dash/src/random.cpp
Wladimir J. van der Laan 5eaaa83ac1 Kill insecure_random and associated global state
There are only a few uses of `insecure_random` outside the tests.
This PR replaces uses of insecure_random (and its accompanying global
state) in the core code with an FastRandomContext that is automatically
seeded on creation.

This is meant to be used for inner loops. The FastRandomContext
can be in the outer scope, or the class itself, then rand32() is used
inside the loop. Useful e.g. for pushing addresses in CNode or the fee
rounding, or randomization for coin selection.

As a context is created per purpose, thus it gets rid of
cross-thread unprotected shared usage of a single set of globals, this
should also get rid of the potential race conditions.

- I'd say TxMempool::check is not called enough to warrant using a special
  fast random context, this is switched to GetRand() (open for
  discussion...)

- The use of `insecure_rand` in ConnectThroughProxy has been replaced by
  an atomic integer counter. The only goal here is to have a different
  credentials pair for each connection to go on a different Tor circuit,
  it does not need to be random nor unpredictable.

- To avoid having a FastRandomContext on every CNode, the context is
  passed into PushAddress as appropriate.

There remains an insecure_random for test usage in `test_random.h`.
2016-10-17 13:08:35 +02:00

199 lines
4.9 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "random.h"
#include "crypto/sha512.h"
#include "support/cleanse.h"
#ifdef WIN32
#include "compat.h" // for Windows API
#include <wincrypt.h>
#endif
#include "serialize.h" // for begin_ptr(vec)
#include "util.h" // for LogPrint()
#include "utilstrencodings.h" // for GetTime()
#include <stdlib.h>
#include <limits>
#ifndef WIN32
#include <sys/time.h>
#endif
#include <openssl/err.h>
#include <openssl/rand.h>
static void RandFailure()
{
LogPrintf("Failed to read randomness, aborting\n");
abort();
}
static inline int64_t GetPerformanceCounter()
{
int64_t nCounter = 0;
#ifdef WIN32
QueryPerformanceCounter((LARGE_INTEGER*)&nCounter);
#else
timeval t;
gettimeofday(&t, NULL);
nCounter = (int64_t)(t.tv_sec * 1000000 + t.tv_usec);
#endif
return nCounter;
}
void RandAddSeed()
{
// Seed with CPU performance counter
int64_t nCounter = GetPerformanceCounter();
RAND_add(&nCounter, sizeof(nCounter), 1.5);
memory_cleanse((void*)&nCounter, sizeof(nCounter));
}
static void RandAddSeedPerfmon()
{
RandAddSeed();
#ifdef WIN32
// Don't need this on Linux, OpenSSL automatically uses /dev/urandom
// Seed with the entire set of perfmon data
// This can take up to 2 seconds, so only do it every 10 minutes
static int64_t nLastPerfmon;
if (GetTime() < nLastPerfmon + 10 * 60)
return;
nLastPerfmon = GetTime();
std::vector<unsigned char> vData(250000, 0);
long ret = 0;
unsigned long nSize = 0;
const size_t nMaxSize = 10000000; // Bail out at more than 10MB of performance data
while (true) {
nSize = vData.size();
ret = RegQueryValueExA(HKEY_PERFORMANCE_DATA, "Global", NULL, NULL, begin_ptr(vData), &nSize);
if (ret != ERROR_MORE_DATA || vData.size() >= nMaxSize)
break;
vData.resize(std::max((vData.size() * 3) / 2, nMaxSize)); // Grow size of buffer exponentially
}
RegCloseKey(HKEY_PERFORMANCE_DATA);
if (ret == ERROR_SUCCESS) {
RAND_add(begin_ptr(vData), nSize, nSize / 100.0);
memory_cleanse(begin_ptr(vData), nSize);
LogPrint("rand", "%s: %lu bytes\n", __func__, nSize);
} else {
static bool warned = false; // Warn only once
if (!warned) {
LogPrintf("%s: Warning: RegQueryValueExA(HKEY_PERFORMANCE_DATA) failed with code %i\n", __func__, ret);
warned = true;
}
}
#endif
}
/** Get 32 bytes of system entropy. */
static void GetOSRand(unsigned char *ent32)
{
#ifdef WIN32
HCRYPTPROV hProvider;
int ret = CryptAcquireContextW(&hProvider, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
if (!ret) {
RandFailure();
}
ret = CryptGenRandom(hProvider, 32, ent32);
if (!ret) {
RandFailure();
}
CryptReleaseContext(hProvider, 0);
#else
int f = open("/dev/urandom", O_RDONLY);
if (f == -1) {
RandFailure();
}
int have = 0;
do {
ssize_t n = read(f, ent32 + have, 32 - have);
if (n <= 0 || n + have > 32) {
RandFailure();
}
have += n;
} while (have < 32);
close(f);
#endif
}
void GetRandBytes(unsigned char* buf, int num)
{
if (RAND_bytes(buf, num) != 1) {
RandFailure();
}
}
void GetStrongRandBytes(unsigned char* out, int num)
{
assert(num <= 32);
CSHA512 hasher;
unsigned char buf[64];
// First source: OpenSSL's RNG
RandAddSeedPerfmon();
GetRandBytes(buf, 32);
hasher.Write(buf, 32);
// Second source: OS RNG
GetOSRand(buf);
hasher.Write(buf, 32);
// Produce output
hasher.Finalize(buf);
memcpy(out, buf, num);
memory_cleanse(buf, 64);
}
uint64_t GetRand(uint64_t nMax)
{
if (nMax == 0)
return 0;
// The range of the random source must be a multiple of the modulus
// to give every possible output value an equal possibility
uint64_t nRange = (std::numeric_limits<uint64_t>::max() / nMax) * nMax;
uint64_t nRand = 0;
do {
GetRandBytes((unsigned char*)&nRand, sizeof(nRand));
} while (nRand >= nRange);
return (nRand % nMax);
}
int GetRandInt(int nMax)
{
return GetRand(nMax);
}
uint256 GetRandHash()
{
uint256 hash;
GetRandBytes((unsigned char*)&hash, sizeof(hash));
return hash;
}
FastRandomContext::FastRandomContext(bool fDeterministic)
{
// The seed values have some unlikely fixed points which we avoid.
if (fDeterministic) {
Rz = Rw = 11;
} else {
uint32_t tmp;
do {
GetRandBytes((unsigned char*)&tmp, 4);
} while (tmp == 0 || tmp == 0x9068ffffU);
Rz = tmp;
do {
GetRandBytes((unsigned char*)&tmp, 4);
} while (tmp == 0 || tmp == 0x464fffffU);
Rw = tmp;
}
}