dash/src/script.h
Pieter Wuille 450cbb0944 Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.

The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.

The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.

The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.

For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-10-20 23:08:57 +02:00

678 lines
19 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef H_BITCOIN_SCRIPT
#define H_BITCOIN_SCRIPT
#include <string>
#include <vector>
#include <boost/foreach.hpp>
#include <boost/variant.hpp>
#include "keystore.h"
#include "bignum.h"
class CCoins;
class CTransaction;
/** Signature hash types/flags */
enum
{
SIGHASH_ALL = 1,
SIGHASH_NONE = 2,
SIGHASH_SINGLE = 3,
SIGHASH_ANYONECANPAY = 0x80,
};
enum txnouttype
{
TX_NONSTANDARD,
// 'standard' transaction types:
TX_PUBKEY,
TX_PUBKEYHASH,
TX_SCRIPTHASH,
TX_MULTISIG,
};
class CNoDestination {
public:
friend bool operator==(const CNoDestination &a, const CNoDestination &b) { return true; }
friend bool operator<(const CNoDestination &a, const CNoDestination &b) { return true; }
};
/** A txout script template with a specific destination. It is either:
* * CNoDestination: no destination set
* * CKeyID: TX_PUBKEYHASH destination
* * CScriptID: TX_SCRIPTHASH destination
* A CTxDestination is the internal data type encoded in a CBitcoinAddress
*/
typedef boost::variant<CNoDestination, CKeyID, CScriptID> CTxDestination;
const char* GetTxnOutputType(txnouttype t);
/** Script opcodes */
enum opcodetype
{
// push value
OP_0 = 0x00,
OP_FALSE = OP_0,
OP_PUSHDATA1 = 0x4c,
OP_PUSHDATA2 = 0x4d,
OP_PUSHDATA4 = 0x4e,
OP_1NEGATE = 0x4f,
OP_RESERVED = 0x50,
OP_1 = 0x51,
OP_TRUE=OP_1,
OP_2 = 0x52,
OP_3 = 0x53,
OP_4 = 0x54,
OP_5 = 0x55,
OP_6 = 0x56,
OP_7 = 0x57,
OP_8 = 0x58,
OP_9 = 0x59,
OP_10 = 0x5a,
OP_11 = 0x5b,
OP_12 = 0x5c,
OP_13 = 0x5d,
OP_14 = 0x5e,
OP_15 = 0x5f,
OP_16 = 0x60,
// control
OP_NOP = 0x61,
OP_VER = 0x62,
OP_IF = 0x63,
OP_NOTIF = 0x64,
OP_VERIF = 0x65,
OP_VERNOTIF = 0x66,
OP_ELSE = 0x67,
OP_ENDIF = 0x68,
OP_VERIFY = 0x69,
OP_RETURN = 0x6a,
// stack ops
OP_TOALTSTACK = 0x6b,
OP_FROMALTSTACK = 0x6c,
OP_2DROP = 0x6d,
OP_2DUP = 0x6e,
OP_3DUP = 0x6f,
OP_2OVER = 0x70,
OP_2ROT = 0x71,
OP_2SWAP = 0x72,
OP_IFDUP = 0x73,
OP_DEPTH = 0x74,
OP_DROP = 0x75,
OP_DUP = 0x76,
OP_NIP = 0x77,
OP_OVER = 0x78,
OP_PICK = 0x79,
OP_ROLL = 0x7a,
OP_ROT = 0x7b,
OP_SWAP = 0x7c,
OP_TUCK = 0x7d,
// splice ops
OP_CAT = 0x7e,
OP_SUBSTR = 0x7f,
OP_LEFT = 0x80,
OP_RIGHT = 0x81,
OP_SIZE = 0x82,
// bit logic
OP_INVERT = 0x83,
OP_AND = 0x84,
OP_OR = 0x85,
OP_XOR = 0x86,
OP_EQUAL = 0x87,
OP_EQUALVERIFY = 0x88,
OP_RESERVED1 = 0x89,
OP_RESERVED2 = 0x8a,
// numeric
OP_1ADD = 0x8b,
OP_1SUB = 0x8c,
OP_2MUL = 0x8d,
OP_2DIV = 0x8e,
OP_NEGATE = 0x8f,
OP_ABS = 0x90,
OP_NOT = 0x91,
OP_0NOTEQUAL = 0x92,
OP_ADD = 0x93,
OP_SUB = 0x94,
OP_MUL = 0x95,
OP_DIV = 0x96,
OP_MOD = 0x97,
OP_LSHIFT = 0x98,
OP_RSHIFT = 0x99,
OP_BOOLAND = 0x9a,
OP_BOOLOR = 0x9b,
OP_NUMEQUAL = 0x9c,
OP_NUMEQUALVERIFY = 0x9d,
OP_NUMNOTEQUAL = 0x9e,
OP_LESSTHAN = 0x9f,
OP_GREATERTHAN = 0xa0,
OP_LESSTHANOREQUAL = 0xa1,
OP_GREATERTHANOREQUAL = 0xa2,
OP_MIN = 0xa3,
OP_MAX = 0xa4,
OP_WITHIN = 0xa5,
// crypto
OP_RIPEMD160 = 0xa6,
OP_SHA1 = 0xa7,
OP_SHA256 = 0xa8,
OP_HASH160 = 0xa9,
OP_HASH256 = 0xaa,
OP_CODESEPARATOR = 0xab,
OP_CHECKSIG = 0xac,
OP_CHECKSIGVERIFY = 0xad,
OP_CHECKMULTISIG = 0xae,
OP_CHECKMULTISIGVERIFY = 0xaf,
// expansion
OP_NOP1 = 0xb0,
OP_NOP2 = 0xb1,
OP_NOP3 = 0xb2,
OP_NOP4 = 0xb3,
OP_NOP5 = 0xb4,
OP_NOP6 = 0xb5,
OP_NOP7 = 0xb6,
OP_NOP8 = 0xb7,
OP_NOP9 = 0xb8,
OP_NOP10 = 0xb9,
// template matching params
OP_SMALLINTEGER = 0xfa,
OP_PUBKEYS = 0xfb,
OP_PUBKEYHASH = 0xfd,
OP_PUBKEY = 0xfe,
OP_INVALIDOPCODE = 0xff,
};
const char* GetOpName(opcodetype opcode);
inline std::string ValueString(const std::vector<unsigned char>& vch)
{
if (vch.size() <= 4)
return strprintf("%d", CBigNum(vch).getint());
else
return HexStr(vch);
}
inline std::string StackString(const std::vector<std::vector<unsigned char> >& vStack)
{
std::string str;
BOOST_FOREACH(const std::vector<unsigned char>& vch, vStack)
{
if (!str.empty())
str += " ";
str += ValueString(vch);
}
return str;
}
/** Serialized script, used inside transaction inputs and outputs */
class CScript : public std::vector<unsigned char>
{
protected:
CScript& push_int64(int64 n)
{
if (n == -1 || (n >= 1 && n <= 16))
{
push_back(n + (OP_1 - 1));
}
else
{
CBigNum bn(n);
*this << bn.getvch();
}
return *this;
}
CScript& push_uint64(uint64 n)
{
if (n >= 1 && n <= 16)
{
push_back(n + (OP_1 - 1));
}
else
{
CBigNum bn(n);
*this << bn.getvch();
}
return *this;
}
public:
CScript() { }
CScript(const CScript& b) : std::vector<unsigned char>(b.begin(), b.end()) { }
CScript(const_iterator pbegin, const_iterator pend) : std::vector<unsigned char>(pbegin, pend) { }
#ifndef _MSC_VER
CScript(const unsigned char* pbegin, const unsigned char* pend) : std::vector<unsigned char>(pbegin, pend) { }
#endif
CScript& operator+=(const CScript& b)
{
insert(end(), b.begin(), b.end());
return *this;
}
friend CScript operator+(const CScript& a, const CScript& b)
{
CScript ret = a;
ret += b;
return ret;
}
//explicit CScript(char b) is not portable. Use 'signed char' or 'unsigned char'.
explicit CScript(signed char b) { operator<<(b); }
explicit CScript(short b) { operator<<(b); }
explicit CScript(int b) { operator<<(b); }
explicit CScript(long b) { operator<<(b); }
explicit CScript(int64 b) { operator<<(b); }
explicit CScript(unsigned char b) { operator<<(b); }
explicit CScript(unsigned int b) { operator<<(b); }
explicit CScript(unsigned short b) { operator<<(b); }
explicit CScript(unsigned long b) { operator<<(b); }
explicit CScript(uint64 b) { operator<<(b); }
explicit CScript(opcodetype b) { operator<<(b); }
explicit CScript(const uint256& b) { operator<<(b); }
explicit CScript(const CBigNum& b) { operator<<(b); }
explicit CScript(const std::vector<unsigned char>& b) { operator<<(b); }
//CScript& operator<<(char b) is not portable. Use 'signed char' or 'unsigned char'.
CScript& operator<<(signed char b) { return push_int64(b); }
CScript& operator<<(short b) { return push_int64(b); }
CScript& operator<<(int b) { return push_int64(b); }
CScript& operator<<(long b) { return push_int64(b); }
CScript& operator<<(int64 b) { return push_int64(b); }
CScript& operator<<(unsigned char b) { return push_uint64(b); }
CScript& operator<<(unsigned int b) { return push_uint64(b); }
CScript& operator<<(unsigned short b) { return push_uint64(b); }
CScript& operator<<(unsigned long b) { return push_uint64(b); }
CScript& operator<<(uint64 b) { return push_uint64(b); }
CScript& operator<<(opcodetype opcode)
{
if (opcode < 0 || opcode > 0xff)
throw std::runtime_error("CScript::operator<<() : invalid opcode");
insert(end(), (unsigned char)opcode);
return *this;
}
CScript& operator<<(const uint160& b)
{
insert(end(), sizeof(b));
insert(end(), (unsigned char*)&b, (unsigned char*)&b + sizeof(b));
return *this;
}
CScript& operator<<(const uint256& b)
{
insert(end(), sizeof(b));
insert(end(), (unsigned char*)&b, (unsigned char*)&b + sizeof(b));
return *this;
}
CScript& operator<<(const CPubKey& key)
{
std::vector<unsigned char> vchKey = key.Raw();
return (*this) << vchKey;
}
CScript& operator<<(const CBigNum& b)
{
*this << b.getvch();
return *this;
}
CScript& operator<<(const std::vector<unsigned char>& b)
{
if (b.size() < OP_PUSHDATA1)
{
insert(end(), (unsigned char)b.size());
}
else if (b.size() <= 0xff)
{
insert(end(), OP_PUSHDATA1);
insert(end(), (unsigned char)b.size());
}
else if (b.size() <= 0xffff)
{
insert(end(), OP_PUSHDATA2);
unsigned short nSize = b.size();
insert(end(), (unsigned char*)&nSize, (unsigned char*)&nSize + sizeof(nSize));
}
else
{
insert(end(), OP_PUSHDATA4);
unsigned int nSize = b.size();
insert(end(), (unsigned char*)&nSize, (unsigned char*)&nSize + sizeof(nSize));
}
insert(end(), b.begin(), b.end());
return *this;
}
CScript& operator<<(const CScript& b)
{
// I'm not sure if this should push the script or concatenate scripts.
// If there's ever a use for pushing a script onto a script, delete this member fn
assert(!"Warning: Pushing a CScript onto a CScript with << is probably not intended, use + to concatenate!");
return *this;
}
bool GetOp(iterator& pc, opcodetype& opcodeRet, std::vector<unsigned char>& vchRet)
{
// Wrapper so it can be called with either iterator or const_iterator
const_iterator pc2 = pc;
bool fRet = GetOp2(pc2, opcodeRet, &vchRet);
pc = begin() + (pc2 - begin());
return fRet;
}
bool GetOp(iterator& pc, opcodetype& opcodeRet)
{
const_iterator pc2 = pc;
bool fRet = GetOp2(pc2, opcodeRet, NULL);
pc = begin() + (pc2 - begin());
return fRet;
}
bool GetOp(const_iterator& pc, opcodetype& opcodeRet, std::vector<unsigned char>& vchRet) const
{
return GetOp2(pc, opcodeRet, &vchRet);
}
bool GetOp(const_iterator& pc, opcodetype& opcodeRet) const
{
return GetOp2(pc, opcodeRet, NULL);
}
bool GetOp2(const_iterator& pc, opcodetype& opcodeRet, std::vector<unsigned char>* pvchRet) const
{
opcodeRet = OP_INVALIDOPCODE;
if (pvchRet)
pvchRet->clear();
if (pc >= end())
return false;
// Read instruction
if (end() - pc < 1)
return false;
unsigned int opcode = *pc++;
// Immediate operand
if (opcode <= OP_PUSHDATA4)
{
unsigned int nSize;
if (opcode < OP_PUSHDATA1)
{
nSize = opcode;
}
else if (opcode == OP_PUSHDATA1)
{
if (end() - pc < 1)
return false;
nSize = *pc++;
}
else if (opcode == OP_PUSHDATA2)
{
if (end() - pc < 2)
return false;
nSize = 0;
memcpy(&nSize, &pc[0], 2);
pc += 2;
}
else if (opcode == OP_PUSHDATA4)
{
if (end() - pc < 4)
return false;
memcpy(&nSize, &pc[0], 4);
pc += 4;
}
if (end() - pc < 0 || (unsigned int)(end() - pc) < nSize)
return false;
if (pvchRet)
pvchRet->assign(pc, pc + nSize);
pc += nSize;
}
opcodeRet = (opcodetype)opcode;
return true;
}
// Encode/decode small integers:
static int DecodeOP_N(opcodetype opcode)
{
if (opcode == OP_0)
return 0;
assert(opcode >= OP_1 && opcode <= OP_16);
return (int)opcode - (int)(OP_1 - 1);
}
static opcodetype EncodeOP_N(int n)
{
assert(n >= 0 && n <= 16);
if (n == 0)
return OP_0;
return (opcodetype)(OP_1+n-1);
}
int FindAndDelete(const CScript& b)
{
int nFound = 0;
if (b.empty())
return nFound;
iterator pc = begin();
opcodetype opcode;
do
{
while (end() - pc >= (long)b.size() && memcmp(&pc[0], &b[0], b.size()) == 0)
{
erase(pc, pc + b.size());
++nFound;
}
}
while (GetOp(pc, opcode));
return nFound;
}
int Find(opcodetype op) const
{
int nFound = 0;
opcodetype opcode;
for (const_iterator pc = begin(); pc != end() && GetOp(pc, opcode);)
if (opcode == op)
++nFound;
return nFound;
}
// Pre-version-0.6, Bitcoin always counted CHECKMULTISIGs
// as 20 sigops. With pay-to-script-hash, that changed:
// CHECKMULTISIGs serialized in scriptSigs are
// counted more accurately, assuming they are of the form
// ... OP_N CHECKMULTISIG ...
unsigned int GetSigOpCount(bool fAccurate) const;
// Accurately count sigOps, including sigOps in
// pay-to-script-hash transactions:
unsigned int GetSigOpCount(const CScript& scriptSig) const;
bool IsPayToScriptHash() const;
// Called by CTransaction::IsStandard
bool IsPushOnly() const
{
const_iterator pc = begin();
while (pc < end())
{
opcodetype opcode;
if (!GetOp(pc, opcode))
return false;
if (opcode > OP_16)
return false;
}
return true;
}
void SetDestination(const CTxDestination& address);
void SetMultisig(int nRequired, const std::vector<CKey>& keys);
void PrintHex() const
{
printf("CScript(%s)\n", HexStr(begin(), end(), true).c_str());
}
std::string ToString() const
{
std::string str;
opcodetype opcode;
std::vector<unsigned char> vch;
const_iterator pc = begin();
while (pc < end())
{
if (!str.empty())
str += " ";
if (!GetOp(pc, opcode, vch))
{
str += "[error]";
return str;
}
if (0 <= opcode && opcode <= OP_PUSHDATA4)
str += ValueString(vch);
else
str += GetOpName(opcode);
}
return str;
}
void print() const
{
printf("%s\n", ToString().c_str());
}
CScriptID GetID() const
{
return CScriptID(Hash160(*this));
}
};
/** Compact serializer for scripts.
*
* It detects common cases and encodes them much more efficiently.
* 3 special cases are defined:
* * Pay to pubkey hash (encoded as 21 bytes)
* * Pay to script hash (encoded as 21 bytes)
* * Pay to pubkey starting with 0x02, 0x03 or 0x04 (encoded as 33 bytes)
*
* Other scripts up to 121 bytes require 1 byte + script length. Above
* that, scripts up to 16505 bytes require 2 bytes + script length.
*/
class CScriptCompressor
{
private:
// make this static for now (there are only 6 special scripts defined)
// this can potentially be extended together with a new nVersion for
// transactions, in which case this value becomes dependent on nVersion
// and nHeight of the enclosing transaction.
static const unsigned int nSpecialScripts = 6;
CScript &script;
protected:
// These check for scripts for which a special case with a shorter encoding is defined.
// They are implemented separately from the CScript test, as these test for exact byte
// sequence correspondences, and are more strict. For example, IsToPubKey also verifies
// whether the public key is valid (as invalid ones cannot be represented in compressed
// form).
bool IsToKeyID(CKeyID &hash) const;
bool IsToScriptID(CScriptID &hash) const;
bool IsToPubKey(std::vector<unsigned char> &pubkey) const;
bool Compress(std::vector<unsigned char> &out) const;
unsigned int GetSpecialSize(unsigned int nSize) const;
bool Decompress(unsigned int nSize, const std::vector<unsigned char> &out);
public:
CScriptCompressor(CScript &scriptIn) : script(scriptIn) { }
unsigned int GetSerializeSize(int nType, int nVersion) const {
std::vector<unsigned char> compr;
if (Compress(compr))
return compr.size();
unsigned int nSize = script.size() + nSpecialScripts;
return script.size() + VARINT(nSize).GetSerializeSize(nType, nVersion);
}
template<typename Stream>
void Serialize(Stream &s, int nType, int nVersion) const {
std::vector<unsigned char> compr;
if (Compress(compr)) {
s << CFlatData(&compr[0], &compr[compr.size()]);
return;
}
unsigned int nSize = script.size() + nSpecialScripts;
s << VARINT(nSize);
s << CFlatData(&script[0], &script[script.size()]);
}
template<typename Stream>
void Unserialize(Stream &s, int nType, int nVersion) {
unsigned int nSize;
s >> VARINT(nSize);
if (nSize < nSpecialScripts) {
std::vector<unsigned char> vch(GetSpecialSize(nSize), 0x00);
s >> REF(CFlatData(&vch[0], &vch[vch.size()]));
Decompress(nSize, vch);
return;
}
nSize -= nSpecialScripts;
script.resize(nSize);
s >> REF(CFlatData(&script[0], &script[script.size()]));
}
};
bool IsCanonicalPubKey(const std::vector<unsigned char> &vchPubKey);
bool IsCanonicalSignature(const std::vector<unsigned char> &vchSig);
bool EvalScript(std::vector<std::vector<unsigned char> >& stack, const CScript& script, const CTransaction& txTo, unsigned int nIn, bool fStrictEncodings, int nHashType);
bool Solver(const CScript& scriptPubKey, txnouttype& typeRet, std::vector<std::vector<unsigned char> >& vSolutionsRet);
int ScriptSigArgsExpected(txnouttype t, const std::vector<std::vector<unsigned char> >& vSolutions);
bool IsStandard(const CScript& scriptPubKey);
bool IsMine(const CKeyStore& keystore, const CScript& scriptPubKey);
bool IsMine(const CKeyStore& keystore, const CTxDestination &dest);
bool ExtractDestination(const CScript& scriptPubKey, CTxDestination& addressRet);
bool ExtractDestinations(const CScript& scriptPubKey, txnouttype& typeRet, std::vector<CTxDestination>& addressRet, int& nRequiredRet);
bool SignSignature(const CKeyStore& keystore, const CScript& fromPubKey, CTransaction& txTo, unsigned int nIn, int nHashType=SIGHASH_ALL);
bool SignSignature(const CKeyStore& keystore, const CTransaction& txFrom, CTransaction& txTo, unsigned int nIn, int nHashType=SIGHASH_ALL);
bool VerifyScript(const CScript& scriptSig, const CScript& scriptPubKey, const CTransaction& txTo, unsigned int nIn,
bool fValidatePayToScriptHash, bool fStrictEncodings, int nHashType);
bool VerifySignature(const CCoins& txFrom, const CTransaction& txTo, unsigned int nIn, bool fValidatePayToScriptHash, bool fStrictEncodings, int nHashType);
// Given two sets of signatures for scriptPubKey, possibly with OP_0 placeholders,
// combine them intelligently and return the result.
CScript CombineSignatures(CScript scriptPubKey, const CTransaction& txTo, unsigned int nIn, const CScript& scriptSig1, const CScript& scriptSig2);
#endif