ad25d54300
e6cf0ed92de31a5ac35a271b0da8f0a8364d1175 wallet, rpc: listdescriptors does not need unlocked (Andrew Chow) 3280704886b60644d103a5eb310691c003a39328 Pass in DescriptorCache to ToNormalizedString (Andrew Chow) 7a26ff10c2f2e139fbc63e2f37fb33ea4efae088 Change DescriptorImpl::ToStringHelper to use an enum (Andrew Chow) 75530c93a83f3e94bcb78b6aa463c5570c1e737e Remove priv option for ToNormalizedString (Andrew Chow) 74fede3b8ba69e2cc82c617cdf406ab79df58825 wallet: Upgrade existing descriptor caches (Andrew Chow) 432ba9e5434da90d2cf680f23e8c7b7164c9f945 wallet: Store last hardened xpub cache (Andrew Chow) d87b544b834077f102724415e0fada6ee8b2def2 descriptors: Cache last hardened xpub (Andrew Chow) cacc3910989c4f3d7afa530dbab042461426abce Move DescriptorCache writing to WalletBatch (Andrew Chow) 0b4c8ef75cd03c8f0a8cfadb47e0fbcabe3c5e59 Refactor Cache merging and writing (Andrew Chow) 976b53b085d681645fd3a008fe382de85647e29f Revert "Cache parent xpub inside of BIP32PubkeyProvider" (Andrew Chow) Pull request description: Currently fetching a normalized descriptor requires the wallet to be unlocked as it needs the private keys to derive the last hardened xpub. This is not very user friendly as normalized descriptors shouldn't require and don't involve the private keys except for derivation. We solve this problem by caching the last hardened xpub (which has to be derived at some point when generating the address pool). However the last hardened xpub was not already being cached. We only cached the immediate parent xpub and derived child keys. For example, with a descriptor derivation path of `/84'/0'/0'/0/*`, the parent xpub that is cached is `m/84'/0'/0'/0`, and the child keys of `m/84'/0'/0'/0/i` (note that child keys would not be cached in this case). This parent xpub is not suitable for the normalized descriptor form as we want the key at `m/84'/0'/0'`. So this PR adds another field to `DescriptorCache` to cache the last hardened xpub so that we can use them for normalized descriptors. Since `DescriptorCache` is changing, existing descriptor wallets need to be upgraded to use this new cache. The upgrade will occur in the background either at loading time (if the wallet is not encrypted) or at unlocking time in the same manner that `UpgradeKeyMetadata` operates. It will use a new wallet flag `WALLET_FLAG_LAST_HARDENED_XPUB_CACHED` to indicate whether the descriptor wallet has the last hardened xpub cache. Lastly `listdescriptors` will not require the wallet to be locked and `getaddressinfo`'s `parent_desc` will always be output (assuming the upgrade has occurred). ACKs for top commit: fjahr: tACK e6cf0ed92de31a5ac35a271b0da8f0a8364d1175 S3RK: reACK e6cf0ed jonatack: Semi ACK e6cf0ed92de31a5ac35a271b0da8f0a8364d1175 reviewed, debug-built and ran unit tests and some of the descriptor functional tests at each commit. I'm not very familiar with this code and it could be clearer to the uninitiated IMHO, so I'm not confident enough to give a full ACK. Various minor suggestions follow, most of them for readability, feel free to pick and choose. meshcollider: Code review + functional test run ACK e6cf0ed92de31a5ac35a271b0da8f0a8364d1175 Tree-SHA512: ac27aade8644525cd65bfcaf27ff32afb974085b1451faf4ff68c6671a690bd6a41d4f39a33cbf461ae0fbe85995c0a4c08dbd36171da1c1d2a1d00053ad298d |
||
---|---|---|
.. | ||
data | ||
test_framework | ||
.gitignore | ||
combine_logs.py | ||
combined_log_template.html | ||
create_cache.py | ||
example_test.py | ||
feature_abortnode.py | ||
feature_addressindex.py | ||
feature_anchors.py | ||
feature_asmap.py | ||
feature_asset_locks.py | ||
feature_assumevalid.py | ||
feature_backwards_compatibility.py | ||
feature_bip68_sequence.py | ||
feature_block.py | ||
feature_blockfilterindex_prune.py | ||
feature_blocksdir.py | ||
feature_cltv.py | ||
feature_coinstatsindex.py | ||
feature_config_args.py | ||
feature_csv_activation.py | ||
feature_dbcrash.py | ||
feature_dersig.py | ||
feature_dip3_deterministicmns.py | ||
feature_dip3_v19.py | ||
feature_dip4_coinbasemerkleroots.py | ||
feature_dip0020_activation.py | ||
feature_fee_estimation.py | ||
feature_filelock.py | ||
feature_governance_objects.py | ||
feature_governance.py | ||
feature_help.py | ||
feature_includeconf.py | ||
feature_llmq_chainlocks.py | ||
feature_llmq_connections.py | ||
feature_llmq_data_recovery.py | ||
feature_llmq_dkgerrors.py | ||
feature_llmq_evo.py | ||
feature_llmq_is_cl_conflicts.py | ||
feature_llmq_is_retroactive.py | ||
feature_llmq_rotation.py | ||
feature_llmq_signing.py | ||
feature_llmq_simplepose.py | ||
feature_loadblock.py | ||
feature_logging.py | ||
feature_maxuploadtarget.py | ||
feature_minchainwork.py | ||
feature_mnehf.py | ||
feature_multikeysporks.py | ||
feature_new_quorum_type_activation.py | ||
feature_notifications.py | ||
feature_nulldummy.py | ||
feature_proxy.py | ||
feature_pruning.py | ||
feature_reindex.py | ||
feature_settings.py | ||
feature_shutdown.py | ||
feature_spentindex.py | ||
feature_sporks.py | ||
feature_timestampindex.py | ||
feature_txindex.py | ||
feature_uacomment.py | ||
feature_utxo_set_hash.py | ||
feature_versionbits_warning.py | ||
interface_bitcoin_cli.py | ||
interface_http.py | ||
interface_rest.py | ||
interface_rpc.py | ||
interface_zmq_dash.py | ||
interface_zmq.py | ||
mempool_accept.py | ||
mempool_compatibility.py | ||
mempool_expiry.py | ||
mempool_limit.py | ||
mempool_package_onemore.py | ||
mempool_packages.py | ||
mempool_persist.py | ||
mempool_reorg.py | ||
mempool_resurrect.py | ||
mempool_spend_coinbase.py | ||
mempool_unbroadcast.py | ||
mempool_updatefromblock.py | ||
mining_basic.py | ||
mining_getblocktemplate_longpoll.py | ||
mining_prioritisetransaction.py | ||
p2p_add_connections.py | ||
p2p_addr_relay.py | ||
p2p_addrv2_relay.py | ||
p2p_blockfilters.py | ||
p2p_blocksonly.py | ||
p2p_compactblocks.py | ||
p2p_connect_to_devnet.py | ||
p2p_disconnect_ban.py | ||
p2p_dos_header_tree.py | ||
p2p_eviction.py | ||
p2p_filter.py | ||
p2p_fingerprint.py | ||
p2p_getaddr_caching.py | ||
p2p_getdata.py | ||
p2p_i2p_ports.py | ||
p2p_instantsend.py | ||
p2p_invalid_block.py | ||
p2p_invalid_locator.py | ||
p2p_invalid_messages.py | ||
p2p_invalid_tx.py | ||
p2p_leak_tx.py | ||
p2p_leak.py | ||
p2p_message_capture.py | ||
p2p_nobloomfilter_messages.py | ||
p2p_node_network_limited.py | ||
p2p_permissions.py | ||
p2p_ping.py | ||
p2p_quorum_data.py | ||
p2p_sendheaders_compressed.py | ||
p2p_sendheaders.py | ||
p2p_timeouts.py | ||
p2p_tx_download.py | ||
p2p_unrequested_blocks.py | ||
README.md | ||
rpc_bind.py | ||
rpc_blockchain.py | ||
rpc_coinjoin.py | ||
rpc_createmultisig.py | ||
rpc_decodescript.py | ||
rpc_deprecated.py | ||
rpc_deriveaddresses.py | ||
rpc_dumptxoutset.py | ||
rpc_estimatefee.py | ||
rpc_fundrawtransaction.py | ||
rpc_generate.py | ||
rpc_generateblock.py | ||
rpc_getblockfilter.py | ||
rpc_getblockstats.py | ||
rpc_getchaintips.py | ||
rpc_getdescriptorinfo.py | ||
rpc_getpeerinfo_banscore_deprecation.py | ||
rpc_help.py | ||
rpc_invalid_address_message.py | ||
rpc_invalidateblock.py | ||
rpc_masternode.py | ||
rpc_misc.py | ||
rpc_mnauth.py | ||
rpc_named_arguments.py | ||
rpc_net.py | ||
rpc_packages.py | ||
rpc_platform_filter.py | ||
rpc_preciousblock.py | ||
rpc_psbt.py | ||
rpc_quorum.py | ||
rpc_rawtransaction.py | ||
rpc_scantxoutset.py | ||
rpc_setban.py | ||
rpc_signmessage.py | ||
rpc_signrawtransaction.py | ||
rpc_txoutproof.py | ||
rpc_uptime.py | ||
rpc_users.py | ||
rpc_verifychainlock.py | ||
rpc_verifyislock.py | ||
rpc_whitelist.py | ||
rpc_wipewallettxes.py | ||
test_runner.py | ||
test-shell.md | ||
tool_wallet.py | ||
wallet_abandonconflict.py | ||
wallet_avoidreuse.py | ||
wallet_backup.py | ||
wallet_balance.py | ||
wallet_basic.py | ||
wallet_change_address.py | ||
wallet_coinbase_category.py | ||
wallet_create_tx.py | ||
wallet_createwallet.py | ||
wallet_descriptor.py | ||
wallet_disable.py | ||
wallet_dump.py | ||
wallet_encryption.py | ||
wallet_fallbackfee.py | ||
wallet_groups.py | ||
wallet_hd.py | ||
wallet_import_rescan.py | ||
wallet_import_with_label.py | ||
wallet_importdescriptors.py | ||
wallet_importmulti.py | ||
wallet_importprunedfunds.py | ||
wallet_keypool_hd.py | ||
wallet_keypool_topup.py | ||
wallet_keypool.py | ||
wallet_labels.py | ||
wallet_listdescriptors.py | ||
wallet_listreceivedby.py | ||
wallet_listsinceblock.py | ||
wallet_listtransactions.py | ||
wallet_mnemonicbits.py | ||
wallet_multiwallet.py | ||
wallet_orphanedreward.py | ||
wallet_reorgsrestore.py | ||
wallet_resendwallettransactions.py | ||
wallet_send.py | ||
wallet_startup.py | ||
wallet_txn_clone.py | ||
wallet_txn_doublespend.py | ||
wallet_upgradetohd.py | ||
wallet_upgradewallet.py | ||
wallet_watchonly.py |
Functional tests
Writing Functional Tests
Example test
The file test/functional/example_test.py is a heavily commented example of a test case that uses both the RPC and P2P interfaces. If you are writing your first test, copy that file and modify to fit your needs.
Coverage
Running test/functional/test_runner.py
with the --coverage
argument tracks which RPCs are
called by the tests and prints a report of uncovered RPCs in the summary. This
can be used (along with the --extended
argument) to find out which RPCs we
don't have test cases for.
Style guidelines
- Where possible, try to adhere to PEP-8 guidelines
- Use a python linter like flake8 before submitting PRs to catch common style nits (eg trailing whitespace, unused imports, etc)
- The oldest supported Python version is specified in doc/dependencies.md. Consider using pyenv, which checks .python-version, to prevent accidentally introducing modern syntax from an unsupported Python version. The CI linter job also checks this, but possibly not in all cases.
- See the python lint script that checks for violations that could lead to bugs and issues in the test code.
- Use type hints in your code to improve code readability and to detect possible bugs earlier.
- Avoid wildcard imports.
- If more than one name from a module is needed, use lexicographically sorted multi-line imports in order to reduce the possibility of potential merge conflicts.
- Use a module-level docstring to describe what the test is testing, and how it is testing it.
- When subclassing the BitcoinTestFramework, place overrides for the
set_test_params()
,add_options()
andsetup_xxxx()
methods at the top of the subclass, then locally-defined helper methods, then therun_test()
method. - Use
f'{x}'
for string formatting in preference to'{}'.format(x)
or'%s' % x
.
Naming guidelines
- Name the test
<area>_test.py
, where area can be one of the following:feature
for tests for full features that aren't wallet/mining/mempool, egfeature_rbf.py
interface
for tests for other interfaces (REST, ZMQ, etc), eginterface_rest.py
mempool
for tests for mempool behaviour, egmempool_reorg.py
mining
for tests for mining features, egmining_prioritisetransaction.py
p2p
for tests that explicitly test the p2p interface, egp2p_disconnect_ban.py
rpc
for tests for individual RPC methods or features, egrpc_listtransactions.py
tool
for tests for tools, egtool_wallet.py
wallet
for tests for wallet features, egwallet_keypool.py
- Use an underscore to separate words
- exception: for tests for specific RPCs or command line options which don't include underscores, name the test after the exact RPC or argument name, eg
rpc_decodescript.py
, notrpc_decode_script.py
- exception: for tests for specific RPCs or command line options which don't include underscores, name the test after the exact RPC or argument name, eg
- Don't use the redundant word
test
in the name, eginterface_zmq.py
, notinterface_zmq_test.py
General test-writing advice
- Instead of inline comments or no test documentation at all, log the comments to the test log, e.g.
self.log.info('Create enough transactions to fill a block')
. Logs make the test code easier to read and the test logic easier to debug. - Set
self.num_nodes
to the minimum number of nodes necessary for the test. Having additional unrequired nodes adds to the execution time of the test as well as memory/CPU/disk requirements (which is important when running tests in parallel). - Avoid stop-starting the nodes multiple times during the test if possible. A stop-start takes several seconds, so doing it several times blows up the runtime of the test.
- Set the
self.setup_clean_chain
variable inset_test_params()
toTrue
to initialize an empty blockchain and start from the Genesis block, rather than load a premined blockchain from cache with the default value ofFalse
. The cached data directories contain a 200-block pre-mined blockchain with the spendable mining rewards being split between four nodes. Each node has 25 mature block subsidies (25x500=12500 DASH) in its wallet. Using them is much more efficient than mining blocks in your test. - When calling RPCs with lots of arguments, consider using named keyword arguments instead of positional arguments to make the intent of the call clear to readers.
- Many of the core test framework classes such as
CBlock
andCTransaction
don't allow new attributes to be added to their objects at runtime like typical Python objects allow. This helps prevent unpredictable side effects from typographical errors or usage of the objects outside of their intended purpose.
RPC and P2P definitions
Test writers may find it helpful to refer to the definitions for the RPC and P2P messages. These can be found in the following source files:
/src/rpc/*
for RPCs/src/wallet/rpc*
for wallet RPCsProcessMessage()
in/src/net_processing.cpp
for parsing P2P messages
Using the P2P interface
-
P2P
s can be used to test specific P2P protocol behavior. p2p.py contains test framework p2p objects and messages.py contains all the definitions for objects passed over the network (CBlock
,CTransaction
, etc, along with the network-level wrappers for them,msg_block
,msg_tx
, etc). -
P2P tests have two threads. One thread handles all network communication with the dashd(s) being tested in a callback-based event loop; the other implements the test logic.
-
P2PConnection
is the class used to connect to a dashd.P2PInterface
contains the higher level logic for processing P2P payloads and connecting to the Bitcoin Core node application logic. For custom behaviour, subclass the P2PInterface object and override the callback methods.
P2PConnection
s can be used as such:
p2p_conn = node.add_p2p_connection(P2PInterface())
p2p_conn.send_and_ping(msg)
They can also be referenced by indexing into a TestNode
's p2ps
list, which
contains the list of test framework p2p
objects connected to itself
(it does not include any TestNode
s):
node.p2ps[0].sync_with_ping()
More examples can be found in p2p_unrequested_blocks.py, p2p_compactblocks.py.
Prototyping tests
The TestShell
class exposes the BitcoinTestFramework
functionality to interactive Python3 environments and can be used to prototype
tests. This may be especially useful in a REPL environment with session logging
utilities, such as
IPython.
The logs of such interactive sessions can later be adapted into permanent test
cases.
Test framework modules
The following are useful modules for test developers. They are located in test/functional/test_framework/.
authproxy.py
Taken from the python-bitcoinrpc repository.
test_framework.py
Base class for functional tests.
util.py
Generally useful functions.
p2p.py
Test objects for interacting with a dashd node over the p2p interface.
script.py
Utilities for manipulating transaction scripts (originally from python-bitcoinlib)
key.py
Test-only secp256k1 elliptic curve implementation
blocktools.py
Helper functions for creating blocks and transactions.
Benchmarking with perf
An easy way to profile node performance during functional tests is provided
for Linux platforms using perf
.
Perf will sample the running node and will generate profile data in the node's
datadir. The profile data can then be presented using perf report
or a graphical
tool like hotspot.
There are two ways of invoking perf: one is to use the --perf
flag when
running tests, which will profile each node during the entire test run: perf
begins to profile when the node starts and ends when it shuts down. The other
way is the use the profile_with_perf
context manager, e.g.
with node.profile_with_perf("send-big-msgs"):
# Perform activity on the node you're interested in profiling, e.g.:
for _ in range(10000):
node.p2ps[0].send_message(some_large_message)
To see useful textual output, run
perf report -i /path/to/datadir/send-big-msgs.perf.data.xxxx --stdio | c++filt | less
See also:
- Installing perf
- Perf examples
- Hotspot: a GUI for perf output analysis