mirror of
https://github.com/dashpay/dash.git
synced 2024-12-26 12:32:48 +01:00
51c84248ad
Backport chacha-poly1305, prepare for V2 P2P Encrypted Messaging
467 lines
14 KiB
C++
467 lines
14 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2015 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include "random.h"
|
|
|
|
#include "crypto/sha512.h"
|
|
#include "support/cleanse.h"
|
|
#ifdef WIN32
|
|
#include "compat.h" // for Windows API
|
|
#include <wincrypt.h>
|
|
#endif
|
|
#include "util.h" // for LogPrint()
|
|
#include "utilstrencodings.h" // for GetTime()
|
|
|
|
#include <stdlib.h>
|
|
#include <limits>
|
|
#include <chrono>
|
|
#include <thread>
|
|
|
|
#ifndef WIN32
|
|
#include <sys/time.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_GETRANDOM
|
|
#include <sys/syscall.h>
|
|
#include <linux/random.h>
|
|
#endif
|
|
#ifdef HAVE_GETENTROPY
|
|
#include <unistd.h>
|
|
#endif
|
|
#ifdef HAVE_SYSCTL_ARND
|
|
#include <sys/sysctl.h>
|
|
#endif
|
|
|
|
#include <mutex>
|
|
|
|
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
|
|
#include <cpuid.h>
|
|
#endif
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/rand.h>
|
|
|
|
static void RandFailure()
|
|
{
|
|
LogPrintf("Failed to read randomness, aborting\n");
|
|
abort();
|
|
}
|
|
|
|
static inline int64_t GetPerformanceCounter()
|
|
{
|
|
// Read the hardware time stamp counter when available.
|
|
// See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information.
|
|
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
|
|
return __rdtsc();
|
|
#elif !defined(_MSC_VER) && defined(__i386__)
|
|
uint64_t r = 0;
|
|
__asm__ volatile ("rdtsc" : "=A"(r)); // Constrain the r variable to the eax:edx pair.
|
|
return r;
|
|
#elif !defined(_MSC_VER) && (defined(__x86_64__) || defined(__amd64__))
|
|
uint64_t r1 = 0, r2 = 0;
|
|
__asm__ volatile ("rdtsc" : "=a"(r1), "=d"(r2)); // Constrain r1 to rax and r2 to rdx.
|
|
return (r2 << 32) | r1;
|
|
#else
|
|
// Fall back to using C++11 clock (usually microsecond or nanosecond precision)
|
|
return std::chrono::high_resolution_clock::now().time_since_epoch().count();
|
|
#endif
|
|
}
|
|
|
|
|
|
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
|
|
static std::atomic<bool> hwrand_initialized{false};
|
|
static bool rdrand_supported = false;
|
|
static constexpr uint32_t CPUID_F1_ECX_RDRAND = 0x40000000;
|
|
static void RDRandInit()
|
|
{
|
|
uint32_t eax, ebx, ecx, edx;
|
|
if (__get_cpuid(1, &eax, &ebx, &ecx, &edx) && (ecx & CPUID_F1_ECX_RDRAND)) {
|
|
LogPrintf("Using RdRand as an additional entropy source\n");
|
|
rdrand_supported = true;
|
|
}
|
|
hwrand_initialized.store(true);
|
|
}
|
|
#else
|
|
static void RDRandInit() {}
|
|
#endif
|
|
|
|
static bool GetHWRand(unsigned char* ent32) {
|
|
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
|
|
assert(hwrand_initialized.load(std::memory_order_relaxed));
|
|
if (rdrand_supported) {
|
|
uint8_t ok;
|
|
// Not all assemblers support the rdrand instruction, write it in hex.
|
|
#ifdef __i386__
|
|
for (int iter = 0; iter < 4; ++iter) {
|
|
uint32_t r1, r2;
|
|
__asm__ volatile (".byte 0x0f, 0xc7, 0xf0;" // rdrand %eax
|
|
".byte 0x0f, 0xc7, 0xf2;" // rdrand %edx
|
|
"setc %2" :
|
|
"=a"(r1), "=d"(r2), "=q"(ok) :: "cc");
|
|
if (!ok) return false;
|
|
WriteLE32(ent32 + 8 * iter, r1);
|
|
WriteLE32(ent32 + 8 * iter + 4, r2);
|
|
}
|
|
#else
|
|
uint64_t r1, r2, r3, r4;
|
|
__asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf0, " // rdrand %rax
|
|
"0x48, 0x0f, 0xc7, 0xf3, " // rdrand %rbx
|
|
"0x48, 0x0f, 0xc7, 0xf1, " // rdrand %rcx
|
|
"0x48, 0x0f, 0xc7, 0xf2; " // rdrand %rdx
|
|
"setc %4" :
|
|
"=a"(r1), "=b"(r2), "=c"(r3), "=d"(r4), "=q"(ok) :: "cc");
|
|
if (!ok) return false;
|
|
WriteLE64(ent32, r1);
|
|
WriteLE64(ent32 + 8, r2);
|
|
WriteLE64(ent32 + 16, r3);
|
|
WriteLE64(ent32 + 24, r4);
|
|
#endif
|
|
return true;
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
void RandAddSeed()
|
|
{
|
|
// Seed with CPU performance counter
|
|
int64_t nCounter = GetPerformanceCounter();
|
|
RAND_add(&nCounter, sizeof(nCounter), 1.5);
|
|
memory_cleanse((void*)&nCounter, sizeof(nCounter));
|
|
}
|
|
|
|
static void RandAddSeedPerfmon()
|
|
{
|
|
RandAddSeed();
|
|
|
|
#ifdef WIN32
|
|
// Don't need this on Linux, OpenSSL automatically uses /dev/urandom
|
|
// Seed with the entire set of perfmon data
|
|
|
|
// This can take up to 2 seconds, so only do it every 10 minutes
|
|
static int64_t nLastPerfmon;
|
|
if (GetTime() < nLastPerfmon + 10 * 60)
|
|
return;
|
|
nLastPerfmon = GetTime();
|
|
|
|
std::vector<unsigned char> vData(250000, 0);
|
|
long ret = 0;
|
|
unsigned long nSize = 0;
|
|
const size_t nMaxSize = 10000000; // Bail out at more than 10MB of performance data
|
|
while (true) {
|
|
nSize = vData.size();
|
|
ret = RegQueryValueExA(HKEY_PERFORMANCE_DATA, "Global", NULL, NULL, vData.data(), &nSize);
|
|
if (ret != ERROR_MORE_DATA || vData.size() >= nMaxSize)
|
|
break;
|
|
vData.resize(std::max((vData.size() * 3) / 2, nMaxSize)); // Grow size of buffer exponentially
|
|
}
|
|
RegCloseKey(HKEY_PERFORMANCE_DATA);
|
|
if (ret == ERROR_SUCCESS) {
|
|
RAND_add(vData.data(), nSize, nSize / 100.0);
|
|
memory_cleanse(vData.data(), nSize);
|
|
LogPrint(BCLog::RANDOM, "%s: %lu bytes\n", __func__, nSize);
|
|
} else {
|
|
static bool warned = false; // Warn only once
|
|
if (!warned) {
|
|
LogPrintf("%s: Warning: RegQueryValueExA(HKEY_PERFORMANCE_DATA) failed with code %i\n", __func__, ret);
|
|
warned = true;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifndef WIN32
|
|
/** Fallback: get 32 bytes of system entropy from /dev/urandom. The most
|
|
* compatible way to get cryptographic randomness on UNIX-ish platforms.
|
|
*/
|
|
void GetDevURandom(unsigned char *ent32)
|
|
{
|
|
int f = open("/dev/urandom", O_RDONLY);
|
|
if (f == -1) {
|
|
RandFailure();
|
|
}
|
|
int have = 0;
|
|
do {
|
|
ssize_t n = read(f, ent32 + have, NUM_OS_RANDOM_BYTES - have);
|
|
if (n <= 0 || n + have > NUM_OS_RANDOM_BYTES) {
|
|
close(f);
|
|
RandFailure();
|
|
}
|
|
have += n;
|
|
} while (have < NUM_OS_RANDOM_BYTES);
|
|
close(f);
|
|
}
|
|
#endif
|
|
|
|
/** Get 32 bytes of system entropy. */
|
|
void GetOSRand(unsigned char *ent32)
|
|
{
|
|
#if defined(WIN32)
|
|
HCRYPTPROV hProvider;
|
|
int ret = CryptAcquireContextW(&hProvider, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
|
|
if (!ret) {
|
|
RandFailure();
|
|
}
|
|
ret = CryptGenRandom(hProvider, NUM_OS_RANDOM_BYTES, ent32);
|
|
if (!ret) {
|
|
RandFailure();
|
|
}
|
|
CryptReleaseContext(hProvider, 0);
|
|
#elif defined(HAVE_SYS_GETRANDOM)
|
|
/* Linux. From the getrandom(2) man page:
|
|
* "If the urandom source has been initialized, reads of up to 256 bytes
|
|
* will always return as many bytes as requested and will not be
|
|
* interrupted by signals."
|
|
*/
|
|
int rv = syscall(SYS_getrandom, ent32, NUM_OS_RANDOM_BYTES, 0);
|
|
if (rv != NUM_OS_RANDOM_BYTES) {
|
|
if (rv < 0 && errno == ENOSYS) {
|
|
/* Fallback for kernel <3.17: the return value will be -1 and errno
|
|
* ENOSYS if the syscall is not available, in that case fall back
|
|
* to /dev/urandom.
|
|
*/
|
|
GetDevURandom(ent32);
|
|
} else {
|
|
RandFailure();
|
|
}
|
|
}
|
|
#elif defined(HAVE_GETENTROPY) && defined(__OpenBSD__)
|
|
/* On OpenBSD this can return up to 256 bytes of entropy, will return an
|
|
* error if more are requested.
|
|
* The call cannot return less than the requested number of bytes.
|
|
getentropy is explicitly limited to openbsd here, as a similar (but not
|
|
the same) function may exist on other platforms via glibc.
|
|
*/
|
|
if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) {
|
|
RandFailure();
|
|
}
|
|
#elif defined(HAVE_SYSCTL_ARND)
|
|
/* FreeBSD and similar. It is possible for the call to return less
|
|
* bytes than requested, so need to read in a loop.
|
|
*/
|
|
static const int name[2] = {CTL_KERN, KERN_ARND};
|
|
int have = 0;
|
|
do {
|
|
size_t len = NUM_OS_RANDOM_BYTES - have;
|
|
if (sysctl(name, ARRAYLEN(name), ent32 + have, &len, NULL, 0) != 0) {
|
|
RandFailure();
|
|
}
|
|
have += len;
|
|
} while (have < NUM_OS_RANDOM_BYTES);
|
|
#else
|
|
/* Fall back to /dev/urandom if there is no specific method implemented to
|
|
* get system entropy for this OS.
|
|
*/
|
|
GetDevURandom(ent32);
|
|
#endif
|
|
}
|
|
|
|
void GetRandBytes(unsigned char* buf, int num)
|
|
{
|
|
if (RAND_bytes(buf, num) != 1) {
|
|
RandFailure();
|
|
}
|
|
}
|
|
|
|
static void AddDataToRng(void* data, size_t len);
|
|
|
|
void RandAddSeedSleep()
|
|
{
|
|
int64_t nPerfCounter1 = GetPerformanceCounter();
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
int64_t nPerfCounter2 = GetPerformanceCounter();
|
|
|
|
// Combine with and update state
|
|
AddDataToRng(&nPerfCounter1, sizeof(nPerfCounter1));
|
|
AddDataToRng(&nPerfCounter2, sizeof(nPerfCounter2));
|
|
|
|
memory_cleanse(&nPerfCounter1, sizeof(nPerfCounter1));
|
|
memory_cleanse(&nPerfCounter2, sizeof(nPerfCounter2));
|
|
}
|
|
|
|
|
|
static std::mutex cs_rng_state;
|
|
static unsigned char rng_state[32] = {0};
|
|
static uint64_t rng_counter = 0;
|
|
|
|
static void AddDataToRng(void* data, size_t len) {
|
|
CSHA512 hasher;
|
|
hasher.Write((const unsigned char*)&len, sizeof(len));
|
|
hasher.Write((const unsigned char*)data, len);
|
|
unsigned char buf[64];
|
|
{
|
|
std::unique_lock<std::mutex> lock(cs_rng_state);
|
|
hasher.Write(rng_state, sizeof(rng_state));
|
|
hasher.Write((const unsigned char*)&rng_counter, sizeof(rng_counter));
|
|
++rng_counter;
|
|
hasher.Finalize(buf);
|
|
memcpy(rng_state, buf + 32, 32);
|
|
}
|
|
memory_cleanse(buf, 64);
|
|
}
|
|
|
|
void GetStrongRandBytes(unsigned char* out, int num)
|
|
{
|
|
assert(num <= 32);
|
|
CSHA512 hasher;
|
|
unsigned char buf[64];
|
|
|
|
// First source: OpenSSL's RNG
|
|
RandAddSeedPerfmon();
|
|
GetRandBytes(buf, 32);
|
|
hasher.Write(buf, 32);
|
|
|
|
// Second source: OS RNG
|
|
GetOSRand(buf);
|
|
hasher.Write(buf, 32);
|
|
|
|
// Third source: HW RNG, if available.
|
|
if (GetHWRand(buf)) {
|
|
hasher.Write(buf, 32);
|
|
}
|
|
|
|
// Combine with and update state
|
|
{
|
|
std::unique_lock<std::mutex> lock(cs_rng_state);
|
|
hasher.Write(rng_state, sizeof(rng_state));
|
|
hasher.Write((const unsigned char*)&rng_counter, sizeof(rng_counter));
|
|
++rng_counter;
|
|
hasher.Finalize(buf);
|
|
memcpy(rng_state, buf + 32, 32);
|
|
}
|
|
|
|
// Produce output
|
|
memcpy(out, buf, num);
|
|
memory_cleanse(buf, 64);
|
|
}
|
|
|
|
uint64_t GetRand(uint64_t nMax)
|
|
{
|
|
if (nMax == 0)
|
|
return 0;
|
|
|
|
// The range of the random source must be a multiple of the modulus
|
|
// to give every possible output value an equal possibility
|
|
uint64_t nRange = (std::numeric_limits<uint64_t>::max() / nMax) * nMax;
|
|
uint64_t nRand = 0;
|
|
do {
|
|
GetRandBytes((unsigned char*)&nRand, sizeof(nRand));
|
|
} while (nRand >= nRange);
|
|
return (nRand % nMax);
|
|
}
|
|
|
|
int GetRandInt(int nMax)
|
|
{
|
|
return GetRand(nMax);
|
|
}
|
|
|
|
uint256 GetRandHash()
|
|
{
|
|
uint256 hash;
|
|
GetRandBytes((unsigned char*)&hash, sizeof(hash));
|
|
return hash;
|
|
}
|
|
|
|
bool GetRandBool(double rate)
|
|
{
|
|
if (rate == 0.0) {
|
|
return false;
|
|
}
|
|
|
|
const uint64_t v = 100000000;
|
|
uint64_t r = GetRand(v + 1);
|
|
return r <= v * rate;
|
|
}
|
|
|
|
void FastRandomContext::RandomSeed()
|
|
{
|
|
uint256 seed = GetRandHash();
|
|
rng.SetKey(seed.begin(), 32);
|
|
requires_seed = false;
|
|
}
|
|
|
|
uint256 FastRandomContext::rand256()
|
|
{
|
|
if (bytebuf_size < 32) {
|
|
FillByteBuffer();
|
|
}
|
|
uint256 ret;
|
|
memcpy(ret.begin(), bytebuf + 64 - bytebuf_size, 32);
|
|
bytebuf_size -= 32;
|
|
return ret;
|
|
}
|
|
|
|
std::vector<unsigned char> FastRandomContext::randbytes(size_t len)
|
|
{
|
|
std::vector<unsigned char> ret(len);
|
|
if (len > 0) {
|
|
rng.Keystream(&ret[0], len);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
FastRandomContext::FastRandomContext(const uint256& seed) : requires_seed(false), bytebuf_size(0), bitbuf_size(0)
|
|
{
|
|
rng.SetKey(seed.begin(), 32);
|
|
}
|
|
|
|
bool Random_SanityCheck()
|
|
{
|
|
uint64_t start = GetPerformanceCounter();
|
|
|
|
/* This does not measure the quality of randomness, but it does test that
|
|
* OSRandom() overwrites all 32 bytes of the output given a maximum
|
|
* number of tries.
|
|
*/
|
|
static const ssize_t MAX_TRIES = 1024;
|
|
uint8_t data[NUM_OS_RANDOM_BYTES];
|
|
bool overwritten[NUM_OS_RANDOM_BYTES] = {}; /* Tracks which bytes have been overwritten at least once */
|
|
int num_overwritten;
|
|
int tries = 0;
|
|
/* Loop until all bytes have been overwritten at least once, or max number tries reached */
|
|
do {
|
|
memset(data, 0, NUM_OS_RANDOM_BYTES);
|
|
GetOSRand(data);
|
|
for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) {
|
|
overwritten[x] |= (data[x] != 0);
|
|
}
|
|
|
|
num_overwritten = 0;
|
|
for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) {
|
|
if (overwritten[x]) {
|
|
num_overwritten += 1;
|
|
}
|
|
}
|
|
|
|
tries += 1;
|
|
} while (num_overwritten < NUM_OS_RANDOM_BYTES && tries < MAX_TRIES);
|
|
if (num_overwritten != NUM_OS_RANDOM_BYTES) return false; /* If this failed, bailed out after too many tries */
|
|
|
|
// Check that GetPerformanceCounter increases at least during a GetOSRand() call + 1ms sleep.
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
uint64_t stop = GetPerformanceCounter();
|
|
if (stop == start) return false;
|
|
|
|
// We called GetPerformanceCounter. Use it as entropy.
|
|
RAND_add((const unsigned char*)&start, sizeof(start), 1);
|
|
RAND_add((const unsigned char*)&stop, sizeof(stop), 1);
|
|
|
|
return true;
|
|
}
|
|
|
|
FastRandomContext::FastRandomContext(bool fDeterministic) : requires_seed(!fDeterministic), bytebuf_size(0), bitbuf_size(0)
|
|
{
|
|
if (!fDeterministic) {
|
|
return;
|
|
}
|
|
uint256 seed;
|
|
rng.SetKey(seed.begin(), 32);
|
|
}
|
|
|
|
void RandomInit()
|
|
{
|
|
RDRandInit();
|
|
}
|