mirror of
https://github.com/dashpay/dash.git
synced 2024-12-27 04:52:59 +01:00
51ed9ec971
Use misc methods of avoiding unnecesary header includes. Replace int typedefs with int##_t from stdint.h. Replace PRI64[xdu] with PRI[xdu]64 from inttypes.h. Normalize QT_VERSION ifs where possible. Resolve some indirect dependencies as direct ones. Remove extern declarations from .cpp files.
309 lines
10 KiB
C++
309 lines
10 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2013 The Bitcoin developers
|
|
// Distributed under the MIT/X11 software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#ifndef BITCOIN_KEY_H
|
|
#define BITCOIN_KEY_H
|
|
|
|
#include "allocators.h"
|
|
#include "hash.h"
|
|
#include "serialize.h"
|
|
#include "uint256.h"
|
|
|
|
#include <stdexcept>
|
|
#include <vector>
|
|
|
|
// secp256k1:
|
|
// const unsigned int PRIVATE_KEY_SIZE = 279;
|
|
// const unsigned int PUBLIC_KEY_SIZE = 65;
|
|
// const unsigned int SIGNATURE_SIZE = 72;
|
|
//
|
|
// see www.keylength.com
|
|
// script supports up to 75 for single byte push
|
|
|
|
/** A reference to a CKey: the Hash160 of its serialized public key */
|
|
class CKeyID : public uint160
|
|
{
|
|
public:
|
|
CKeyID() : uint160(0) { }
|
|
CKeyID(const uint160 &in) : uint160(in) { }
|
|
};
|
|
|
|
/** A reference to a CScript: the Hash160 of its serialization (see script.h) */
|
|
class CScriptID : public uint160
|
|
{
|
|
public:
|
|
CScriptID() : uint160(0) { }
|
|
CScriptID(const uint160 &in) : uint160(in) { }
|
|
};
|
|
|
|
/** An encapsulated public key. */
|
|
class CPubKey {
|
|
private:
|
|
// Just store the serialized data.
|
|
// Its length can very cheaply be computed from the first byte.
|
|
unsigned char vch[65];
|
|
|
|
// Compute the length of a pubkey with a given first byte.
|
|
unsigned int static GetLen(unsigned char chHeader) {
|
|
if (chHeader == 2 || chHeader == 3)
|
|
return 33;
|
|
if (chHeader == 4 || chHeader == 6 || chHeader == 7)
|
|
return 65;
|
|
return 0;
|
|
}
|
|
|
|
// Set this key data to be invalid
|
|
void Invalidate() {
|
|
vch[0] = 0xFF;
|
|
}
|
|
|
|
public:
|
|
// Construct an invalid public key.
|
|
CPubKey() {
|
|
Invalidate();
|
|
}
|
|
|
|
// Initialize a public key using begin/end iterators to byte data.
|
|
template<typename T>
|
|
void Set(const T pbegin, const T pend) {
|
|
int len = pend == pbegin ? 0 : GetLen(pbegin[0]);
|
|
if (len && len == (pend-pbegin))
|
|
memcpy(vch, (unsigned char*)&pbegin[0], len);
|
|
else
|
|
Invalidate();
|
|
}
|
|
|
|
// Construct a public key using begin/end iterators to byte data.
|
|
template<typename T>
|
|
CPubKey(const T pbegin, const T pend) {
|
|
Set(pbegin, pend);
|
|
}
|
|
|
|
// Construct a public key from a byte vector.
|
|
CPubKey(const std::vector<unsigned char> &vch) {
|
|
Set(vch.begin(), vch.end());
|
|
}
|
|
|
|
// Simple read-only vector-like interface to the pubkey data.
|
|
unsigned int size() const { return GetLen(vch[0]); }
|
|
const unsigned char *begin() const { return vch; }
|
|
const unsigned char *end() const { return vch+size(); }
|
|
const unsigned char &operator[](unsigned int pos) const { return vch[pos]; }
|
|
|
|
// Comparator implementation.
|
|
friend bool operator==(const CPubKey &a, const CPubKey &b) {
|
|
return a.vch[0] == b.vch[0] &&
|
|
memcmp(a.vch, b.vch, a.size()) == 0;
|
|
}
|
|
friend bool operator!=(const CPubKey &a, const CPubKey &b) {
|
|
return !(a == b);
|
|
}
|
|
friend bool operator<(const CPubKey &a, const CPubKey &b) {
|
|
return a.vch[0] < b.vch[0] ||
|
|
(a.vch[0] == b.vch[0] && memcmp(a.vch, b.vch, a.size()) < 0);
|
|
}
|
|
|
|
// Implement serialization, as if this was a byte vector.
|
|
unsigned int GetSerializeSize(int nType, int nVersion) const {
|
|
return size() + 1;
|
|
}
|
|
template<typename Stream> void Serialize(Stream &s, int nType, int nVersion) const {
|
|
unsigned int len = size();
|
|
::WriteCompactSize(s, len);
|
|
s.write((char*)vch, len);
|
|
}
|
|
template<typename Stream> void Unserialize(Stream &s, int nType, int nVersion) {
|
|
unsigned int len = ::ReadCompactSize(s);
|
|
if (len <= 65) {
|
|
s.read((char*)vch, len);
|
|
} else {
|
|
// invalid pubkey, skip available data
|
|
char dummy;
|
|
while (len--)
|
|
s.read(&dummy, 1);
|
|
Invalidate();
|
|
}
|
|
}
|
|
|
|
// Get the KeyID of this public key (hash of its serialization)
|
|
CKeyID GetID() const {
|
|
return CKeyID(Hash160(vch, vch+size()));
|
|
}
|
|
|
|
// Get the 256-bit hash of this public key.
|
|
uint256 GetHash() const {
|
|
return Hash(vch, vch+size());
|
|
}
|
|
|
|
// just check syntactic correctness.
|
|
bool IsValid() const {
|
|
return size() > 0;
|
|
}
|
|
|
|
// fully validate whether this is a valid public key (more expensive than IsValid())
|
|
bool IsFullyValid() const;
|
|
|
|
// Check whether this is a compressed public key.
|
|
bool IsCompressed() const {
|
|
return size() == 33;
|
|
}
|
|
|
|
// Verify a DER signature (~72 bytes).
|
|
// If this public key is not fully valid, the return value will be false.
|
|
bool Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const;
|
|
|
|
// Verify a compact signature (~65 bytes).
|
|
// See CKey::SignCompact.
|
|
bool VerifyCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) const;
|
|
|
|
// Recover a public key from a compact signature.
|
|
bool RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig);
|
|
|
|
// Turn this public key into an uncompressed public key.
|
|
bool Decompress();
|
|
|
|
// Derive BIP32 child pubkey.
|
|
bool Derive(CPubKey& pubkeyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const;
|
|
};
|
|
|
|
|
|
// secure_allocator is defined in allocators.h
|
|
// CPrivKey is a serialized private key, with all parameters included (279 bytes)
|
|
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
|
|
|
|
/** An encapsulated private key. */
|
|
class CKey {
|
|
private:
|
|
// Whether this private key is valid. We check for correctness when modifying the key
|
|
// data, so fValid should always correspond to the actual state.
|
|
bool fValid;
|
|
|
|
// Whether the public key corresponding to this private key is (to be) compressed.
|
|
bool fCompressed;
|
|
|
|
// The actual byte data
|
|
unsigned char vch[32];
|
|
|
|
// Check whether the 32-byte array pointed to be vch is valid keydata.
|
|
bool static Check(const unsigned char *vch);
|
|
public:
|
|
|
|
// Construct an invalid private key.
|
|
CKey() : fValid(false) {
|
|
LockObject(vch);
|
|
}
|
|
|
|
// Copy constructor. This is necessary because of memlocking.
|
|
CKey(const CKey &secret) : fValid(secret.fValid), fCompressed(secret.fCompressed) {
|
|
LockObject(vch);
|
|
memcpy(vch, secret.vch, sizeof(vch));
|
|
}
|
|
|
|
// Destructor (again necessary because of memlocking).
|
|
~CKey() {
|
|
UnlockObject(vch);
|
|
}
|
|
|
|
friend bool operator==(const CKey &a, const CKey &b) {
|
|
return a.fCompressed == b.fCompressed && a.size() == b.size() &&
|
|
memcmp(&a.vch[0], &b.vch[0], a.size()) == 0;
|
|
}
|
|
|
|
// Initialize using begin and end iterators to byte data.
|
|
template<typename T>
|
|
void Set(const T pbegin, const T pend, bool fCompressedIn) {
|
|
if (pend - pbegin != 32) {
|
|
fValid = false;
|
|
return;
|
|
}
|
|
if (Check(&pbegin[0])) {
|
|
memcpy(vch, (unsigned char*)&pbegin[0], 32);
|
|
fValid = true;
|
|
fCompressed = fCompressedIn;
|
|
} else {
|
|
fValid = false;
|
|
}
|
|
}
|
|
|
|
// Simple read-only vector-like interface.
|
|
unsigned int size() const { return (fValid ? 32 : 0); }
|
|
const unsigned char *begin() const { return vch; }
|
|
const unsigned char *end() const { return vch + size(); }
|
|
|
|
// Check whether this private key is valid.
|
|
bool IsValid() const { return fValid; }
|
|
|
|
// Check whether the public key corresponding to this private key is (to be) compressed.
|
|
bool IsCompressed() const { return fCompressed; }
|
|
|
|
// Initialize from a CPrivKey (serialized OpenSSL private key data).
|
|
bool SetPrivKey(const CPrivKey &vchPrivKey, bool fCompressed);
|
|
|
|
// Generate a new private key using a cryptographic PRNG.
|
|
void MakeNewKey(bool fCompressed);
|
|
|
|
// Convert the private key to a CPrivKey (serialized OpenSSL private key data).
|
|
// This is expensive.
|
|
CPrivKey GetPrivKey() const;
|
|
|
|
// Compute the public key from a private key.
|
|
// This is expensive.
|
|
CPubKey GetPubKey() const;
|
|
|
|
// Create a DER-serialized signature.
|
|
bool Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) const;
|
|
|
|
// Create a compact signature (65 bytes), which allows reconstructing the used public key.
|
|
// The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
|
|
// The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
|
|
// 0x1D = second key with even y, 0x1E = second key with odd y,
|
|
// add 0x04 for compressed keys.
|
|
bool SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const;
|
|
|
|
// Derive BIP32 child key.
|
|
bool Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const;
|
|
|
|
// Load private key and check that public key matches.
|
|
bool Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck);
|
|
};
|
|
|
|
struct CExtPubKey {
|
|
unsigned char nDepth;
|
|
unsigned char vchFingerprint[4];
|
|
unsigned int nChild;
|
|
unsigned char vchChainCode[32];
|
|
CPubKey pubkey;
|
|
|
|
friend bool operator==(const CExtPubKey &a, const CExtPubKey &b) {
|
|
return a.nDepth == b.nDepth && memcmp(&a.vchFingerprint[0], &b.vchFingerprint[0], 4) == 0 && a.nChild == b.nChild &&
|
|
memcmp(&a.vchChainCode[0], &b.vchChainCode[0], 32) == 0 && a.pubkey == b.pubkey;
|
|
}
|
|
|
|
void Encode(unsigned char code[74]) const;
|
|
void Decode(const unsigned char code[74]);
|
|
bool Derive(CExtPubKey &out, unsigned int nChild) const;
|
|
};
|
|
|
|
struct CExtKey {
|
|
unsigned char nDepth;
|
|
unsigned char vchFingerprint[4];
|
|
unsigned int nChild;
|
|
unsigned char vchChainCode[32];
|
|
CKey key;
|
|
|
|
friend bool operator==(const CExtKey &a, const CExtKey &b) {
|
|
return a.nDepth == b.nDepth && memcmp(&a.vchFingerprint[0], &b.vchFingerprint[0], 4) == 0 && a.nChild == b.nChild &&
|
|
memcmp(&a.vchChainCode[0], &b.vchChainCode[0], 32) == 0 && a.key == b.key;
|
|
}
|
|
|
|
void Encode(unsigned char code[74]) const;
|
|
void Decode(const unsigned char code[74]);
|
|
bool Derive(CExtKey &out, unsigned int nChild) const;
|
|
CExtPubKey Neuter() const;
|
|
void SetMaster(const unsigned char *seed, unsigned int nSeedLen);
|
|
};
|
|
|
|
#endif
|