNode* pnode)> cond, std::function<bool(CNode* pnode)> func);
bool ForNode(const CService& addr, std::function<bool(const CNode* pnode)> cond, std::function<bool(CNode* pnode)> func);
template<typename Callable>
bool ForNode(const CService& addr, Callable&& func)
{
return ForNode(addr, FullyConnectedOnly, func);
}
template<typename Callable>
bool ForNode(NodeId id, Callable&& func)
{
return ForNode(id, FullyConnectedOnly, func);
}
bool IsConnected(const CService& addr, std::function<bool(const CNode* pnode)> cond)
{
return ForNode(addr, cond, [](CNode* pnode){
return true;
});
}
bool IsMasternodeOrDisconnectRequested(const CService& addr);
void PushMessage(CNode* pnode, CSerializedNetMsg&& msg);
template<typename Condition, typename Callable>
bool ForEachNodeContinueIf(const Condition& cond, Callable&& func)
{
LOCK(cs_vNodes);
for (auto&& node : vNodes)
if (cond(node))
if(!func(node))
return false;
return true;
};
template<typename Callable>
bool ForEachNodeContinueIf(Callable&& func)
{
return ForEachNodeContinueIf(FullyConnectedOnly, func);
}
template<typename Condition, typename Callable>
bool ForEachNodeContinueIf(const Condition& cond, Callable&& func) const
{
LOCK(cs_vNodes);
for (const auto& node : vNodes)
if (cond(node))
if(!func(node))
return false;
return true;
};
template<typename Callable>
bool ForEachNodeContinueIf(Callable&& func) const
{
return ForEachNodeContinueIf(FullyConnectedOnly, func);
}
template<typename Condition, typename Callable>
void ForEachNode(const Condition& cond, Callable&& func)
{
LOCK(cs_vNodes);
for (auto&& node : vNodes) {
if (cond(node))
func(node);
}
};
template<typename Callable>
void ForEachNode(Callable&& func)
{
ForEachNode(FullyConnectedOnly, func);
}
template<typename Condition, typename Callable>
void ForEachNode(const Condition& cond, Callable&& func) const
{
LOCK(cs_vNodes);
for (auto&& node : vNodes) {
if (cond(node))
func(node);
}
};
template<typename Callable>
void ForEachNode(Callable&& func) const
{
ForEachNode(FullyConnectedOnly, func);
}
template<typename Condition, typename Callable, typename CallableAfter>
void ForEachNodeThen(const Condition& cond, Callable&& pre, CallableAfter&& post)
{
LOCK(cs_vNodes);
for (auto&& node : vNodes) {
if (cond(node))
pre(node);
}
post();
};
template<typename Callable, typename CallableAfter>
void ForEachNodeThen(Callable&& pre, CallableAfter&& post)
{
ForEachNodeThen(FullyConnectedOnly, pre, post);
}
template<typename Condition, typename Callable, typename CallableAfter>
void ForEachNodeThen(const Condition& cond, Callable&& pre, CallableAfter&& post) const
{
LOCK(cs_vNodes);
for (auto&& node : vNodes) {
if (cond(node))
pre(node);
}
post();
};
template<typename Callable, typename CallableAfter>
void ForEachNodeThen(Callable&& pre, CallableAfter&& post) const
{
ForEachNodeThen(FullyConnectedOnly, pre, post);
}
std::vector<CNode*> CopyNodeVector(std::function<bool(const CNode* pnode)> cond);
std::vector<CNode*> CopyNodeVector();
void ReleaseNodeVector(const std::vector<CNode*>& vecNodes);
void RelayTransaction(const CTransaction& tx);
void RelayInv(CInv &inv, const int minProtoVersion = MIN_PEER_PROTO_VERSION);
void RelayInvFiltered(CInv &inv, const CTransaction &relatedTx, const int minProtoVersion = MIN_PEER_PROTO_VERSION);
// This overload will not update node filters, so use it only for the cases when other messages will update related transaction data in filters
void RelayInvFiltered(CInv &inv, const uint256 &relatedTxHash, const int minProtoVersion = MIN_PEER_PROTO_VERSION);
// Addrman functions
std::vector<CAddress> GetAddresses(size_t max_addresses, size_t max_pct);
/**
* Cache is used to minimize topology leaks, so it should
* be used for all non-trusted calls, for example, p2p.
* A non-malicious call (from RPC or a peer with addr permission) should
* call the function without a parameter to avoid using the cache.
*/
std::vector<CAddress> GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct);
// This allows temporarily exceeding m_max_outbound_full_relay, with the goal of finding
// a peer that is better than all our current peers.
void SetTryNewOutboundPeer(bool flag);
bool GetTryNewOutboundPeer();
// Return the number of outbound peers we have in excess of our target (eg,
// if we previously called SetTryNewOutboundPeer(true), and have since set
// to false, we may have extra peers that we wish to disconnect). This may
// return a value less than (num_outbound_connections - num_outbound_slots)
// in cases where some outbound connections are not yet fully connected, or
// not yet fully disconnected.
int GetExtraOutboundCount();
bool AddNode(const std::string& node);
bool RemoveAddedNode(const std::string& node);
std::vector<AddedNodeInfo> GetAddedNodeInfo();
bool AddPendingMasternode(const uint256& proTxHash);
void SetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set<uint256>& proTxHashes);
void SetMasternodeQuorumRelayMembers(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set<uint256>& proTxHashes);
bool HasMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash);
std::set<uint256> GetMasternodeQuorums(Consensus::LLMQType llmqType);
// also returns QWATCH nodes
std::set<NodeId> GetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash) const;
void RemoveMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash);
bool IsMasternodeQuorumNode(const CNode* pnode);
bool IsMasternodeQuorumRelayMember(const uint256& protxHash);
void AddPendingProbeConnections(const std::set<uint256>& proTxHashes);
size_t GetNodeCount(NumConnections num);
size_t GetMaxOutboundNodeCount();
void GetNodeStats(std::vector<CNodeStats>& vstats);
bool DisconnectNode(const std::string& node);
bool DisconnectNode(const CSubNet& subnet);
bool DisconnectNode(const CNetAddr& addr);
bool DisconnectNode(NodeId id);
//! Used to convey which local services we are offering peers during node
//! connection.
//!
//! The data returned by this is used in CNode construction,
//! which is used to advertise which services we are offering
//! that peer during `net_processing.cpp:PushNodeVersion()`.
ServiceFlags GetLocalServices() const;
uint64_t GetMaxOutboundTarget();
std::chrono::seconds GetMaxOutboundTimeframe();
//! check if the outbound target is reached
//! if param historicalBlockServingLimit is set true, the function will
//! response true if the limit for serving historical blocks has been reached
bool OutboundTargetReached(bool historicalBlockServingLimit);
//! response the bytes left in the current max outbound cycle
//! in case of no limit, it will always response 0
uint64_t GetOutboundTargetBytesLeft();
//! returns the time left in the current max outbound cycle
//! in case of no limit, it will always return 0
std::chrono::seconds GetMaxOutboundTimeLeftInCycle();
uint64_t GetTotalBytesRecv();
uint64_t GetTotalBytesSent();
/** Get a unique deterministic randomizer. */
CSipHasher GetDeterministicRandomizer(uint64_t id) const;
unsigned int GetReceiveFloodSize() const;
void WakeMessageHandler();
void WakeSelect();
/** Attempts to obfuscate tx time through exponentially distributed emitting.
Works assuming that a single interval is used.
Variable intervals will result in privacy decrease.
*/
int64_t PoissonNextSendInbound(int64_t now, int average_interval_seconds);
void SetAsmap(std::vector<bool> asmap) { addrman.m_asmap = std::move(asmap); }
private:
struct ListenSocket {
public:
SOCKET socket;
inline void AddSocketPermissionFlags(NetPermissionFlags& flags) const { NetPermissions::AddFlag(flags, m_permissions); }
ListenSocket(SOCKET socket_, NetPermissionFlags permissions_) : socket(socket_), m_permissions(permissions_) {}
private:
NetPermissionFlags m_permissions;
};
bool BindListenPort(const CService& bindAddr, bilingual_str& strError, NetPermissionFlags permissions);
bool Bind(const CService& addr, unsigned int flags, NetPermissionFlags permissions);
bool InitBinds(
const std::vector<CService>& binds,
const std::vector<NetWhitebindPermissions>& whiteBinds,
const std::vector<CService>& onion_binds);
void ThreadOpenAddedConnections();
void AddOneShot(const std::string& strDest);
void ProcessOneShot();
void ThreadOpenConnections(std::vector<std::string> connect);
void ThreadMessageHandler();
void AcceptConnection(const ListenSocket& hListenSocket);
void DisconnectNodes();
void NotifyNumConnectionsChanged();
void CalculateNumConnectionsChangedStats();
void InactivityCheck(CNode *pnode);
bool GenerateSelectSet(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set);
#ifdef USE_KQUEUE
void SocketEventsKqueue(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
#endif
#ifdef USE_EPOLL
void SocketEventsEpoll(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
#endif
#ifdef USE_POLL
void SocketEventsPoll(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
#endif
void SocketEventsSelect(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
void SocketEvents(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll);
void SocketHandler();
void ThreadSocketHandler();
void ThreadDNSAddressSeed();
void ThreadOpenMasternodeConnections();
uint64_t CalculateKeyedNetGroup(const CAddress& ad) const;
CNode* FindNode(const CNetAddr& ip, bool fExcludeDisconnecting = true);
CNode* FindNode(const CSubNet& subNet, bool fExcludeDisconnecting = true);
CNode* FindNode(const std::string& addrName, bool fExcludeDisconnecting = true);
CNode* FindNode(const CService& addr, bool fExcludeDisconnecting = true);
bool AttemptToEvictConnection();
CNode* ConnectNode(CAddress addrConnect, const char *pszDest = nullptr, bool fCountFailure = false, bool manual_connection = false, bool block_relay_only = false);
void AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr) const;
void DeleteNode(CNode* pnode);
NodeId GetNewNodeId();
size_t SocketSendData(CNode *pnode);
size_t SocketRecvData(CNode* pnode);
void DumpAddresses();
// Network stats
void RecordBytesRecv(uint64_t bytes);
void RecordBytesSent(uint64_t bytes);
// Whether the node should be passed out in ForEach* callbacks
static bool NodeFullyConnected(const CNode* pnode);
void RegisterEvents(CNode* pnode);
void UnregisterEvents(CNode* pnode);
// Network usage totals
RecursiveMutex cs_totalBytesRecv;
RecursiveMutex cs_totalBytesSent;
uint64_t nTotalBytesRecv GUARDED_BY(cs_totalBytesRecv) {0};
uint64_t nTotalBytesSent GUARDED_BY(cs_totalBytesSent) {0};
// outbound limit & stats
uint64_t nMaxOutboundTotalBytesSentInCycle GUARDED_BY(cs_totalBytesSent);
std::chrono::seconds nMaxOutboundCycleStartTime GUARDED_BY(cs_totalBytesSent);
uint64_t nMaxOutboundLimit GUARDED_BY(cs_totalBytesSent);
// P2P timeout in seconds
int64_t m_peer_connect_timeout;
// Whitelisted ranges. Any node connecting from these is automatically
// whitelisted (as well as those connecting to whitelisted binds).
std::vector<NetWhitelistPermissions> vWhitelistedRange;
unsigned int nSendBufferMaxSize{0};
unsigned int nReceiveFloodSize{0};
std::vector<ListenSocket> vhListenSocket;
std::atomic<bool> fNetworkActive{true};
bool fAddressesInitialized{false};
CAddrMan& addrman;
std::deque<std::string> vOneShots GUARDED_BY(cs_vOneShots);
RecursiveMutex cs_vOneShots;
std::vector<std::string> vAddedNodes GUARDED_BY(cs_vAddedNodes);
RecursiveMutex cs_vAddedNodes;
std::vector<uint256> vPendingMasternodes;
mutable RecursiveMutex cs_vPendingMasternodes;
std::map<std::pair<Consensus::LLMQType, uint256>, std::set<uint256>> masternodeQuorumNodes GUARDED_BY(cs_vPendingMasternodes);
std::map<std::pair<Consensus::LLMQType, uint256>, std::set<uint256>> masternodeQuorumRelayMembers GUARDED_BY(cs_vPendingMasternodes);
std::set<uint256> masternodePendingProbes GUARDED_BY(cs_vPendingMasternodes);
std::vector<CNode*> vNodes GUARDED_BY(cs_vNodes);
std::list<CNode*> vNodesDisconnected;
std::unordered_map<SOCKET, CNode*> mapSocketToNode;
mutable RecursiveMutex cs_vNodes;
std::atomic<NodeId> nLastNodeId{0};
unsigned int nPrevNodeCount{0};
/**
* Cache responses to addr requests to minimize privacy leak.
* Attack example: scraping addrs in real-time may allow an attacker
* to infer new connections of the victim by detecting new records
* with fresh timestamps (per self-announcement).
*/
struct CachedAddrResponse {
std::vector<CAddress> m_addrs_response_cache;
std::chrono::microseconds m_cache_entry_expiration{0};
};
/**
* Addr responses stored in different caches
* per (network, local socket) prevent cross-network node identification.
* If a node for example is multi-homed under Tor and IPv6,
* a single cache (or no cache at all) would let an attacker
* to easily detect that it is the same node by comparing responses.
* Indexing by local socket prevents leakage when a node has multiple
* listening addresses on the same network.
*
* The used memory equals to 1000 CAddress records (or around 40 bytes) per
* distinct Network (up to 5) we have/had an inbound peer from,
* resulting in at most ~196 KB. Every separate local socket may
* add up to ~196 KB extra.
*/
std::map<uint64_t, CachedAddrResponse> m_addr_response_caches;
/**
* Services this instance offers.
*
* This data is replicated in each CNode instance we create during peer
* connection (in ConnectNode()) under a member also called
* nLocalServices.
*
* This data is not marked const, but after being set it should not
* change. See the note in CNode::nLocalServices documentation.
*
* \sa CNode::nLocalServices
*/
ServiceFlags nLocalServices;
std::unique_ptr<CSemaphore> semOutbound;
std::unique_ptr<CSemaphore> semAddnode;
int nMaxConnections;
// How many full-relay (tx, block, addr) outbound peers we want
int m_max_outbound_full_relay;
// How many block-relay only outbound peers we want
// We do not relay tx or addr messages with these peers
int m_max_outbound_block_relay;
int nMaxAddnode;
int nMaxFeeler;
int m_max_outbound;
bool m_use_addrman_outgoing;
CClientUIInterface* clientInterface;
NetEventsInterface* m_msgproc;
BanMan* m_banman;
/** SipHasher seeds for deterministic randomness */
const uint64_t nSeed0, nSeed1;
/** flag for waking the message processor. */
bool fMsgProcWake GUARDED_BY(mutexMsgProc);
std::condition_variable condMsgProc;
Mutex mutexMsgProc;
std::atomic<bool> flagInterruptMsgProc{false};
CThreadInterrupt interruptNet;
#ifdef USE_WAKEUP_PIPE
/** a pipe which is added to select() calls to wakeup before the timeout */
int wakeupPipe[2]{-1,-1};
#endif
std::atomic<bool> wakeupSelectNeeded{false};
SocketEventsMode socketEventsMode;
#ifdef USE_KQUEUE
int kqueuefd{-1};
#endif
#ifdef USE_EPOLL
int epollfd{-1};
#endif
/** Protected by cs_vNodes */
std::unordered_map<NodeId, CNode*> mapReceivableNodes GUARDED_BY(cs_vNodes);
std::unordered_map<NodeId, CNode*> mapSendableNodes GUARDED_BY(cs_vNodes);
/** Protected by cs_mapNodesWithDataToSend */
std::unordered_map<NodeId, CNode*> mapNodesWithDataToSend GUARDED_BY(cs_mapNodesWithDataToSend);
mutable RecursiveMutex cs_mapNodesWithDataToSend;
std::thread threadDNSAddressSeed;
std::thread threadSocketHandler;
std::thread threadOpenAddedConnections;
std::thread threadOpenConnections;
std::thread threadOpenMasternodeConnections;
std::thread threadMessageHandler;
/** flag for deciding to connect to an extra outbound peer,
* in excess of m_max_outbound_full_relay
* This takes the place of a feeler connection */
std::atomic_bool m_try_another_outbound_peer;
std::atomic<int64_t> m_next_send_inv_to_incoming{0};
/**
* A vector of -bind=<address>:<port>=onion arguments each of which is
* an address and port that are designated for incoming Tor connections.
*/
std::vector<CService> m_onion_binds;
friend struct CConnmanTest;
friend struct ConnmanTestMsg;
};
void Discover();
uint16_t GetListenPort();
struct CombinerAll
{
typedef bool result_type;
template<typename I>
bool operator()(I first, I last) const
{
while (first != last) {
if (!(*first)) return false;
++first;
}
return true;
}
};
/**
* Interface for message handling
*/
class NetEventsInterface
{
public:
/** Initialize a peer (setup state, queue any initial messages) */
virtual void InitializeNode(CNode* pnode) = 0;
/** Handle removal of a peer (clear state) */
virtual void FinalizeNode(const CNode& node) = 0;
/**
* Process protocol messages received from a given node
*
* @param[in] pnode The node which we have received messages from.
* @param[in] interrupt Interrupt condition for processing threads
* @return True if there is more work to be done
*/
virtual bool ProcessMessages(CNode* pnode, std::atomic<bool>& interrupt) = 0;
/**
* Send queued protocol messages to a given node.
*
* @param[in] pnode The node which we are sending messages to.
* @return True if there is more work to be done
*/
virtual bool SendMessages(CNode* pnode) = 0;
protected:
/**
* Protected destructor so that instances can only be deleted by derived classes.
* If that restriction is no longer desired, this should be made public and virtual.
*/
~NetEventsInterface() = default;
};
enum
{
LOCAL_NONE, // unknown
LOCAL_IF, // address a local interface listens on
LOCAL_BIND, // address explicit bound to
LOCAL_MAPPED, // address reported by UPnP or NAT-PMP
LOCAL_MANUAL, // address explicitly specified (-externalip=)
LOCAL_MAX
};
bool IsPeerAddrLocalGood(CNode *pnode);
void AdvertiseLocal(CNode *pnode);
/**
* Mark a network as reachable or unreachable (no automatic connects to it)
* @note Networks are reachable by default
*/
void SetReachable(enum Network net, bool reachable);
/** @returns true if the network is reachable, false otherwise */
bool IsReachable(enum Network net);
/** @returns true if the address is in a reachable network, false otherwise */
bool IsReachable(const CNetAddr& addr);
bool AddLocal(const CService& addr, int nScore = LOCAL_NONE);
bool AddLocal(const CNetAddr& addr, int nScore = LOCAL_NONE);
void RemoveLocal(const CService& addr);
bool SeenLocal(const CService& addr);
bool IsLocal(const CService& addr);
bool GetLocal(CService &addr, const CNetAddr *paddrPeer = nullptr);
CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices);
extern bool fDiscover;
extern bool fListen;
/** Subversion as sent to the P2P network in `version` messages */
extern std::string strSubVersion;
struct LocalServiceInfo {
int nScore;
uint16_t nPort;
};
extern Mutex g_maplocalhost_mutex;
extern std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
extern const std::string NET_MESSAGE_COMMAND_OTHER;
typedef std::map<std::string, uint64_t> mapMsgCmdSize; //command, total bytes
class CNodeStats
{
public:
NodeId nodeid;
ServiceFlags nServices;
bool fRelayTxes;
int64_t nLastSend;
int64_t nLastRecv;
int64_t nTimeConnected;
int64_t nTimeOffset;
std::string addrName;
int nVersion;
std::string cleanSubVer;
bool fInbound;
bool m_manual_connection;
int nStartingHeight;
uint64_t nSendBytes;
mapMsgCmdSize mapSendBytesPerMsgCmd;
uint64_t nRecvBytes;
mapMsgCmdSize mapRecvBytesPerMsgCmd;
NetPermissionFlags m_permissionFlags;
bool m_legacyWhitelisted;
int64_t m_ping_usec;
int64_t m_ping_wait_usec;
int64_t m_min_ping_usec;
// Our address, as reported by the peer
std::string addrLocal;
// Address of this peer
CAddress addr;
// Bind address of our side of the connection
CAddress addrBind;
// Name of the network the peer connected through
std::string m_network;
uint32_t m_mapped_as;
// In case this is a verified MN, this value is the proTx of the MN
uint256 verifiedProRegTxHash;
// In case this is a verified MN, this value is the hashed operator pubkey of the MN
uint256 verifiedPubKeyHash;
bool m_masternode_connection;
};
/** Transport protocol agnostic message container.
* Ideally it should only contain receive time, payload,
* command and size.
*/
class CNetMessage {
public:
CDataStream m_recv; // received message data
int64_t m_time = 0; // time (in microseconds) of message receipt.
uint32_t m_message_size = 0; // size of the payload
uint32_t m_raw_message_size = 0; // used wire size of the message (including header/checksum)
std::string m_command;
CNetMessage(CDataStream&& recv_in) : m_recv(std::move(recv_in)) {}
void SetVersion(int nVersionIn)
{
m_recv.SetVersion(nVersionIn);
}
};
/** The TransportDeserializer takes care of holding and deserializing the
* network receive buffer. It can deserialize the network buffer into a
* transport protocol agnostic CNetMessage (command & payload)
*/
class TransportDeserializer {
public:
// returns true if the current deserialization is complete
virtual bool Complete() const = 0;
// set the serialization context version
virtual void SetVersion(int version) = 0;
// read and deserialize data
virtual int Read(const char *data, unsigned int bytes) = 0;
// decomposes a message from the context
virtual std::optional<CNetMessage> GetMessage(int64_t time, uint32_t& out_err) = 0;
virtual ~TransportDeserializer() {}
};
class V1TransportDeserializer final : public TransportDeserializer
{
private:
const CChainParams& m_chain_params;
const NodeId m_node_id; // Only for logging
mutable CHash256 hasher;
mutable uint256 data_hash;
bool in_data; // parsing header (false) or data (true)
CDataStream hdrbuf; // partially received header
CMessageHeader hdr; // complete header
CDataStream vRecv; // received message data
unsigned int nHdrPos;
unsigned int nDataPos;
const uint256& GetMessageHash() const;
int readHeader(const char *pch, unsigned int nBytes);
int readData(const char *pch, unsigned int nBytes);
void Reset() {
vRecv.clear();
hdrbuf.clear();
hdrbuf.resize(24);
in_data = false;
nHdrPos = 0;
nDataPos = 0;
data_hash.SetNull();
hasher.Reset();
}
public:
V1TransportDeserializer(const CChainParams& chain_params, const NodeId node_id, int nTypeIn, int nVersionIn)
: m_chain_params(chain_params),
m_node_id(node_id),
hdrbuf(nTypeIn, nVersionIn),
vRecv(nTypeIn, nVersionIn)
{
Reset();
}
bool Complete() const override
{
if (!in_data)
return false;
return (hdr.nMessageSize == nDataPos);
}
void SetVersion(int nVersionIn) override
{
hdrbuf.SetVersion(nVersionIn);
vRecv.SetVersion(nVersionIn);
}
int Read(const char *pch, unsigned int nBytes) override {
int ret = in_data ? readData(pch, nBytes) : readHeader(pch, nBytes);
if (ret < 0) Reset();
return ret;
}
std::optional<CNetMessage> GetMessage(int64_t time, uint32_t& out_err_raw_size) override;
};
/** The TransportSerializer prepares messages for the network transport
*/
class TransportSerializer {
public:
// prepare message for transport (header construction, error-correction computation, payload encryption, etc.)
virtual void prepareForTransport(CSerializedNetMsg& msg, std::vector<unsigned char>& header) = 0;
virtual ~TransportSerializer() {}
};
class V1TransportSerializer : public TransportSerializer {
public:
void prepareForTransport(CSerializedNetMsg& msg, std::vector<unsigned char>& header) override;
};
/** Information about a peer */
class CNode
{
friend class CConnman;
friend struct ConnmanTestMsg;
public:
std::unique_ptr<TransportDeserializer> m_deserializer;
std::unique_ptr<TransportSerializer> m_serializer;
NetPermissionFlags m_permissionFlags{ PF_NONE };
std::atomic<ServiceFlags> nServices{NODE_NONE};
SOCKET hSocket GUARDED_BY(cs_hSocket);
size_t nSendSize{0}; // total size of all vSendMsg entries
size_t nSendOffset{0}; // offset inside the first vSendMsg already sent
uint64_t nSendBytes GUARDED_BY(cs_vSend){0};
std::list<std::vector<unsigned char>> vSendMsg GUARDED_BY(cs_vSend);
std::atomic<size_t> nSendMsgSize{0};
RecursiveMutex cs_vSend;
RecursiveMutex cs_hSocket;
RecursiveMutex cs_vRecv;
RecursiveMutex cs_vProcessMsg;
std::list<CNetMessage> vProcessMsg GUARDED_BY(cs_vProcessMsg);
size_t nProcessQueueSize{0};
RecursiveMutex cs_sendProcessing;
uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0};
std::atomic<int> nRecvVersion{INIT_PROTO_VERSION};
std::atomic<int64_t> nLastSend{0};
std::atomic<int64_t> nLastRecv{0};
const int64_t nTimeConnected;
std::atomic<int64_t> nTimeOffset{0};
std::atomic<int64_t> nLastWarningTime{0};
std::atomic<int64_t> nTimeFirstMessageReceived{0};
std::atomic<bool> fFirstMessageIsMNAUTH{false};
// Address of this peer
const CAddress addr;
// Bind address of our side of the connection
const CAddress addrBind;
std::atomic<int> nNumWarningsSkipped{0};
std::atomic<int> nVersion{0};
/**
* cleanSubVer is a sanitized string of the user agent byte array we read
* from the wire. This cleaned string can safely be logged or displayed.
*/
std::string cleanSubVer GUARDED_BY(cs_SubVer){};
RecursiveMutex cs_SubVer; // used for both cleanSubVer and strSubVer
bool m_prefer_evict{false}; // This peer is preferred for eviction.
bool HasPermission(NetPermissionFlags permission) const {
return NetPermissions::HasFlag(m_permissionFlags, permission);
}
// This boolean is unusued in actual processing, only present for backward compatibility at RPC/QT level
bool m_legacyWhitelisted{false};
bool fFeeler{false}; // If true this node is being used as a short lived feeler.
bool fOneShot{false};
bool m_manual_connection{false};
bool fClient{false}; // set by version message
bool m_limited_node{false}; //after BIP159, set by version message
const bool fInbound;
/**
* Whether the peer has signaled support for receiving ADDRv2 (BIP155)
* messages, implying a preference to receive ADDRv2 instead of ADDR ones.
*/
std::atomic_bool m_wants_addrv2{false};
std::atomic_bool fSuccessfullyConnected{false};
// Setting fDisconnect to true will cause the node to be disconnected the
// next time DisconnectNodes() runs
std::atomic_bool fDisconnect{false};
std::atomic<int64_t> nDisconnectLingerTime{0};
std::atomic_bool fSocketShutdown{false};
std::atomic_bool fOtherSideDisconnected { false };
bool fSentAddr{false};
// If 'true' this node will be disconnected on CMasternodeMan::ProcessMasternodeConnections()
std::atomic<bool> m_masternode_connection{false};
// If 'true' this node will be disconnected after MNAUTH
std::atomic<bool> m_masternode_probe_connection{false};
// If 'true', we identified it as an intra-quorum relay connection
std::atomic<bool> m_masternode_iqr_connection{false};
CSemaphoreGrant grantOutbound;
std::atomic<int> nRefCount{0};
const uint64_t nKeyedNetGroup;
std::atomic_bool fPauseRecv{false};
std::atomic_bool fPauseSend{false};
std::atomic_bool fHasRecvData{false};
std::atomic_bool fCanSendData{false};
/**
* Get network the peer connected through.
*
* Returns Network::NET_ONION for *inbound* onion connections,
* and CNetAddr::GetNetClass() otherwise. The latter cannot be used directly
* because it doesn't detect the former, and it's not the responsibility of
* the CNetAddr class to know the actual network a peer is connected through.
*
* @return network the peer connected through.
*/
Network ConnectedThroughNetwork() const;
protected:
mapMsgCmdSize mapSendBytesPerMsgCmd;
mapMsgCmdSize mapRecvBytesPerMsgCmd GUARDED_BY(cs_vRecv);
public:
uint256 hashContinue;
std::atomic<int> nStartingHeight{-1};
// flood relay
std::vector<CAddress> vAddrToSend;
const std::unique_ptr<CRollingBloomFilter> m_addr_known;
bool fGetAddr{false};
int64_t nNextAddrSend GUARDED_BY(cs_sendProcessing){0};
int64_t nNextLocalAddrSend GUARDED_BY(cs_sendProcessing){0};
// Don't relay addr messages to peers that we connect to as block-relay-only
// peers (to prevent adversaries from inferring these links from addr
// traffic).
bool IsAddrRelayPeer() const { return m_addr_known != nullptr; }
bool IsBlockRelayOnly() const;
// List of block ids we still have announce.
// There is no final sorting before sending, as they are always sent immediately
// and in the order requested.
std::vector<uint256> vInventoryBlockToSend GUARDED_BY(cs_inventory);
RecursiveMutex cs_inventory;
/** UNIX epoch time of the last block received from this peer that we had
* not yet seen (e.g. not already received from another peer), that passed
* preliminary validity checks and was saved to disk, even if we don't
* connect the block or it eventually fails connection. Used as an inbound
* peer eviction criterium in CConnman::AttemptToEvictConnection. */
std::atomic<int64_t> nLastBlockTime{0};
/** UNIX epoch time of the last transaction received from this peer that we
* had not yet seen (e.g. not already received from another peer) and that
* was accepted into our mempool. Used as an inbound peer eviction criterium
* in CConnman::AttemptToEvictConnection. */
std::atomic<int64_t> nLastTXTime{0};
struct TxRelay {
TxRelay() { }
mutable RecursiveMutex cs_filter;
// We use fRelayTxes for two purposes -
// a) it allows us to not relay tx invs before receiving the peer's version message
// b) the peer may tell us in its version message that we should not relay tx invs
// unless it loads a bloom filter.
bool fRelayTxes GUARDED_BY(cs_filter){false};
std::unique_ptr<CBloomFilter> pfilter PT_GUARDED_BY(cs_filter) GUARDED_BY(cs_filter){nullptr};
mutable RecursiveMutex cs_tx_inventory;
// inventory based relay
CRollingBloomFilter filterInventoryKnown GUARDED_BY(cs_tx_inventory){50000, 0.000001};
// Set of transaction ids we still have to announce.
// They are sorted by the mempool before relay, so the order is not important.
std::set<uint256> setInventoryTxToSend GUARDED_BY(cs_tx_inventory);
// List of non-tx/non-block inventory items
std::vector<CInv> vInventoryOtherToSend GUARDED_BY(cs_tx_inventory);
// Used for BIP35 mempool sending, also protected by cs_tx_inventory
bool fSendMempool GUARDED_BY(cs_tx_inventory){false};
// Last time a "MEMPOOL" request was serviced.
std::atomic<std::chrono::seconds> m_last_mempool_req{0s};
std::chrono::microseconds nNextInvSend{0};
};
// in bitcoin: m_tx_relay == nullptr if we're not relaying transactions with this peer
// in dash: m_tx_relay should never be nullptr, use `IsAddrRelayPeer() == false` instead
std::unique_ptr<TxRelay> m_tx_relay{std::make_unique<TxRelay>()};
// Used for headers announcements - unfiltered blocks to relay
std::vector<uint256> vBlockHashesToAnnounce GUARDED_BY(cs_inventory);
// Ping time measurement:
// The pong reply we're expecting, or 0 if no pong expected.
std::atomic<uint64_t> nPingNonceSent{0};
// Time (in usec) the last ping was sent, or 0 if no ping was ever sent.
std::atomic<int64_t> nPingUsecStart{0};
// Last measured round-trip time.
std::atomic<int64_t> nPingUsecTime{0};
// Best measured round-trip time.
std::atomic<int64_t> nMinPingUsecTime{std::numeric_limits<int64_t>::max()};
// Whether a ping is requested.
std::atomic<bool> fPingQueued{false};
// If true, we will send him CoinJoin queue messages
std::atomic<bool> fSendDSQueue{false};
// If true, we will announce/send him plain recovered sigs (usually true for full nodes)
std::atomic<bool> fSendRecSigs{false};
// If true, we will send him all quorum related messages, even if he is not a member of our quorums
std::atomic<bool> qwatch{false};
CNode(NodeId id, ServiceFlags nLocalServicesIn, SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string &addrNameIn = "", bool fInboundIn = false, bool block_relay_only = false, bool inbound_onion = false);
~CNode();
CNode(const CNode&) = delete;
CNode& operator=(const CNode&) = delete;
private:
const NodeId id;
const uint64_t nLocalHostNonce;
//! Services offered to this peer.
//!
//! This is supplied by the parent CConnman during peer connection
//! (CConnman::ConnectNode()) from its attribute of the same name.
//!
//! This is const because there is no protocol defined for renegotiating
//! services initially offered to a peer. The set of local services we
//! offer should not change after initialization.
//!
//! An interesting example of this is NODE_NETWORK and initial block
//! download: a node which starts up from scratch doesn't have any blocks
//! to serve, but still advertises NODE_NETWORK because it will eventually
//! fulfill this role after IBD completes. P2P code is written in such a
//! way that it can gracefully handle peers who don't make good on their
//! service advertisements.
const ServiceFlags nLocalServices;
int nSendVersion {0};
std::list<CNetMessage> vRecvMsg; // Used only by SocketHandler thread
mutable RecursiveMutex cs_addrName;
std::string addrName GUARDED_BY(cs_addrName);
// Our address, as reported by the peer
CService addrLocal GUARDED_BY(cs_addrLocal);
mutable RecursiveMutex cs_addrLocal;
//! Whether this peer connected via our Tor onion service.
const bool m_inbound_onion{false};
// Challenge sent in VERSION to be answered with MNAUTH (only happens between MNs)
mutable RecursiveMutex cs_mnauth;
uint256 sentMNAuthChallenge GUARDED_BY(cs_mnauth);
uint256 receivedMNAuthChallenge GUARDED_BY(cs_mnauth);
uint256 verifiedProRegTxHash GUARDED_BY(cs_mnauth);
uint256 verifiedPubKeyHash GUARDED_BY(cs_mnauth);
public:
NodeId GetId() const {
return id;
}
uint64_t GetLocalNonce() const {
return nLocalHostNonce;
}
int GetRefCount() const
{
assert(nRefCount >= 0);
return nRefCount;
}
bool ReceiveMsgBytes(const char *pch, unsigned int nBytes, bool& complete);
void SetRecvVersion(int nVersionIn)
{
nRecvVersion = nVersionIn;
}
int GetRecvVersion() const
{
return nRecvVersion;
}
void SetSendVersion(int nVersionIn);
int GetSendVersion() const;
CService GetAddrLocal() const;
//! May not be called more than once
void SetAddrLocal(const CService& addrLocalIn);
CNode* AddRef()
{
nRefCount++;
return this;
}
void Release()
{
nRefCount--;
}
void AddAddressKnown(const CAddress& _addr)
{
assert(m_addr_known);
m_addr_known->insert(_addr.GetKey());
}
/**
* Whether the peer supports the address. For example, a peer that does not
* implement BIP155 cannot receive Tor v3 addresses because it requires
* ADDRv2 (BIP155) encoding.
*/
bool IsAddrCompatible(const CAddress& addr) const
{
return m_wants_addrv2 || addr.IsAddrV1Compatible();
}
void PushAddress(const CAddress& _addr, FastRandomContext &insecure_rand)
{
// Known checking here is only to save space from duplicates.
// SendMessages will filter it again for knowns that were added
// after addresses were pushed.
assert(m_addr_known);
if (_addr.IsValid() && !m_addr_known->contains(_addr.GetKey()) && IsAddrCompatible(_addr)) {
if (vAddrToSend.size() >= MAX_ADDR_TO_SEND) {
vAddrToSend[insecure_rand.randrange(vAddrToSend.size())] = _addr;
} else {
vAddrToSend.push_back(_addr);
}
}
}
void AddInventoryKnown(const CInv& inv)
{
AddInventoryKnown(inv.hash);
}
void AddInventoryKnown(const uint256& hash)
{
LOCK(m_tx_relay->cs_tx_inventory);
m_tx_relay->filterInventoryKnown.insert(hash);
}
void PushInventory(const CInv& inv)
{
if (inv.type == MSG_BLOCK) {
LogPrint(BCLog::NET, "%s -- adding new inv: %s peer=%d\n", __func__, inv.ToString(), id);
LOCK(cs_inventory);
vInventoryBlockToSend.push_back(inv.hash);
return;
}
LOCK(m_tx_relay->cs_tx_inventory);
if (m_tx_relay->filterInventoryKnown.contains(inv.hash)) {
LogPrint(BCLog::NET, "%s -- skipping known inv: %s peer=%d\n", __func__, inv.ToString(), id);
return;
}
LogPrint(BCLog::NET, "%s -- adding new inv: %s peer=%d\n", __func__, inv.ToString(), id);
if (inv.type == MSG_TX || inv.type == MSG_DSTX) {
m_tx_relay->setInventoryTxToSend.insert(inv.hash);
return;
}
m_tx_relay->vInventoryOtherToSend.push_back(inv);
}
void PushBlockHash(const uint256 &hash)
{
LOCK(cs_inventory);
vBlockHashesToAnnounce.push_back(hash);
}
void CloseSocketDisconnect(CConnman* connman);
void copyStats(CNodeStats &stats, const std::vector<bool> &m_asmap);
ServiceFlags GetLocalServices() const
{
return nLocalServices;
}
std::string GetAddrName() const;
//! Sets the addrName only if it was not previously set
void MaybeSetAddrName(const std::string& addrNameIn);
std::string GetLogString() const;
bool CanRelay() const { return !m_masternode_connection || m_masternode_iqr_connection; }
uint256 GetSentMNAuthChallenge() const {
LOCK(cs_mnauth);
return sentMNAuthChallenge;
}
uint256 GetReceivedMNAuthChallenge() const {
LOCK(cs_mnauth);
return receivedMNAuthChallenge;
}
uint256 GetVerifiedProRegTxHash() const {
LOCK(cs_mnauth);
return verifiedProRegTxHash;
}
uint256 GetVerifiedPubKeyHash() const {
LOCK(cs_mnauth);
return verifiedPubKeyHash;
}
void SetSentMNAuthChallenge(const uint256& newSentMNAuthChallenge) {
LOCK(cs_mnauth);
sentMNAuthChallenge = newSentMNAuthChallenge;
}
void SetReceivedMNAuthChallenge(const uint256& newReceivedMNAuthChallenge) {
LOCK(cs_mnauth);
receivedMNAuthChallenge = newReceivedMNAuthChallenge;
}
void SetVerifiedProRegTxHash(const uint256& newVerifiedProRegTxHash) {
LOCK(cs_mnauth);
verifiedProRegTxHash = newVerifiedProRegTxHash;
}
void SetVerifiedPubKeyHash(const uint256& newVerifiedPubKeyHash) {
LOCK(cs_mnauth);
verifiedPubKeyHash = newVerifiedPubKeyHash;
}
};
class CExplicitNetCleanup
{
public:
static void callCleanup();
};
/** Return a timestamp in the future (in microseconds) for exponentially distributed events. */
int64_t PoissonNextSend(int64_t now, int average_interval_seconds);
/** Wrapper to return mockable type */
inline std::chrono::microseconds PoissonNextSend(std::chrono::microseconds now, std::chrono::seconds average_interval)
{
return std::chrono::microseconds{PoissonNextSend(now.count(), average_interval.count())};
}
#endif // BITCOIN_NET_H