dash/src/txmempool.h

973 lines
40 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_TXMEMPOOL_H
#define BITCOIN_TXMEMPOOL_H
#include <set>
#include <map>
#include <vector>
#include <utility>
#include <string>
#include <addressindex.h>
#include <spentindex.h>
#include <amount.h>
#include <coins.h>
#include <crypto/siphash.h>
#include <indirectmap.h>
#include <optional.h>
#include <policy/feerate.h>
#include <primitives/transaction.h>
#include <sync.h>
#include <random.h>
#include <netaddress.h>
#include <pubkey.h>
#include <boost/multi_index_container.hpp>
#include <boost/multi_index/hashed_index.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/sequenced_index.hpp>
#include <boost/signals2/signal.hpp>
class CBLSPublicKey;
class CBlockIndex;
extern CCriticalSection cs_main;
/** Fake height value used in Coin to signify they are only in the memory pool (since 0.8) */
static const uint32_t MEMPOOL_HEIGHT = 0x7FFFFFFF;
struct LockPoints
{
// Will be set to the blockchain height and median time past
// values that would be necessary to satisfy all relative locktime
// constraints (BIP68) of this tx given our view of block chain history
int height;
int64_t time;
// As long as the current chain descends from the highest height block
// containing one of the inputs used in the calculation, then the cached
// values are still valid even after a reorg.
CBlockIndex* maxInputBlock;
LockPoints() : height(0), time(0), maxInputBlock(nullptr) { }
};
/** \class CTxMemPoolEntry
*
* CTxMemPoolEntry stores data about the corresponding transaction, as well
* as data about all in-mempool transactions that depend on the transaction
* ("descendant" transactions).
*
* When a new entry is added to the mempool, we update the descendant state
* (nCountWithDescendants, nSizeWithDescendants, and nModFeesWithDescendants) for
* all ancestors of the newly added transaction.
*
*/
class CTxMemPoolEntry
{
private:
const CTransactionRef tx;
const CAmount nFee; //!< Cached to avoid expensive parent-transaction lookups
const size_t nTxSize; //!< ... and avoid recomputing tx size
const size_t nUsageSize; //!< ... and total memory usage
const int64_t nTime; //!< Local time when entering the mempool
const unsigned int entryHeight; //!< Chain height when entering the mempool
const bool spendsCoinbase; //!< keep track of transactions that spend a coinbase
const unsigned int sigOpCount; //!< Legacy sig ops plus P2SH sig op count
int64_t feeDelta; //!< Used for determining the priority of the transaction for mining in a block
LockPoints lockPoints; //!< Track the height and time at which tx was final
// Information about descendants of this transaction that are in the
// mempool; if we remove this transaction we must remove all of these
// descendants as well.
uint64_t nCountWithDescendants; //!< number of descendant transactions
uint64_t nSizeWithDescendants; //!< ... and size
CAmount nModFeesWithDescendants; //!< ... and total fees (all including us)
// Analogous statistics for ancestor transactions
uint64_t nCountWithAncestors;
uint64_t nSizeWithAncestors;
CAmount nModFeesWithAncestors;
unsigned int nSigOpCountWithAncestors;
public:
CTxMemPoolEntry(const CTransactionRef& _tx, const CAmount& _nFee,
int64_t _nTime, unsigned int _entryHeight,
bool spendsCoinbase,
unsigned int nSigOps, LockPoints lp);
const CTransaction& GetTx() const { return *this->tx; }
CTransactionRef GetSharedTx() const { return this->tx; }
const CAmount& GetFee() const { return nFee; }
size_t GetTxSize() const;
int64_t GetTime() const { return nTime; }
unsigned int GetHeight() const { return entryHeight; }
unsigned int GetSigOpCount() const { return sigOpCount; }
int64_t GetModifiedFee() const { return nFee + feeDelta; }
size_t DynamicMemoryUsage() const { return nUsageSize; }
const LockPoints& GetLockPoints() const { return lockPoints; }
// Adjusts the descendant state.
void UpdateDescendantState(int64_t modifySize, CAmount modifyFee, int64_t modifyCount);
// Adjusts the ancestor state
void UpdateAncestorState(int64_t modifySize, CAmount modifyFee, int64_t modifyCount, int64_t modifySigOps);
// Updates the fee delta used for mining priority score, and the
// modified fees with descendants.
void UpdateFeeDelta(int64_t feeDelta);
// Update the LockPoints after a reorg
void UpdateLockPoints(const LockPoints& lp);
uint64_t GetCountWithDescendants() const { return nCountWithDescendants; }
uint64_t GetSizeWithDescendants() const { return nSizeWithDescendants; }
CAmount GetModFeesWithDescendants() const { return nModFeesWithDescendants; }
bool GetSpendsCoinbase() const { return spendsCoinbase; }
uint64_t GetCountWithAncestors() const { return nCountWithAncestors; }
uint64_t GetSizeWithAncestors() const { return nSizeWithAncestors; }
CAmount GetModFeesWithAncestors() const { return nModFeesWithAncestors; }
unsigned int GetSigOpCountWithAncestors() const { return nSigOpCountWithAncestors; }
mutable size_t vTxHashesIdx; //!< Index in mempool's vTxHashes
// If this is a proTx, this will be the hash of the key for which this ProTx was valid
mutable uint256 validForProTxKey;
mutable bool isKeyChangeProTx{false};
mutable uint64_t m_epoch; //!< epoch when last touched, useful for graph algorithms
};
// Helpers for modifying CTxMemPool::mapTx, which is a boost multi_index.
struct update_descendant_state
{
update_descendant_state(int64_t _modifySize, CAmount _modifyFee, int64_t _modifyCount) :
modifySize(_modifySize), modifyFee(_modifyFee), modifyCount(_modifyCount)
{}
void operator() (CTxMemPoolEntry &e)
{ e.UpdateDescendantState(modifySize, modifyFee, modifyCount); }
private:
int64_t modifySize;
CAmount modifyFee;
int64_t modifyCount;
};
struct update_ancestor_state
{
update_ancestor_state(int64_t _modifySize, CAmount _modifyFee, int64_t _modifyCount, int _modifySigOps) :
modifySize(_modifySize), modifyFee(_modifyFee), modifyCount(_modifyCount), modifySigOps(_modifySigOps)
{}
void operator() (CTxMemPoolEntry &e)
{ e.UpdateAncestorState(modifySize, modifyFee, modifyCount, modifySigOps); }
private:
int64_t modifySize;
CAmount modifyFee;
int64_t modifyCount;
int modifySigOps;
};
struct update_fee_delta
{
explicit update_fee_delta(int64_t _feeDelta) : feeDelta(_feeDelta) { }
void operator() (CTxMemPoolEntry &e) { e.UpdateFeeDelta(feeDelta); }
private:
int64_t feeDelta;
};
struct update_lock_points
{
explicit update_lock_points(const LockPoints& _lp) : lp(_lp) { }
void operator() (CTxMemPoolEntry &e) { e.UpdateLockPoints(lp); }
private:
const LockPoints& lp;
};
// extracts a transaction hash from CTxMemPoolEntry or CTransactionRef
struct mempoolentry_txid
{
typedef uint256 result_type;
result_type operator() (const CTxMemPoolEntry &entry) const
{
return entry.GetTx().GetHash();
}
result_type operator() (const CTransactionRef& tx) const
{
return tx->GetHash();
}
};
/** \class CompareTxMemPoolEntryByDescendantScore
*
* Sort an entry by max(score/size of entry's tx, score/size with all descendants).
*/
class CompareTxMemPoolEntryByDescendantScore
{
public:
bool operator()(const CTxMemPoolEntry& a, const CTxMemPoolEntry& b) const
{
double a_mod_fee, a_size, b_mod_fee, b_size;
GetModFeeAndSize(a, a_mod_fee, a_size);
GetModFeeAndSize(b, b_mod_fee, b_size);
// Avoid division by rewriting (a/b > c/d) as (a*d > c*b).
double f1 = a_mod_fee * b_size;
double f2 = a_size * b_mod_fee;
if (f1 == f2) {
return a.GetTime() >= b.GetTime();
}
return f1 < f2;
}
// Return the fee/size we're using for sorting this entry.
void GetModFeeAndSize(const CTxMemPoolEntry &a, double &mod_fee, double &size) const
{
// Compare feerate with descendants to feerate of the transaction, and
// return the fee/size for the max.
double f1 = (double)a.GetModifiedFee() * a.GetSizeWithDescendants();
double f2 = (double)a.GetModFeesWithDescendants() * a.GetTxSize();
if (f2 > f1) {
mod_fee = a.GetModFeesWithDescendants();
size = a.GetSizeWithDescendants();
} else {
mod_fee = a.GetModifiedFee();
size = a.GetTxSize();
}
}
};
/** \class CompareTxMemPoolEntryByScore
*
* Sort by feerate of entry (fee/size) in descending order
* This is only used for transaction relay, so we use GetFee()
* instead of GetModifiedFee() to avoid leaking prioritization
* information via the sort order.
*/
class CompareTxMemPoolEntryByScore
{
public:
bool operator()(const CTxMemPoolEntry& a, const CTxMemPoolEntry& b) const
{
double f1 = (double)a.GetFee() * b.GetTxSize();
double f2 = (double)b.GetFee() * a.GetTxSize();
if (f1 == f2) {
return b.GetTx().GetHash() < a.GetTx().GetHash();
}
return f1 > f2;
}
};
class CompareTxMemPoolEntryByEntryTime
{
public:
bool operator()(const CTxMemPoolEntry& a, const CTxMemPoolEntry& b) const
{
return a.GetTime() < b.GetTime();
}
};
/** \class CompareTxMemPoolEntryByAncestorScore
*
* Sort an entry by min(score/size of entry's tx, score/size with all ancestors).
*/
class CompareTxMemPoolEntryByAncestorFee
{
public:
template<typename T>
bool operator()(const T& a, const T& b) const
{
double a_mod_fee, a_size, b_mod_fee, b_size;
GetModFeeAndSize(a, a_mod_fee, a_size);
GetModFeeAndSize(b, b_mod_fee, b_size);
// Avoid division by rewriting (a/b > c/d) as (a*d > c*b).
double f1 = a_mod_fee * b_size;
double f2 = a_size * b_mod_fee;
if (f1 == f2) {
return a.GetTx().GetHash() < b.GetTx().GetHash();
}
return f1 > f2;
}
// Return the fee/size we're using for sorting this entry.
template <typename T>
void GetModFeeAndSize(const T &a, double &mod_fee, double &size) const
{
// Compare feerate with ancestors to feerate of the transaction, and
// return the fee/size for the min.
double f1 = (double)a.GetModifiedFee() * a.GetSizeWithAncestors();
double f2 = (double)a.GetModFeesWithAncestors() * a.GetTxSize();
if (f1 > f2) {
mod_fee = a.GetModFeesWithAncestors();
size = a.GetSizeWithAncestors();
} else {
mod_fee = a.GetModifiedFee();
size = a.GetTxSize();
}
}
};
// Multi_index tag names
struct descendant_score {};
struct entry_time {};
struct ancestor_score {};
class CBlockPolicyEstimator;
/**
* Information about a mempool transaction.
*/
struct TxMempoolInfo
{
/** The transaction itself */
CTransactionRef tx;
/** Time the transaction entered the mempool. */
int64_t nTime;
/** Feerate of the transaction. */
CFeeRate feeRate;
/** The fee delta. */
int64_t nFeeDelta;
};
/** Reason why a transaction was removed from the mempool,
* this is passed to the notification signal.
*/
enum class MemPoolRemovalReason {
EXPIRY, //!< Expired from mempool
SIZELIMIT, //!< Removed in size limiting
REORG, //!< Removed for reorganization
BLOCK, //!< Removed for block
CONFLICT, //!< Removed for conflict with in-block transaction
MANUAL //!< Removed manually
};
class SaltedTxidHasher
{
private:
/** Salt */
const uint64_t k0, k1;
public:
SaltedTxidHasher();
size_t operator()(const uint256& txid) const {
return SipHashUint256(k0, k1, txid);
}
};
/**
* CTxMemPool stores valid-according-to-the-current-best-chain transactions
* that may be included in the next block.
*
* Transactions are added when they are seen on the network (or created by the
* local node), but not all transactions seen are added to the pool. For
* example, the following new transactions will not be added to the mempool:
* - a transaction which doesn't meet the minimum fee requirements.
* - a new transaction that double-spends an input of a transaction already in
* the pool.
* - a non-standard transaction.
*
* CTxMemPool::mapTx, and CTxMemPoolEntry bookkeeping:
*
* mapTx is a boost::multi_index that sorts the mempool on 4 criteria:
* - transaction hash
* - descendant feerate [we use max(feerate of tx, feerate of tx with all descendants)]
* - time in mempool
* - ancestor feerate [we use min(feerate of tx, feerate of tx with all unconfirmed ancestors)]
*
* Note: the term "descendant" refers to in-mempool transactions that depend on
* this one, while "ancestor" refers to in-mempool transactions that a given
* transaction depends on.
*
* In order for the feerate sort to remain correct, we must update transactions
* in the mempool when new descendants arrive. To facilitate this, we track
* the set of in-mempool direct parents and direct children in mapLinks. Within
* each CTxMemPoolEntry, we track the size and fees of all descendants.
*
* Usually when a new transaction is added to the mempool, it has no in-mempool
* children (because any such children would be an orphan). So in
* addUnchecked(), we:
* - update a new entry's setMemPoolParents to include all in-mempool parents
* - update the new entry's direct parents to include the new tx as a child
* - update all ancestors of the transaction to include the new tx's size/fee
*
* When a transaction is removed from the mempool, we must:
* - update all in-mempool parents to not track the tx in setMemPoolChildren
* - update all ancestors to not include the tx's size/fees in descendant state
* - update all in-mempool children to not include it as a parent
*
* These happen in UpdateForRemoveFromMempool(). (Note that when removing a
* transaction along with its descendants, we must calculate that set of
* transactions to be removed before doing the removal, or else the mempool can
* be in an inconsistent state where it's impossible to walk the ancestors of
* a transaction.)
*
* In the event of a reorg, the assumption that a newly added tx has no
* in-mempool children is false. In particular, the mempool is in an
* inconsistent state while new transactions are being added, because there may
* be descendant transactions of a tx coming from a disconnected block that are
* unreachable from just looking at transactions in the mempool (the linking
* transactions may also be in the disconnected block, waiting to be added).
* Because of this, there's not much benefit in trying to search for in-mempool
* children in addUnchecked(). Instead, in the special case of transactions
* being added from a disconnected block, we require the caller to clean up the
* state, to account for in-mempool, out-of-block descendants for all the
* in-block transactions by calling UpdateTransactionsFromBlock(). Note that
* until this is called, the mempool state is not consistent, and in particular
* mapLinks may not be correct (and therefore functions like
* CalculateMemPoolAncestors() and CalculateDescendants() that rely
* on them to walk the mempool are not generally safe to use).
*
* Computational limits:
*
* Updating all in-mempool ancestors of a newly added transaction can be slow,
* if no bound exists on how many in-mempool ancestors there may be.
* CalculateMemPoolAncestors() takes configurable limits that are designed to
* prevent these calculations from being too CPU intensive.
*
*/
class CTxMemPool
{
private:
uint32_t nCheckFrequency GUARDED_BY(cs); //!< Value n means that n times in 2^32 we check.
unsigned int nTransactionsUpdated; //!< Used by getblocktemplate to trigger CreateNewBlock() invocation
CBlockPolicyEstimator* minerPolicyEstimator;
uint64_t totalTxSize; //!< sum of all mempool tx' byte sizes
uint64_t cachedInnerUsage; //!< sum of dynamic memory usage of all the map elements (NOT the maps themselves)
mutable int64_t lastRollingFeeUpdate;
mutable bool blockSinceLastRollingFeeBump;
mutable double rollingMinimumFeeRate; //!< minimum fee to get into the pool, decreases exponentially
mutable uint64_t m_epoch;
mutable bool m_has_epoch_guard;
void trackPackageRemoved(const CFeeRate& rate) EXCLUSIVE_LOCKS_REQUIRED(cs);
bool m_is_loaded GUARDED_BY(cs){false};
public:
static const int ROLLING_FEE_HALFLIFE = 60 * 60 * 12; // public only for testing
typedef boost::multi_index_container<
CTxMemPoolEntry,
boost::multi_index::indexed_by<
// sorted by txid
boost::multi_index::hashed_unique<mempoolentry_txid, SaltedTxidHasher>,
// sorted by fee rate
boost::multi_index::ordered_non_unique<
boost::multi_index::tag<descendant_score>,
boost::multi_index::identity<CTxMemPoolEntry>,
CompareTxMemPoolEntryByDescendantScore
>,
// sorted by entry time
boost::multi_index::ordered_non_unique<
boost::multi_index::tag<entry_time>,
boost::multi_index::identity<CTxMemPoolEntry>,
CompareTxMemPoolEntryByEntryTime
>,
// sorted by fee rate with ancestors
boost::multi_index::ordered_non_unique<
boost::multi_index::tag<ancestor_score>,
boost::multi_index::identity<CTxMemPoolEntry>,
CompareTxMemPoolEntryByAncestorFee
>
>
> indexed_transaction_set;
/**
* This mutex needs to be locked when accessing `mapTx` or other members
* that are guarded by it.
*
* @par Consistency guarantees
*
* By design, it is guaranteed that:
*
* 1. Locking both `cs_main` and `mempool.cs` will give a view of mempool
* that is consistent with current chain tip (`::ChainActive()` and
* `CoinsTip()`) and is fully populated. Fully populated means that if the
* current active chain is missing transactions that were present in a
* previously active chain, all the missing transactions will have been
* re-added to the mempool and should be present if they meet size and
* consistency constraints.
*
* 2. Locking `mempool.cs` without `cs_main` will give a view of a mempool
* consistent with some chain that was active since `cs_main` was last
* locked, and that is fully populated as described above. It is ok for
* code that only needs to query or remove transactions from the mempool
* to lock just `mempool.cs` without `cs_main`.
*
* To provide these guarantees, it is necessary to lock both `cs_main` and
* `mempool.cs` whenever adding transactions to the mempool and whenever
* changing the chain tip. It's necessary to keep both mutexes locked until
* the mempool is consistent with the new chain tip and fully populated.
*
* @par Consistency bug
*
* The second guarantee above is not currently enforced, but
* https://github.com/bitcoin/bitcoin/pull/14193 will fix it. No known code
* in bitcoin currently depends on second guarantee, but it is important to
* fix for third party code that needs be able to frequently poll the
* mempool without locking `cs_main` and without encountering missing
* transactions during reorgs.
*/
mutable RecursiveMutex cs;
indexed_transaction_set mapTx GUARDED_BY(cs);
using txiter = indexed_transaction_set::nth_index<0>::type::const_iterator;
std::vector<std::pair<uint256, txiter> > vTxHashes; //!< All tx hashes/entries in mapTx, in random order
struct CompareIteratorByHash {
bool operator()(const txiter &a, const txiter &b) const {
return a->GetTx().GetHash() < b->GetTx().GetHash();
}
};
typedef std::set<txiter, CompareIteratorByHash> setEntries;
const setEntries & GetMemPoolParents(txiter entry) const EXCLUSIVE_LOCKS_REQUIRED(cs);
const setEntries & GetMemPoolChildren(txiter entry) const EXCLUSIVE_LOCKS_REQUIRED(cs);
uint64_t CalculateDescendantMaximum(txiter entry) const EXCLUSIVE_LOCKS_REQUIRED(cs);
private:
typedef std::map<txiter, setEntries, CompareIteratorByHash> cacheMap;
struct TxLinks {
setEntries parents;
setEntries children;
};
typedef std::map<txiter, TxLinks, CompareIteratorByHash> txlinksMap;
txlinksMap mapLinks;
typedef std::map<CMempoolAddressDeltaKey, CMempoolAddressDelta, CMempoolAddressDeltaKeyCompare> addressDeltaMap;
addressDeltaMap mapAddress;
typedef std::map<uint256, std::vector<CMempoolAddressDeltaKey> > addressDeltaMapInserted;
addressDeltaMapInserted mapAddressInserted;
typedef std::map<CSpentIndexKey, CSpentIndexValue, CSpentIndexKeyCompare> mapSpentIndex;
mapSpentIndex mapSpent;
typedef std::map<uint256, std::vector<CSpentIndexKey> > mapSpentIndexInserted;
mapSpentIndexInserted mapSpentInserted;
std::multimap<uint256, uint256> mapProTxRefs; // proTxHash -> transaction (all TXs that refer to an existing proTx)
std::map<CService, uint256> mapProTxAddresses;
std::map<CKeyID, uint256> mapProTxPubKeyIDs;
std::map<uint256, uint256> mapProTxBlsPubKeyHashes;
std::map<COutPoint, uint256> mapProTxCollaterals;
void UpdateParent(txiter entry, txiter parent, bool add);
void UpdateChild(txiter entry, txiter child, bool add);
std::vector<indexed_transaction_set::const_iterator> GetSortedDepthAndScore() const EXCLUSIVE_LOCKS_REQUIRED(cs);
/** track locally submitted transactions to periodically retry initial broadcast */
std::set<uint256> m_unbroadcast_txids GUARDED_BY(cs);
public:
indirectmap<COutPoint, const CTransaction*> mapNextTx GUARDED_BY(cs);
std::map<uint256, CAmount> mapDeltas;
/** Create a new CTxMemPool.
*/
explicit CTxMemPool(CBlockPolicyEstimator* estimator = nullptr);
/**
* If sanity-checking is turned on, check makes sure the pool is
* consistent (does not contain two transactions that spend the same inputs,
* all inputs are in the mapNextTx array). If sanity-checking is turned off,
* check does nothing.
*/
void check(const CCoinsViewCache *pcoins) const;
void setSanityCheck(double dFrequency = 1.0) { LOCK(cs); nCheckFrequency = static_cast<uint32_t>(dFrequency * 4294967295.0); }
// addUnchecked must updated state for all ancestors of a given transaction,
// to track size/count of descendant transactions. First version of
// addUnchecked can be used to have it call CalculateMemPoolAncestors(), and
// then invoke the second version.
// Note that addUnchecked is ONLY called from ATMP outside of tests
// and any other callers may break wallet's in-mempool tracking (due to
// lack of CValidationInterface::TransactionAddedToMempool callbacks).
void addUnchecked(const CTxMemPoolEntry& entry, bool validFeeEstimate = true) EXCLUSIVE_LOCKS_REQUIRED(cs, cs_main);
void addUnchecked(const CTxMemPoolEntry& entry, setEntries& setAncestors, bool validFeeEstimate = true) EXCLUSIVE_LOCKS_REQUIRED(cs, cs_main);
void addAddressIndex(const CTxMemPoolEntry &entry, const CCoinsViewCache &view);
bool getAddressIndex(std::vector<std::pair<uint160, int> > &addresses,
std::vector<std::pair<CMempoolAddressDeltaKey, CMempoolAddressDelta> > &results);
bool removeAddressIndex(const uint256 txhash);
void addSpentIndex(const CTxMemPoolEntry &entry, const CCoinsViewCache &view);
bool getSpentIndex(CSpentIndexKey &key, CSpentIndexValue &value);
bool removeSpentIndex(const uint256 txhash);
void removeRecursive(const CTransaction &tx, MemPoolRemovalReason reason);
void removeForReorg(const CCoinsViewCache *pcoins, unsigned int nMemPoolHeight, int flags) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
void removeConflicts(const CTransaction &tx) EXCLUSIVE_LOCKS_REQUIRED(cs);
void removeProTxPubKeyConflicts(const CTransaction &tx, const CKeyID &keyId) EXCLUSIVE_LOCKS_REQUIRED(cs);
void removeProTxPubKeyConflicts(const CTransaction &tx, const CBLSPublicKey &pubKey) EXCLUSIVE_LOCKS_REQUIRED(cs);
void removeProTxCollateralConflicts(const CTransaction &tx, const COutPoint &collateralOutpoint) EXCLUSIVE_LOCKS_REQUIRED(cs);
void removeProTxSpentCollateralConflicts(const CTransaction &tx) EXCLUSIVE_LOCKS_REQUIRED(cs);
void removeProTxKeyChangedConflicts(const CTransaction &tx, const uint256& proTxHash, const uint256& newKeyHash) EXCLUSIVE_LOCKS_REQUIRED(cs);
void removeProTxConflicts(const CTransaction &tx) EXCLUSIVE_LOCKS_REQUIRED(cs);
void removeForBlock(const std::vector<CTransactionRef>& vtx, unsigned int nBlockHeight);
void clear();
void _clear() EXCLUSIVE_LOCKS_REQUIRED(cs); //lock free
bool CompareDepthAndScore(const uint256& hasha, const uint256& hashb);
void queryHashes(std::vector<uint256>& vtxid) const;
bool isSpent(const COutPoint& outpoint) const;
unsigned int GetTransactionsUpdated() const;
void AddTransactionsUpdated(unsigned int n);
/**
* Check that none of this transactions inputs are in the mempool, and thus
* the tx is not dependent on other mempool transactions to be included in a block.
*/
bool HasNoInputsOf(const CTransaction& tx) const;
/** Affect CreateNewBlock prioritisation of transactions */
void PrioritiseTransaction(const uint256& hash, const CAmount& nFeeDelta);
void ApplyDelta(const uint256 hash, CAmount &nFeeDelta) const;
void ClearPrioritisation(const uint256 hash);
/** Get the transaction in the pool that spends the same prevout */
const CTransaction* GetConflictTx(const COutPoint& prevout) const EXCLUSIVE_LOCKS_REQUIRED(cs);
/** Returns an iterator to the given hash, if found */
Optional<txiter> GetIter(const uint256& txid) const EXCLUSIVE_LOCKS_REQUIRED(cs);
/** Translate a set of hashes into a set of pool iterators to avoid repeated lookups */
setEntries GetIterSet(const std::set<uint256>& hashes) const EXCLUSIVE_LOCKS_REQUIRED(cs);
/** Remove a set of transactions from the mempool.
* If a transaction is in this set, then all in-mempool descendants must
* also be in the set, unless this transaction is being removed for being
* in a block.
* Set updateDescendants to true when removing a tx that was in a block, so
* that any in-mempool descendants have their ancestor state updated.
*/
void RemoveStaged(setEntries& stage, bool updateDescendants, MemPoolRemovalReason reason) EXCLUSIVE_LOCKS_REQUIRED(cs);
/** When adding transactions from a disconnected block back to the mempool,
* new mempool entries may have children in the mempool (which is generally
* not the case when otherwise adding transactions).
* UpdateTransactionsFromBlock() will find child transactions and update the
* descendant state for each transaction in vHashesToUpdate (excluding any
* child transactions present in vHashesToUpdate, which are already accounted
* for). Note: vHashesToUpdate should be the set of transactions from the
* disconnected block that have been accepted back into the mempool.
*/
void UpdateTransactionsFromBlock(const std::vector<uint256>& vHashesToUpdate) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
/** Try to calculate all in-mempool ancestors of entry.
* (these are all calculated including the tx itself)
* limitAncestorCount = max number of ancestors
* limitAncestorSize = max size of ancestors
* limitDescendantCount = max number of descendants any ancestor can have
* limitDescendantSize = max size of descendants any ancestor can have
* errString = populated with error reason if any limits are hit
* fSearchForParents = whether to search a tx's vin for in-mempool parents, or
* look up parents from mapLinks. Must be true for entries not in the mempool
*/
bool CalculateMemPoolAncestors(const CTxMemPoolEntry& entry, setEntries& setAncestors, uint64_t limitAncestorCount, uint64_t limitAncestorSize, uint64_t limitDescendantCount, uint64_t limitDescendantSize, std::string& errString, bool fSearchForParents = true) const EXCLUSIVE_LOCKS_REQUIRED(cs);
/** Populate setDescendants with all in-mempool descendants of hash.
* Assumes that setDescendants includes all in-mempool descendants of anything
* already in it. */
void CalculateDescendants(txiter it, setEntries& setDescendants) const EXCLUSIVE_LOCKS_REQUIRED(cs);
/** The minimum fee to get into the mempool, which may itself not be enough
* for larger-sized transactions.
* The incrementalRelayFee policy variable is used to bound the time it
* takes the fee rate to go back down all the way to 0. When the feerate
* would otherwise be half of this, it is set to 0 instead.
*/
CFeeRate GetMinFee(size_t sizelimit) const;
/** Remove transactions from the mempool until its dynamic size is <= sizelimit.
* pvNoSpendsRemaining, if set, will be populated with the list of outpoints
* which are not in mempool which no longer have any spends in this mempool.
*/
void TrimToSize(size_t sizelimit, std::vector<COutPoint>* pvNoSpendsRemaining=nullptr);
/** Expire all transaction (and their dependencies) in the mempool older than time. Return the number of removed transactions. */
int Expire(int64_t time);
/**
* Calculate the ancestor and descendant count for the given transaction.
* The counts include the transaction itself.
*/
void GetTransactionAncestry(const uint256& txid, size_t& ancestors, size_t& descendants) const;
/** @returns true if the mempool is fully loaded */
bool IsLoaded() const;
/** Sets the current loaded state */
void SetIsLoaded(bool loaded);
unsigned long size() const
{
LOCK(cs);
return mapTx.size();
}
uint64_t GetTotalTxSize() const
{
LOCK(cs);
return totalTxSize;
}
bool exists(const uint256& hash) const
{
LOCK(cs);
return (mapTx.count(hash) != 0);
}
CTransactionRef get(const uint256& hash) const;
TxMempoolInfo info(const uint256& hash) const;
std::vector<TxMempoolInfo> infoAll() const;
bool existsProviderTxConflict(const CTransaction &tx) const;
size_t DynamicMemoryUsage() const;
boost::signals2::signal<void (CTransactionRef)> NotifyEntryAdded;
boost::signals2::signal<void (CTransactionRef, MemPoolRemovalReason)> NotifyEntryRemoved;
/** Adds a transaction to the unbroadcast set */
void AddUnbroadcastTx(const uint256& txid) {
LOCK(cs);
m_unbroadcast_txids.insert(txid);
}
/** Removes a transaction from the unbroadcast set */
void RemoveUnbroadcastTx(const uint256& txid, const bool unchecked = false);
/** Returns transactions in unbroadcast set */
const std::set<uint256> GetUnbroadcastTxs() const {
LOCK(cs);
return m_unbroadcast_txids;
}
private:
/** UpdateForDescendants is used by UpdateTransactionsFromBlock to update
* the descendants for a single transaction that has been added to the
* mempool but may have child transactions in the mempool, eg during a
* chain reorg. setExclude is the set of descendant transactions in the
* mempool that must not be accounted for (because any descendants in
* setExclude were added to the mempool after the transaction being
* updated and hence their state is already reflected in the parent
* state).
*
* cachedDescendants will be updated with the descendants of the transaction
* being updated, so that future invocations don't need to walk the
* same transaction again, if encountered in another transaction chain.
*/
void UpdateForDescendants(txiter updateIt,
cacheMap &cachedDescendants,
const std::set<uint256> &setExclude) EXCLUSIVE_LOCKS_REQUIRED(cs);
/** Update ancestors of hash to add/remove it as a descendant transaction. */
void UpdateAncestorsOf(bool add, txiter hash, setEntries &setAncestors) EXCLUSIVE_LOCKS_REQUIRED(cs);
/** Set ancestor state for an entry */
void UpdateEntryForAncestors(txiter it, const setEntries &setAncestors) EXCLUSIVE_LOCKS_REQUIRED(cs);
/** For each transaction being removed, update ancestors and any direct children.
* If updateDescendants is true, then also update in-mempool descendants'
* ancestor state. */
void UpdateForRemoveFromMempool(const setEntries &entriesToRemove, bool updateDescendants) EXCLUSIVE_LOCKS_REQUIRED(cs);
/** Sever link between specified transaction and direct children. */
void UpdateChildrenForRemoval(txiter entry) EXCLUSIVE_LOCKS_REQUIRED(cs);
/** Before calling removeUnchecked for a given transaction,
* UpdateForRemoveFromMempool must be called on the entire (dependent) set
* of transactions being removed at the same time. We use each
* CTxMemPoolEntry's setMemPoolParents in order to walk ancestors of a
* given transaction that is removed, so we can't remove intermediate
* transactions in a chain before we've updated all the state for the
* removal.
*/
void removeUnchecked(txiter entry, MemPoolRemovalReason reason) EXCLUSIVE_LOCKS_REQUIRED(cs);
public:
/** EpochGuard: RAII-style guard for using epoch-based graph traversal algorithms.
* When walking ancestors or descendants, we generally want to avoid
* visiting the same transactions twice. Some traversal algorithms use
* std::set (or setEntries) to deduplicate the transaction we visit.
* However, use of std::set is algorithmically undesirable because it both
* adds an asymptotic factor of O(log n) to traverals cost and triggers O(n)
* more dynamic memory allocations.
* In many algorithms we can replace std::set with an internal mempool
* counter to track the time (or, "epoch") that we began a traversal, and
* check + update a per-transaction epoch for each transaction we look at to
* determine if that transaction has not yet been visited during the current
* traversal's epoch.
* Algorithms using std::set can be replaced on a one by one basis.
* Both techniques are not fundamentally incompatible across the codebase.
* Generally speaking, however, the remaining use of std::set for mempool
* traversal should be viewed as a TODO for replacement with an epoch based
* traversal, rather than a preference for std::set over epochs in that
* algorithm.
*/
class EpochGuard {
const CTxMemPool& pool;
public:
EpochGuard(const CTxMemPool& in);
~EpochGuard();
};
// N.B. GetFreshEpoch modifies mutable state via the EpochGuard construction
// (and later destruction)
EpochGuard GetFreshEpoch() const EXCLUSIVE_LOCKS_REQUIRED(cs);
/** visited marks a CTxMemPoolEntry as having been traversed
* during the lifetime of the most recently created EpochGuard
* and returns false if we are the first visitor, true otherwise.
*
* An EpochGuard must be held when visited is called or an assert will be
* triggered.
*
*/
bool visited(txiter it) const EXCLUSIVE_LOCKS_REQUIRED(cs) {
assert(m_has_epoch_guard);
bool ret = it->m_epoch >= m_epoch;
it->m_epoch = std::max(it->m_epoch, m_epoch);
return ret;
}
bool visited(boost::optional<txiter> it) const EXCLUSIVE_LOCKS_REQUIRED(cs) {
assert(m_has_epoch_guard);
return !it || visited(*it);
}
};
/**
* CCoinsView that brings transactions from a mempool into view.
* It does not check for spendings by memory pool transactions.
* Instead, it provides access to all Coins which are either unspent in the
* base CCoinsView, or are outputs from any mempool transaction!
* This allows transaction replacement to work as expected, as you want to
* have all inputs "available" to check signatures, and any cycles in the
* dependency graph are checked directly in AcceptToMemoryPool.
* It also allows you to sign a double-spend directly in
* signrawtransactionwithkey and signrawtransactionwithwallet,
* as long as the conflicting transaction is not yet confirmed.
*/
class CCoinsViewMemPool : public CCoinsViewBacked
{
protected:
const CTxMemPool& mempool;
public:
CCoinsViewMemPool(CCoinsView* baseIn, const CTxMemPool& mempoolIn);
bool GetCoin(const COutPoint &outpoint, Coin &coin) const override;
};
/**
* DisconnectedBlockTransactions
* During the reorg, it's desirable to re-add previously confirmed transactions
* to the mempool, so that anything not re-confirmed in the new chain is
* available to be mined. However, it's more efficient to wait until the reorg
* is complete and process all still-unconfirmed transactions at that time,
* since we expect most confirmed transactions to (typically) still be
* confirmed in the new chain, and re-accepting to the memory pool is expensive
* (and therefore better to not do in the middle of reorg-processing).
* Instead, store the disconnected transactions (in order!) as we go, remove any
* that are included in blocks in the new chain, and then process the remaining
* still-unconfirmed transactions at the end.
*/
// multi_index tag names
struct txid_index {};
struct insertion_order {};
struct DisconnectedBlockTransactions {
typedef boost::multi_index_container<
CTransactionRef,
boost::multi_index::indexed_by<
// sorted by txid
boost::multi_index::hashed_unique<
boost::multi_index::tag<txid_index>,
mempoolentry_txid,
SaltedTxidHasher
>,
// sorted by order in the blockchain
boost::multi_index::sequenced<
boost::multi_index::tag<insertion_order>
>
>
> indexed_disconnected_transactions;
// It's almost certainly a logic bug if we don't clear out queuedTx before
// destruction, as we add to it while disconnecting blocks, and then we
// need to re-process remaining transactions to ensure mempool consistency.
// For now, assert() that we've emptied out this object on destruction.
// This assert() can always be removed if the reorg-processing code were
// to be refactored such that this assumption is no longer true (for
// instance if there was some other way we cleaned up the mempool after a
// reorg, besides draining this object).
~DisconnectedBlockTransactions() { assert(queuedTx.empty()); }
indexed_disconnected_transactions queuedTx;
uint64_t cachedInnerUsage = 0;
// Estimate the overhead of queuedTx to be 6 pointers + an allocation, as
// no exact formula for boost::multi_index_contained is implemented.
size_t DynamicMemoryUsage() const {
return memusage::MallocUsage(sizeof(CTransactionRef) + 6 * sizeof(void*)) * queuedTx.size() + cachedInnerUsage;
}
void addTransaction(const CTransactionRef& tx)
{
queuedTx.insert(tx);
cachedInnerUsage += RecursiveDynamicUsage(tx);
}
// Remove entries based on txid_index, and update memory usage.
void removeForBlock(const std::vector<CTransactionRef>& vtx)
{
// Short-circuit in the common case of a block being added to the tip
if (queuedTx.empty()) {
return;
}
for (auto const &tx : vtx) {
auto it = queuedTx.find(tx->GetHash());
if (it != queuedTx.end()) {
cachedInnerUsage -= RecursiveDynamicUsage(*it);
queuedTx.erase(it);
}
}
}
// Remove an entry by insertion_order index, and update memory usage.
void removeEntry(indexed_disconnected_transactions::index<insertion_order>::type::iterator entry)
{
cachedInnerUsage -= RecursiveDynamicUsage(*entry);
queuedTx.get<insertion_order>().erase(entry);
}
void clear()
{
cachedInnerUsage = 0;
queuedTx.clear();
}
};
#endif // BITCOIN_TXMEMPOOL_H